DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS FOR B.E. IV SEMESTER

SENSORS FOR ENGINEERING APPLICATIONS

(for other Branches)

Instruction: 2 Hrs /week	SEE Marks : 60	Course Code : OE420EC
Credits : 2	CIE Marks: 40	Duration of SEE : 3 Hrs

Course Objective:		Course Outcomes	
1. 2. 3.	Course Objective: The student will come to know the various stimuli that are to be measured in real life instrumentation. He will be able to select the right process or phenomena on which the sensor should depend on He will be aware of the various sensors available for measurement and control applications.	 At the end of the course, students will be able to: 1. Appreciate the operation of various measuring and control instruments which they encounter in their respective fields. 2. Visualize the sensors and the measuring systems when they have to work in areas of interdisciplinary nature and also think of sensors and sensors systems when for a new situation they encounter in their career 	
		 Identify and select the right process or phenomena on which the sensor should depend on. Know various stimuli that are to be measured in real life instrumentation. 	

UNIT - I

Introduction: What is a sensor and what is a transducer? Electrical sensor – need for sensors in the modern world. Different fields of sensors based on the stimuli - various schematics for active and passive sensors. General characteristics and specifications of sensors – Implications of specifications uses of sensors – measurement of stimuli - block diagram of sensor system. Brief description of each block.

UNIT - II

Sensors for mechanical systems or mechanical sensors - Displacement - acceleration and force - flow of fluids – level indicators – pressure in fluids – stress in solids. Typical sensors - wire and film strain gauges, animometers, piezo electric and magnetostrictive accelerometers, potentiometric sensors, LVDT.

UNIT - III

Thermal sensors – temperature – temperature difference – heat quantity. Thermometers for different situation – thermocouples thermistors – color pyrometry.

Optical sensors: light intensity – wavelength and color – light dependent resistors, photodiode, photo transistor, CCD, CMOS sensors.

Radiation detectors: radiation intensity, particle counter – Gieger Muller courter (gas based), Hallide radiation detectors.

UNIT - IV

Magnetic sensors: magnetic field, magnetic flux density – magneto resistors, Hall sensors, super conduction squids.

Acoustic or sonic sensors: Intensity of sound, frequency of sound in various media, various forms of microphones, piezo electric sensors.

Electrical sensors: conventional volt and ammeters, high current sensors, (current transformers), high voltage sensors, High power sensors.

High frequency sensors like microwave frequency sensors, wavelength measuring sensors.

MEMs and MEM based sensors.

Suggested Reading:

- 1. Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd.
- 2. Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", New York: Wiley, 2001.
- 3. Henry Bolte, "Sensors A Comprehensive Sensors", John Wiley.