VASAVI COLLEGE OF ENGINEERING(AUTONOMOUS) Ibrahimbagh, Hyderabad-31

Approved by A.I.C.T.E., New Delhi and Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad

SYLLABI UNDER CBCS FOR B.E (CSE) SECOND YEAR WITH EFFECT FROM 2017-18 (For the students admitted in 2016-17)

+91-40-23146020, 23146021 Fax: +91-40-23146090 Website: <u>www.vce.ac.in</u>

VISION OF THE DEPARTMENT

To be a center for academic excellence in the field of Computer Science and Engineering education to enable graduates to be ethical and competent professionals.

MISSION OF THE DEPARTMENT

To enable students to develop logic and problem solving approach that will help build their careers in the innovative field of computing and provide creative solutions for the benefit of society.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SCHEME OF INSTRUCTION AND EXAMINATIONS FOR B.E III SEMESTER (CBCS) WITH EFFECT FROM THE ACADEMIC YEAR 2017-18

B.E. III SEMESTER		Scheme of Instruction Hours per week			Scheme of Examination		dit		
Col	Name of the Course	L	Т	D	P	Duration in Hours	Maxir Maı	num ˈks	Cre
THEORY				SEE	CIE				
BS310MA	Mathematics III	3	1	-	-	3	70	30	3
PC310CS	Data Structures	3	1	-	-	3	70	30	3
PC320CS	Discrete Structures	3	1	-	-	3	70	30	3
PC330CS	0CS Logic & Switching Theory		1	-	-	3	70	30	3
ES320EC	20EC Introduction to Electronics Engineering		1	-	-	3	70	30	3
MC300EH	HVPE-I		-	-	-	2	35	15	1
HS310EH	FS-I: Communication Skills in English-I		2	-	-	3	70	30	2
MC310ME	Introduction to Entrepreneurship	1	-	-	-	2	35	15	1
OE3XXXX	Open Elective-I	2	-	-	-	3	70	30	2
	LABS								
PC311CS	Data Structures Lab	-	-	-	2	3	50	25	1
ES321EC	Introduction to Electronics Engineering Lab	-	-	-	2	3	50	25	1
	Total	21	7	-	4		660	290	23
Grand Total			3	2			95	0	25

3

* SEE- Semester End Examination * CIE- Continuous Internal Evaluation

With effect from the Academic Year 2017-18

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SYLLABUS FOR BE III SEMESTER ENGINEERING MATHEMATICS – III

Instruction:3+1 Hrs /week	SEE Marks :70	Course Code : BS310MA
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the	At the end of the course students will be able
students to:	to:
 <i>Study</i> the Fourier series, conditions for expansion o function and half range se <i>Formulate</i> and solve li 	 a) <i>Expand</i> any function which is continuous, discontinuous, even or odd in terms of its Fourier series. b) <i>Find t</i>he Partial differential equations by
and nonlinear pa differential equations apply partial differe equations to enginee problems viz., wave, heat	artial eliminating arbitrary constants and functions and solve linear, non linear Partial differential equations and also will be able solve wave, heat and Laplace's equations in engineering problems .
Laplace's equations. 3. <i>Study</i> the methods to sequations, apply numer methods to interpordifferentiate and integrations and to sed differential equations to numerical methods and set	 c) <i>Solve</i> algebraic and transcendental equations using Bisection method Regula-Falsi, Newton-Raphson, apply numerical methods to interpolate, differentiate functions, solve systems of equations and solve differential equations using numerical methods. d) <i>Apply</i> various probability distributions to
systems of equations. 4. <i>Understand</i> Random varia Probability Distribut Statistics and applications.	solve practical problems, to estimate unknown parameters of populations and apply the tests of hypotheses. e) Solve problems on how fitting of a curve to given data using
 Understand how to fit a cu to a given data, how Correlation between varial can be measured. 	to find co-efficient of correlation and to determine regression lines and their applications.

UNIT –I (8 classes)

Fourier Series : Introduction to Fourier series –Dirichlet's Conditions-Euler's Formula – Functions of 2n interval – Change of Interval - Fourier series expansions of even and odd functions - Fourier Expansion of Halfrange Sine and Cosine series.

UNIT –II (15 classes)

Partial Differential Equations and its Applications: Formation of first and second order Partial Differential Equations - Solution of First Order Equations – Linear Equation - Lagrange's Equation, Non-linear first order equations - Charpit's method

Applications of Partial Differential Equations: Method of Separation of Variables - Solution of One **D**imensional Heat Equation - One Dimensional Wave Equation - Steady State Two Dimensional Heat Equation.

UNIT-III (15 classes)

Numerical Methods: Interpolation- Newton's Forward and Backward Interpolation Formulae - Lagrange's Interpolation Formula - Newton's Divided Difference Formula - Numerical Differentiation -Interpolation approach- Numerical Solutions of Ordinary Differential Equations - Runge - Kutta Method of 4th order(without proofs).

UNIT-IV (6 classes)

Curve Fitting: Curve fitting by the Method of Least Squares - Fitting of Straight line – Regression - Lines of Regression - Correlation – Karl Pearson's Co-efficient of Correlation.

UNIT-V (12 classes)

Probability and Statistics: Random Variables - Probability Distribution function for Discrete and Continuous Random variables - Expectation - Variance - Moments - Moment Generating Function- Normal Distributions - Testing of Hypothesis - Tests of Significance - t-test - F- test $-\chi^2$ - test for small samples.

Suggested Books:

- 1. R.K. Jain & S.R.K. lyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Dr.B.S Grewal, Higher Engineering Mathematics, 40th Edition, Khanna Publishers.
- 3. Kreyszig E, Advanced Engineering Mathematics,8th Edition, John Wiley & Sons Ltd, 2006.
- 4. N.P.Bali & Manish Goyal, A text book of Engineering Mathematics by, Laxmi Publication.
- 5. S.S.Sastry, Numerical Analysis --PHI Learning Ltd.,
- 6. Gupta & Kapoor , Fundamentals of Mathematical Statistics, Sultan chand & sons, New Delhi.

With effect from the A.Y 2017-18

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E III SEMESTER DATA STRUCTURES

Instructions: 3+1Hrs/ Week	SEE Marks : 70	Course Code: PC310CS
Credits: 3	CIE Marks : 30	SEE Duration: 3 Hours

Course Objectives	Course Outcomes		
Students should be able to	At the end of the course, Students will be able to		
 Identify and use appropriate data structure for a given problem with effective utilization of space and time. Describe the linear and nonlinear data structures Analyze the complexities of different sorting techniques 	 Analyze the time and space complexities of Algorithms. Implement linear data structures Develop an application using stacks, queues and linked lists Choose the appropriate nonlinear data structure and perform various operations on them Choose suitable sorting techniques to maximize the performance. Implement different hashing techniques. Illustrate various operation on Efficient Binary Search Trees and Multiway Search Trees 		

UNIT-I

Basic concepts: Algorithm Specification- Introduction, Recursive algorithms, Data Abstraction, Performance analysis- time complexity and space complexity, Asymptotic Notation-Big O, Omega and Theta notations. **Arrays:** Arrays - ADT, Polynomials, Sparse matrices, Strings-ADT, Pattern Matching.

UNIT – II

Stacks and Queues: Stacks, Stacks using dynamic arrays, Queues, Circular Queues using dynamic arrays, A Mazing Problem, Evaluation of Expressions – Evaluating Postfix Expression, Infix to Postfix.

Linked Lists: Singly Linked Lists and Chains, Linked Stacks and Queues, Polynomials, Operations for Circularly linked lists, Equivalence Classes, Sparse matrices, Doubly Linked Lists.

UNIT – III

Trees: Introduction, Binary Trees, Binary Tree Traversals, Heaps, Binary Search trees (BST) : Definition, Searching a BST, Insertion into a BST, Deletion from a BST.

Graphs: The Graph ADT, Elementary graph operations, Minimum Cost Spanning Trees- Kruskal's Algorithm, Prim's Algorithm.

UNIT – IV

Sorting: Insertion Sort, Quick sort, Merge sort, Heap sort, Sorting on Several Keys, List and Table Sorts

Hashing : Introduction, Static Hashing – Hash tables, Hash functions, Overflow handling.

UNIV – V

Efficient Binary Search Trees: AVL Trees, Red-Black Trees, Splay Trees **Multiway Search Trees:** m-way search trees-Definition and Properties, Searching an m-way search tree, B-Trees-Definition and properties, Number of Elements in a B-Tree, Insertion into a B-Tree and Deletion from a B-Tree.

Suggested Books:

1. Horowitz E, Sahni S and Susan Anderson-Freed, Fundamentals of Data structures in C, 2nd Edition (2008), Universities Press

Reference Books:

- 1. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition (2002), Pearson
- 2. Kushwaha D. S and Misra A.K, Data structures A Programming Approach with C, Second Edition (2014), PHI.
- 3. Gilberg R. F and Forouzan B. A, Data structures: A Pseudocode Approach with C, Second Edition (2007), Cengage Leaming
- 4. Tanenbaum A. M , Langsam Y. Augenstein M. J, Data Structures using C, Second Edition (2008), Pearson.
- 5. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, Introduction to Algorithms, Third Edition (2009), MIT Press
- Yedidyah Langsam , Moshe J. Augenstein , Aaron M. Tenenbaum, Data Structures Using C and C++ , Second Edition (2009), PHI

Online Resources :

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-006-introduction-to-algorithms-fall-2011/lecture-videos
- 2. http://nptel.ac.in/courses/106106127/
- 3. http://www.nptel.ac.in/courses/106102064

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E III SEMESTER DISCRETE STRUCTURES

Instructions: 3+1Hrs/ Week	SEE Marks : 70	Course Code: PC320CS
Credits: 3	CIE Marks : 30	SEE Duration: 3 Hours

Students should be able toAt the end of the course, Students will be able to• Understand the concepts• Construct compound statements using logical	Course Objectives	Course Outcomes
Understand the concepts Construct compound statements using logical	Students should be able to	At the end of the course, Students will be able to
 of set theory, arithmetic logic and proof techniques Build mathematical models to solve the real world problems by using appropriate methods Compare different types of relations and functions and also apply principle of inclusion and exclusion to solve counting problems Solve various types of recurrence relations to find the complexity of an algorithm Develop crypto system using Ring and modula arithmetic Develop group codes for error detection and exclusion to and exclusion to and exclusion to solve counting problems 	 Understand the concepts of set theory, arithmetic logic and proof techniques Build mathematical models to solve the real world problems by using appropriate methods 	 Construct compound statements using logical connectives and verify the validity of conclusion using inference rules Compare different types of relations and functions and also apply principle of inclusion and exclusion to solve counting problems Solve various types of recurrence relations to find the complexity of an algorithm Develop crypto system using Ring and modular arithmetic Develop group codes for error detection and

UNIT – I

Fundamentals of Logic: Basic Connectives and Truth Tables, Logical Equivalence, Logical Implication, Use of Quantifiers, Definitions and the Proof of Theorems.

Properties of the Integers: The well – ordering principle, Recursive definitions, The division algorithms, The Greatest Common Divisor, The Fundamental theorem of arithmetic.

UNIT – II

Functions: Cartesian Product, One-to-one, Onto Functions, Special Functions, Pigeonhole Principle, Composition and Inverse Functions.

Relations: Partial Orders, Equivalence Relations and Partitions.

Principle of Inclusion and Exclusion: Principles of Inclusion and Exclusion, Generalizations of Principle, Derangements, Rook Polynomials, Arrangements with Forbidden Positions.

UNIT – III Generating Functions: Introductory Examples, Definition and Examples, Partitions of Integers, Exponential Generating Function, Summation Operator.

Recurrence Relations: First – Order Linear Recurrence Relation, Second – Order Linear Homogenous Recurrence Relation with Constant Coefficients, Non Homogenous Recurrence Relation.

UNIT – IV

Rings and Modular Arithmetic

The Ring structure: Definition and Examples, Ring Properties and Substructures, The Integers modulo n, Ring Homomorphism and Isomorphism, RSA cryptosystem.

Number Theory

Prime Numbers, Fermat's and Euler Theorems , Testing for Primality, The Chinese Reminder Theorem.

UNIT – V

Algebraic Structures: Algebraic System – General Properties, semi groups, Monoids, Homomorphism, Cosets and Lagrange's Theorem, Elements of Coding Theory, The Hamming Metric, The Parity Check generating Matrices, Group Codes: Decoding with Coset Leaders.

Suggested Books:

- 1. Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, 4th Edition (2003), Pearson Education.
- 2. William Stallings, Cryptography and Network Security , 4th Edition (2009), Pearson.
- 3. Kenneth H Rosen, Discrete mathematics and its applications, 5th Edition (2006), Tata McGraw-Hill Edition, New Delhi.

Reference Books:

- 1. J.P. Tremblay, R. Manohar, Discrete Mathematical Structure with Applications to Computer Science, 4th Edition (1987),McGraw Hill, New Delhi.
- Joe L. Mott, A. *Kandel, T.P. Baker,* Discrete Mathematics for Computer Scientists & Mathematicians, 2nd Edition (1986), Prentice Hall.
- 3. Thomas Koshy, Discrete Mathematics with Applications, 1st Edition (2004), Elsevier Inc.

Online Resources:

- 1. http://nptel.ac.in/courses/106106094/
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-042j-mathematics-for-computer-science-fall-2010

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E III SEMESTER LOGIC AND SWITCHING THEORY

Instructions: 3+1Hrs/ Week	SEE Marks : 70	Course Code: PC330CS
Credits: 3	CIE Marks : 30	SEE Duration: 3 Hours

C	Course objectives	Course outcomes
Students should be		At the end of the course, students will be able to
ab	le to	
•	Understand the use of logic minimization methods and to solve the Boolean logic expressions. Design combinational and sequential circuits.	 Apply Boolean logic, postulates and Karnaugh-Map to simplify the Boolean expressions. Apply Tabulation procedure to minimize Boolean expressions. Design combinational circuits like adders, encoders, multiplexers. Apply state reduction method to design sequential circuits like counters and registers. Design combinational circuits like Programmable Read
		Only Memory(PROM) using programmable logic devices

UNIT-I

Boolean Algebra: Axiomatic definition of Boolean Algebra, Postulates and Theorems, Boolean Functions, Canonical Forms and Standard Forms, Simplification of Boolean Functions Using Theorems and Karnaugh Map Method.

UNIT-II

Minimization of Switching Functions: Quine-McCluskey Tabular Method, Determination of Prime Implicants and Essential Prime Implicants. **Implementation of Boolean Functions:** Single-Output and Multiple-Output Combinational Circuit Design, AND-OR, OR-AND and NAND & NOR Realizations, Exclusive-OR and Equivalence functions.

UNIT-III

Design of Combinational Logic Circuits: Analysis Procedure, Design Procedure, Modular Combinational Logic Elements- Decoders, Encoders, Priority Encoders, Multiplexers and De-multiplexers.

Design of Integer Arithmetic Circuits using Combinational Logic: Integer Adders – Binary Adders, Subtractors, Ripple Carry Adder and Carry Look Ahead Adder, and Carry Save Adders.

UNIT-IV

Introduction to Sequential Circuit Elements: Latches, Various types of Flip-Flops, Excitation Tables.

Models of Sequential Circuits: Moore Machine and Mealy Machine, Analysis of Sequential Circuits-State Table and State Transition Diagrams. Design of Sequential Circuits - Counters. Moore and Mealy State Graphs for Sequence Detection, Methods for Reduction of State Tables and State Assignments.

UNIT-V

Design of Combinational Circuits using Programmable Logic Devices (PLDs): Read Only Memory (ROM), Programmable Logic Array (PLA), Programmable Array Logic (PAL) devices.

Suggested Books:

1. Morris Mano M and Michael D Ciletti, Digital Design, 4th Edition (2008), Prentice Hall of India.

Reference Books:

- 1. Zvi Kohavi, Switching and Finite Automata Theory, 2nd Edition (1978), Tata McGraw Hill.
- 2. Charles H. Roth, Jr., Larry L. Kenny, Fundamentals of Logic Design, 7th Edition (2013), Cengage Learning.
- 3. Anand Kumar A, Switching Theory and Logic Design, 2nd Edition (2014), PHI Publishers.
- 4. CH Roth , Fundamentals of Logic Design, 4th Edition (2006), Jaico Publishers.

Online Resources:

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-111-introductory-digital-systems-laboratory-spring-2006/
- 2. http://www.facweb.iitkgp.ernet.in/~isg/SWI TCHING/

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SYLLABUS FOR BE III SEMESTER INTRODUCTION TO ELECTRONICS ENGINEERING

Instructions: 3+1Hrs/ Week	SEE Marks : 70	Course Code: ES320EC
Credits: 3	CIE Marks : 30	SEE Duration: 3 Hours

Со	urse Objective:	Course Outcomes
•	urse Objective:Tounderstandthecharacteristicsandoperationofdifferentelectronic devices.telectronic devices.Tostudytheworkingoftransistorizedamplifiersandoscillators.	 Course Outcomes At the end of the course students will be able to: Employ different electronic devices to build electronic circuits such as rectifiers, voltage regulators. Describe the functioning of electronic circuits such as amplifiers and
•	To gain the basic knowledge of digital logic circuits. To study the working	 oscillators. Implement digital circuits such as adders and subtractors using logic gates.
	principle of different types of transducers.	 Have the knowledge of certain electronic devices such as SCR, DIAC, TRIAC, UJT. Convert real time electrical signals into corresponding signals using different types of transducers.

UNIT - I

Semiconductor Theory: Classification of semiconductors, Energy Levels, Conductivity, Mobility, Diffusion and Drift currents, Hall Effect, Characteristics of P-N Junction diode, Parameters and Applications. **Rectifiers:** Half wave and Full wave Rectifiers (Bridge, center tapped), ripple factor and efficiency, comparison of rectifiers, Filters, types of filters, Rectifiers with and without filters

UNIT - II

Transistors: Bipolar Junction Transistor, Construction, Types, Working principle, Configurations, Transistor parameters, Transistor as an amplifier, Problems, h-parameter equivalent circuits. Field effect transistor, Construction and working of JFET, Parameters and applications of JFET,

Types of MOSFET (depletion and enhancement), Comparison of BJTs with JFETs; **Regulators:** Characteristics of Zener Diode, Voltage Regulation, Zener diode as voltage regulator, IC voltage regulators.

UNIT - III

Feedback Concepts – Basic concept of feedback, Types of feedback, Feedback topologies, General characteristics of Negative feedback amplifiers; **Oscillators** – Classification of Oscillators, Types, LC Type and RC Type Oscillators and Crystal Oscillators (Qualitative treatment only)

UNIT - IV

Operational Amplifiers – Introduction, Characteristics of ideal Operational amplifier, Operational amplifier stages, Parameters, Open loop and closed loop configurations, Applications (Adder, Subtractor, Voltage follower, Integrator, Differentiator, Instrumentation Amplifier); **Digital circuits:** Boolean Algebra, Logic Gates, Combinational circuits such as half and full adders, half and full subtractors.

UNIT - V

Data Acquisition systems: Introduction, Classification of transducers, Capacitive transducer, Inductive transducer, LVDT, Electrical strain gauges, Temperature transducers (Thermocouple), Piezoelectric transducer, Photoelectric transducer; **Photo Electric Devices:** Photo diode, Photo Transistor, LED, LCD; **Industrial Devices:** SCR, TRIAC, DIAC, UJT - Construction, Working principle and Characteristics only; **Display Systems:** Constructional details of C.R.O and Applications.

Suggested Reading:

- 1. S.Shalivahan, N. Suresh Kumar, A Vallavea Raj Electronic Devices and Circuits Tata McGraw Hill, 2003.
- 2. Jacob Milman & C., Halkias, Electronic devices Eighth Edition, Reprinted, Mc Graw Hill,1985.
- 3. Ramakanth A. Gayakwad, Op-AMPS and Linear Integrated Circuits, 3rd edition, Prentice Hall of India,1985.
- 4. Mooris Mano, Digital design, 3rd edition, Prentice Hall of India, 2002.
- 5. Cooper, Electronic Measurement and Instrumentations.

With effect from the Academic Year 2017-18

HUMAN VALUES AND PROFESIONAL VALUES-I SYLLABUS FOR B.E. III-SEMESTER

Instruction:1Hrs/ Week	SEE Marks: 35	Course Code: MC300EH	
Credits: 1	CIE Marks: 15	Duration of SEE: 2Hrs	

COURSE OBJECTIVES	COURSE OUTCOMES		
The course will enable the	At the end of this course the student will be a		
students to	to		
1. Get a holistic perspective of	a.	Gain a world view of the self, the society	
value- based education.		and the profession.	
2. Grasp the meaning of basic	b.	Make informed decisions.	
human aspirations vis-a-vis	с.	Start exploring themselves in relation to	
the professional aspirations.		others and their work –constantly evolving	
Understand professionalism		into better human beings and	
in harmony with self and		professionals	
society.	d.	Inculcate Human values into their	
Develop ethical human		profession.	
conduct and professional	e.	Validate their aspirations through right	
competence.		understanding of human relationship and	
5. Enrich their interactions with		see the co-relation between the human	
the world around, both		values and prevailing problems.	
professional and personal.	f.	Strike a balance between physical,	
		mental, emotional and spiritual parts their	
		being.	
	g.	Obtain a holistic vision about value-based	
		education and professional ethics.	

UNIT-I: A. Human and Ethical values

What are they? --The Indian concept of values-- Modern approach to the study of values - Basis for Moral Judgement--- A new approach to Human Values-- freedom, creativity, love, wisdom, concern.

UNIT-II: Canons of Ethics

Virtue Ethics-- Ethics of Duty-- Ethics of Responsibility-- Factors to be considered in making Ethical Judgments.

UNIT-III: The Value of time

The importance of managing time-- Factors that hinder time management-Benefits of time management-- Using time judiciously-- practical strategies to manage time.

UNIT-IV: The Power of Positive thinking

Nature and Scope of Positive thinking-- Methods to change one's thinking---Strategies to change the cycle of one's thinking.

UNIT-V: The Value of Setting Goals

Goal setting-- Importance of setting goals for oneself—Achieving excellence through SMART goals.

Suggested Books:

- 1. B.L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 2. A.N Tripathy, 2003 Human values, New Age International Publishers.
- 3. EG Seebauer & Robert L. Berry,2000,Fundamentals of Ethics for Scientists and Engineers, Oxford University Press.
- 4. Mike Martin and Ronald Schinzinger "Ethics in Engineering "McGraw Hill
- 5. Charles E Haris, Micheal J Rabins, "Engineering Ethics "Cengage Learning
- 6. Caroline Whitback < Ethics in Engineering Practice and Research, Cambridgs University Press
- 7. Georgs Reynolds, Ethics in Information Technology", Cengage Learning
- 8. Charles D.Fleddermann, " Engineering Ethics", Pearson Education Prentice Hall, New Jersey, 2004 (Indian Reprint)

Online Resoureces:

- Value Education website, Http://www.universalhumanvalues.info
- UPTU webiste, Http://www.uptu.ac.in
- Story of stuff, Http://www.storyofstuff.com
- AlGore, As Inconvenient Truth, Paramount Classics ,USA
- Charlie Chaplin, Modern Times, United Artists, USA
- IIT Delhi, Modern Technology-The Untold story-Anand Gandhi, Right Here Right Now, Cyclewala production

FS-I: COMMUNICATION SKILLS IN ENGLISH-I SYLLABUS FOR B.E. III-SEMESTER

Instruction:2+2Hrs/ Week	SEE Marks: 70	Course Code: HS310EH
Credits: 2	CIE Marks: 30	Duration of SEE: 3 Hrs

Course Objective	Course Outcome
• The four major skills of language learning, listening, speaking, reading and writing provide the right key to success.	 Respond to questions and Engage in an informal conversation. Narrate a message/story/incident, both verbally and in writing. Describe an event/a session/ a movie/ an article. Respond to others while being in a casual dialogue.
• The main objective of this finishing school curriculum is to involve content for all the above mentioned four skills in teaching English and to get students proficient in both receptive and productive skills	 comprehend facts given and respond in an appropriate manner. Construct sentences in a coherent form Provide explanations Recognize and list the key points in a topic/message/article. Participate in group and forum discussions by providing factual information, possible solutions, and examples. Debate on a topic by picking up the key points from the arguments placed. Provide logical conclusions to the topics under discussion. Prepare, present, and analyze reports

UNIT I – FUNDAMENTALS OF COMMUNICATION Competencies:

- Basic conversational ability.
- Write e-mails introducing themselves & their purpose

Topics covered

Greeting and Introductions Small Talk Recalling

Topic Level Details Greeting & Introductions

Competencies:

- Greeting appropriately
- Introducing themselves, a friend
- Responding to simple statements and questions both verbally and in writing
- Seeking introduction from others about themselves or about any topic.
- Writing an email with appropriate salutation, subject lines, self introduction, and purpose of mail.

Small Talk

Competencies:

- Identifying the topic of conversation.
- Speaking a few sentences on a random list of topics
- Reading simple information like weather reports, advertisements
- Seeking clarifications. **Recalling**

Competencies:

• State takeaways from a session or conversations

UNIT II : NARRATIONS AND DIALOGUES Competencies:

- Framing proper phrases and sentences to describe in context
- Speaking fluently with clarity and discrimination
- Responding to others in the dialogue.

Topics covered

Paraphrasing

Describing

Topic Level Details

Paraphrasing

Competencies:

• Listen for main ideas and reformulating information in his/her own words

- Draw appropriate conclusions post reading a passage.
- Writing an email confirming his/her understanding about a topic

Describing

Competencies:

• Speaking, Reading, and Writing descriptive sentences and paragraphs.

UNIT-III: RATIONAL RECAP Competencies:

- Organizing and structuring the communication
- Detailing a topic
- Summarizing a topic.

Topics Covered:

Organizing

Sequencing

Explaining

Summarizing

Topic Level Details

Organizing

Competencies:

• Organizing the communication based on the context and audience **Sequencing**

Competencies:

• Structuring the content based on the type of information.

Explaining

Competencies:

- Explaining a technical/general topic in detail.
- Write an email giving detailed explanation/process

Summarizing

Competencies:

• Recapitulating

UNIT-IV: PROFESSIONAL DISCUSSIONS AND DEBATES Competencies:

- Analytical and Probing Skills
- Interpersonal Skills

Topics Covered:

Discussing Debating

Topic Level Details Discussing

Competencies:

- Thinking
- Assimilating

Debating

Competencies:

• Comprehending key points of the debate and note decisive points including supporting details.

- Construct a logical chain of arguments and decisive points.
- Writing a review about a product by providing reasons, causes, and effects

UNIT -V: DRAWING CONCLUSIONS AND REPORTING Competencies:

- Reasoning skills Coherent and logical thinking
- Reporting and Analyzing skills.

Topics Covered:

Concluding Reporting

Topic Level Details

Concluding

Competencies:

- Analyzing the points discussed.
- Connecting all points without gaps.
- Identifying clinchers.
- Communicating the decisions

Reporting

Competencies:

- Reporting an incident
- Writing/Presenting a project report

SYLLABUS FOR BE III SEMESTER INTRODUCTION TO ENTREPRENEURSHIP

Instruction:1 Hours /week	SEE Marks :35	Course Code : MC310ME
Credits : 1	CIE Marks: 15	Duration of SEE : 2 Hours

Course objectives	Course Outcomes
The objectives of this course are to :	On completion of the course, the student
• inspire students and help them	will be able to:
imbibe an entrepreneurial mind-	 develop awareness about
set.	entrepreneurship and successful
 introduce key traits and the DNA 	entrepreneurs.
of an entrepreneur	• generate and analyse the business
 provide the information about 	ideas
the facilities , schemes available	 understand the supporting
to start enterprise in INDIA	organizations available to establish the
 educate the government policies 	business in the country
and support structure for the	• understand the different government
entrepreneur	policies which support the
 improve the entrepreneur skills 	entrepreneur
	 understand how to Prepare a
	business plan report

Unit-I: Entrepreneurship: Entrepreneur characteristics – Classification of Entrepreneurships – Incorporation of Business – Forms of Business organizations –Role of Entrepreneurship in economic development –Start-ups.

Unit-II: Idea Generation and Opportunity Assessment: Ideas in Entrepreneurships – Sources of New Ideas – Techniques for generating ideas – Opportunity Recognition – Steps in tapping opportunities.

Unit-iii: Institutions Supporting Small Business Enterprises: Central level Institutions: NABARD, SIDBI, NIC, KVIC, NIESBUD,SIDO, DST,EDI,FICCI,CII,ASSOCHAM etc. – state level Institutions –DICs- SFC-SIDC- Other financial assistance.

Unit-IV: Government Policy and Taxation Benefits: Government Policy for SSIs- tax Incentives and Concessions –Non-tax Concessions –Rehabilitation and Investment Allowances.

Unit-V: entrepreneurial skills-design thinking, selling and communication. Project Formulation and Appraisal: Preparation of Project Report –Content; Guidelines for Report preparation, project report and pitching

Learning Resources:

- Bruce R. Barringer and R. Duane Ireland, "Entrepreneurship: successfully launching new ventures", 3rd edition, Pearson Prentice Hall, 2009.
- 2. P. Denning and R. Dunham, "The Innovator's Way", MIT Press: Cambridge, Massachusetts, 2010.
- 3. Arya Kumar, "Entrepreneurship", Pearson Education, Delhi, 2012.
- 4. Michael H. Morris, D.F.Kuratko, J G Covin, "Corporate Entrepreneurship and Innovation", Cengage learning, New Delhi,2010
- 5. Peter F. Drucker, "Innovation and Entrepreneurship", Routledge Classics, 2015.
- 6. https://www.wfglobal.org/initiatives/national-entrepreneurship-network

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E III SEMESTER DATA STRUCTURES LAB

Instructions: 2Hrs/ Week	SEE Marks : 50	Course Code: PC311CS
Credits: 1	CIE Marks : 25	SEE Duration: 3 Hours

Course Objectives	Course Outcomes
Students should be able to	At the end of the course, Students will
	be able to
 Design and analyze linear and nonlinear data structures Acquire programming skills to implement sorting and searching techniques Identify and apply the suitable data structure for the given real world problem 	 Implement various operations on array and linked list Develop applications using stack and queue Apply nonlinear data structures to solve computing problems Implement optimized sorting technique for a given data set Choose the suitable data structure to solve a real world problem

Programming Exercise:

- 1. Implementation of Formula based representation.
- 2. Implementation of Singly Linked List, Doubly Linked List and Circular Linked List.
- 3. Implementation of Polynomial Arithmetic using Linked List.
- 4. Implementation of String Matching algorithms.
- 5. Implementation of Stacks, Queues.(Using both Arrays and Linked Lists)
- 6. Implementation of Infix to Postfix Conversion, Postfix Expression Evaluation.
- 7. Implementation of Binary Search and Hashing
- 8. Implementation of Recursive and Iterative Traversals on Binary Tree.
- 9. Implementation of Binary Search Tree.
- 10. Implementation of Operations on Binary Tree (Delete Entire Tree, Copy Entire Tree, Mirror Image, Level Order, Search for a Node etc.)

- 11. Implementation of operations on AVL Trees.
- 12. Implementation of B-Trees.
- 13. Implementation of Traversal on Graphs.
- 14. Implementation of Selection, Merge, Quick, Heap, and Insertion Sort.
- 15. Develop application using appropriate data structures.

Suggested Books:

1. Horowitz E, Sahni S and Susan Anderson-Freed, Fundamentals of Data structures in C, 2nd Edition(2008), Universities Press

Reference Books:

- 1. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition(2002), Pearson
- 2. Kushwaha D. S and Misra A.K, Data structures A Programming Approach with C, Second Edition(2014), PHI.,
- 3. Gilberg R. F and Forouzan B. A, Data structures: A Pseudocode Approach with C, Second Edition(2007), Cengage Learning
- 4. Tanenbaum A. M , Langsam Y. Augenstein M. J, Data Structures using C, Second Edition (2008), Pearson.
- 5. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, Introduction to Algorithms, Third Edition(2009), MIT Press
- Yedidyah Langsam , Moshe J. Augenstein , Aaron M. Tenenbaum, Data Structures Using C and C++ , Second Edition(2009), PHI

Online Resources :

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-006-introduction-to-algorithms-fall-2011/lecture-videos
- 2. http://nptel.ac.in/courses/106106127/
- 3. http://www.nptel.ac.in/courses/106102064

With effect from the academic year 2017 - 2018 INTRODUCTION TO ELECTRONICS ENGINEERING LAB

Subject Code : ES 311 EC	Instruction:2 Periods/ week	CIE – Marks : 25
SEE – Marks : 50	SEE - Duration : 3 Hours	Credits: 01

	Course Objective:	Course Outcomes
•	Verify the characteristics of	At the end of the course students will be
	various electronic devices.	able to:
•	Understand the functioning	Verify input/output characteristics of active
	of voltage regulator and	devices and to compute their parameters.
	rectifiers.	 Analyse the functioning of voltage
•	Perform different arithmetic	regulators, rectifiers and oscillators.
	operations using	 Perform operations such as addition,
	operational amplier.	subtraction, comparison of voltage levels
•	Understand the working of	using operational amplifier.
	logic gates to implement	• Implement digital adders and subtractors
	adder and subtractor.	using logic gates.

- 1. Characteristics of Semiconductor (Si and Ge) and Zener diodes
- 2. CRO Applications
- 3. Full wave rectifier with and without filter
- 4. Zener Voltage Regulator
- 5. Characteristics of BJT (CB and CE)
- 6. Characteristics of FET
- 7. Amplifier with and without feedback
- 8. RC Phase shift oscillator
- 9. Hartley oscillator and Calpitt's Oscillator
- 10. Applications of Operational Amplifier: Adder, Subtractor, Comparator.
- 11. Verifications of Logic gates
- 12. Realization of Half and Full adder

Suggested Reading :

- 1. Paul B. Zbar, Albert P. Malvino , Michael A. Miller, Basic Electronics, A Text-Lab Manual, 7th Edition, TMH, 1994.
- Paul B. Zbar, Industrial Electronics, A Text Lab Manual, 3rd Edition, TMH, 1983.

General Note :

- 1. There should not be more than 2 students per batch while performing any of the lab experiments.
- a) Mini Project cum design exercise: The students must design, rig-up, and test the circuits wherever possible and should carry out the experiments individually.
- b) This exercise carries sessional marks of 10 out of 25, while the remaining 15 marks are for the remaining lab exercises.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SCHEME OF INSTRUCTION AND EXAMINATIONS FOR B.E IV SEMESTER (CBCS) With effect from the A.Y 2017-18

	B.E. IV SEMESTER		Scheme of					6	
ode		Instruction Hours per week				Scheme of Examination			edit
30	S O Name of the Course		т	D	Ρ	Duration in Hours	Maxi Ma	mum rks	ç
	THEORY						SEE	CIE	
BS410MA	Mathematics -IV	3	1	-	-	3	70	30	3
PC410CS	Object Oriented Programming Using Java	3	1	-	-	3	70	30	3
PC420CS	Operating Systems	3	-	-	-	3	70	30	3
PC430CS	Design & Analysis of Algorithms	3	1	-	-	3	70	30	3
PC440CS	Computer Architecture		1	-	-	3	70	30	3
HS410EH	FS –II : Communication Skills in English-II	2	2	-	-	3	70	30	2
MC320CE	Environmental Science	2	-	-	-	3	70	30	2
OE4XXXX	Open Elective-II	1	-	-	-	2	35	15	1
OE4XXXX	Open Elective-III	2	-	-	-	3	70	30	2
LABS									
PC411CS	Java Lab	-	-	-	2	3	50	25	1
PC421CS	Operating Systems Lab	-	-	-	2	3	50	25	1
	Total	22	6	-	4		695	305	
Grand Total				32		-	10	00	24
* SEE- Semes	* SEE- Semester End Examination * CIE- Continuous Internal Evaluation								

25

With effect from the Academic Year 2017-18

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SYLLABUS FOR B.E. IV-SEMESTER ENGINEERING MATHEMATICS – IV

Instruction: 3+1Hrs /week	SEE Marks :70	Course Code : BS410MA
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs

	COURSE OBJECTIVES		COURSE OUTCOMES
The	e course will enable students to:	At the end of the course students will be	
		abl	e to:
1.	Understand the Definition of	a)	<i>Evaluate</i> Laplace transforms and
	Laplace and inverse Laplace		inverse Laplace transforms of functions.
	Transforms-Shifting Properties		Apply Laplace transforms to solve
	and various theorems and how		ordinary differential equations arising in
	to apply them in solving		engineering problems.
_	Differential Equations.	b)	Apply Z-transform in the analysis of
2.	Analyze the characteristics and		continuous time and discrete time
	properties of and Z –		systems and also solve the Difference
	transforms and solve the	、	Equations using Z-transform.
2	Difference Equations.	C)	Determine Fourier transform, Fourier
3.	Study the concept of Fourier		sine and cosine transform of a
	and inverse Fourier Transform	4)	runction.
	or a runction and various	u)	know the condition(s) for a complex
1	properties.		barmonic and state and prove the
ч.	functions to evaluate a line		Cauchy Piemann Equation and use it to
	integral of a function of a		show that a function is analytic and to
	complex variable using		define singularities of a function know
	Cauchy's integral formula to		the different types of singularities
	evaluate real integrals using		evaluate contour integrals using the
	complex integration and how		Cauchy Integral Theorem and the
	to evaluate Laurent Series and		Cauchy Integral Formula and will be
	residues.		able to determine transformation in a
			complex space.

UNIT- I (12 classes)

Laplace Transforms: Introduction to Integral Transformation- Laplace transforms - Inverse Laplace transform - Sufficient Condition for Existence of Laplace Transform - Laplace Transform of Derivatives - Laplace Transform of Integrals – Translation theorems-First shifting theorem – Unit step function- Second shifting theorem – Differentiation of Laplace

transform – Integration of Laplace transform - Convolution Theorem - Application of Laplace transforms to Initial value problems.

UNIT –II (8 classes)

Fourier Transforms: Fourier Integral Theorem(with or without proof) -Fourier Transforms – Inverse Fourier Transform - Properties of Fourier Transform –Fourier Cosine & Sine Transforms - Convolution Theorem.

UNIT-III: (8 classes)

Z-Transforms: Introduction - Z-transforms of Standard sequences -Linearity Property – Scaling Property - Shifting Properties- Initial and Final value theorems – Differentiation of Z-transform - Inverse Z-Transforms-Convolution Theorem – Application of Z-Transforms to solve Difference Equations.

UNIT-IV (15 classes)

Functions of Complex Variables: Limits and Continuity of function -Differentiability and Analyticity - Necessary & Sufficient Condition for a Function to be Analytic - Cauchy-Riemann Equations in Cartesian & Polar Form - Milne-Thomson's method - Harmonic Functions - Complex Integration - Cauchy's Theorem - Extension of Cauchy's Theorem for multiply connected regions- Cauchy's Integral Formula.

UNIT-V (10 classes)

Power series - Taylor's Series - Laurent's Series (without proofs) - Zeros and Singularities – Residues – Cauchy's Residue Theorem - Evaluation of Real Definite Integrals Involving Trigonometric functions and improper integrals of the form $\int_{-\infty}^{\infty} f(x) dx$ using Residue Theorem .

Text Books:

- 1. R.K.Jain & S.R.K.Iyengar, Advanced Engineering Mathematics 3rd Edition, Narosa Publications
- 2. Dr.B.S Grewal , Higher Engineering Mathematics, 40th Edition, Khanna Publishers.
- 3. Goyal & Gupta, Laplace's and Fourier transforms, Pragati prakashan

Reference books:

- 1. Kreyszig E, Advanced Engineering Mathematics, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. N.P.Bali & Manish Goyal, A text book of Engineering Mathematics Laxmi Publication.
- 3. H.K. Dass, Er.Rajnish Verma, Higher Engineering Mathematics, 2011 Edition S.Chand & company Ltd.
- 4. R.V. Churchill, "Complex Variables & its Applications".Mc Graw-Hill Book Company, INC.

With effect from the A.Y 2017-18

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E IV SEMESTER OBJECT ORIENTED PROGRAMMING USING JAVA

Instruction: 3+1Hrs /week	SEE Marks :70	Course Code : PC410CS
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs

Course objectives	Course outcomes
Students should be	At the end of the course, Students will be able to
able to	
 Apply object oriented principles for developing an application using Java constructs Design GUI using existing java classes and interfaces 	 Understand the object oriented programming paradigm to design a Java application Apply concurrent programming and runtime error handling on a Collection of objects to build a robust java application Design dynamic java applications using IO streams and work with console, files and network streams Develop event driven GUI for a java application using AWT package Create an enhanced java application following MVC architecture using Swing Package

UNIT – I

Object Oriented System Development: Understanding Object Oriented Development, Understanding Object Concepts, Benefits of Object Oriented Development.

Java Programming Fundamentals: Introduction, Overview of Java, Data types, Variables and Arrays, Operators, Control Statements, Classes, Methods, Inheritance, Packages and Interfaces,

$\mathbf{UNIT} - \mathbf{II}$

Exception Handling, Multithreaded Programming, String Handling.

Collections: Overview, Collection Interfaces, Collection Classes, Iterators, Random Access Interface, List, Set, Maps, Comparators, Arrays, Legacy Classes and Interfaces, StringTokenizer, BitSet, Date, Calendar, Observable, Timer.

UNIT – III

IO: Java I/O Classes and Interfaces, Files and Directories, Byte and Character Streams, Serialization.

Networking: Classes & Interfaces, INetAddress, TCP/IP Sockets, DatagramSocket, URL, URLConnection

UNIT – IV

GUI and event Programming: Applet Class, Applet architecture, Event Handling, The Delegation Event Model, Event Classes, Source of Events, Events Listener Interfaces, AWT: Classes, Working with Graphics, Layout Managers

Regular Expressions: Regular Expression Processing, RMI

UNIT – V

Java Swing: Basics of Swing, Difference between AWT & Swing, MVC Architecture, Components and Container, Swing Components: JLabel, JTextField, JList, JRadioButton, JCheckBox, JComboBox, JButton, JScrollPane, JTabbedPane, JTable, JToggleButton, JTree, Layout Managers.

Suggested Books:

1. Herbert Schildt, The Complete Reference Java, 7th Edition (2007), Tata McGraw Hill, New Delhi.

Reference Books:

- 1. C Thomas Wu, An Introduction to Object Oriented Programming with Java, 5th Edition (2010), Tata McGraw Hill, India
- 2. P. Radha Krishna, Object Oriented Programming through Java, (2007), Universities Press, India
- Sachin Malhotra and Saurabh Choudhary, Programming in Java, 2nd Edition (2013), Oxford Press, 2014, India
- 4. James M Slack, Programming and Problem Solving with JAVA, (2011), Thomson Learning, India

Online Resources:

1. https://docs.oracle.com/javase/tutorial/java

With effect from the A.Y 2017-18

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E IV SEMESTER OPERATING SYSTEMS

Instruction: 3Hrs /week	SEE Marks :70	Course Code : PC420CS
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs

Course objective	Course outcomes	
Students should be able to	At the end of the course, students will be able to	
Understand different	Compare various CPU scheduling algorithms	
Operating system	and Operating system structures	
Structures, Services and	 Apply different techniques for Main memory 	
threading models	management and File allocation	
 Learn various operating 	• Design solutions for classical synchronization	
system services by	problems and describe various deadlock	
considering case studies	handling methods	
such as Linux and	Analyze various Disk scheduling algorithms	
Windows10	and I/O operation implementation techniques	
	Understand the features of Linux and Windows	
	Operating systems	

UNIT-I

Introduction to operating systems: Definition, Mainframe, Multiprocessor, Clustered and Real time systems, Distributed, OS System structure, Unikernel, OS Services, Virtual machines, Containers, System calls.

Process: Process concept, Process Scheduling, Inter-process communication, Threads, Multithreading Models.

CPU Scheduling: Scheduling Criteria, Scheduling Algorithms, Multiprocessor scheduling.

UNIT-II

Memory Management: Swapping, Contiguous allocation, Paging, Segmentation, Segmentation with Paging.

Virtual memory: Demand paging, Page replacement Algorithms, Thrashing.

File System Interface: File Concept, Access Methods, Directory Structure, File System Mounting.

File System Implementation: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free Space management.

UNIT –III

Process synchronization: Critical Section problem, Two process solution, Multiple process Solutions, Synchronization Hardware, Semaphores, Classical problems of Synchronization, Monitors.

Deadlocks: Necessary conditions, Resource allocation graph, Methods for handling deadlocks: Prevention, Avoidance, Detection and Recovery.

UNIT -IV

Device Management: Disk Structure, Disk Scheduling, Disk Management, Swap Space Management, RAID structure, Disk Attachment, Stable storage Implementation.

I/O System: I/O hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O request to hardware operation, Streams.

UNIT-V

Protection: Goal, Domain of protection, Access matrix, Implementation of Access matrix.

Case Studies: Linux System: Design Principles, Kernel Modules, Process Management, Network Structure, And Security.

Windows - Design Principles, Architecture, Environmental Subsystem.

Android- Architecture, Application framework, Resources, Activities, Services

Suggested Books:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, 9th Edition (2016), Wiley India.

Reference Books:

- 1. Andrew S. Tanenbaum, Modern Operating Systems, 2nd Edition (2001), Pearson Education, Asia.
- Dhananjay, Dhamdhere.M, Operating System-concept based approach, 3rd edition (2009), Tata McGraw Hill, Asia
- 3. Robet Love, Linux Kernel Development, (2004) Pearson Education
- 4. Richard Stevens, Stephen Rago, Advanced Programming in the UNIX Environment, 3rd Edition (2013), Pearson Education

Online Resources:

1. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-828-operating-system-engineering-fall-2012/

With effect from the A.Y 2017-18

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E IV-SEMESTER DESIGN AND ANALYSIS OF ALGORITHMS

Instruction: 3+1Hrs /week	SEE Marks :70	Course Code: PC430CS
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs

Course Objectives	Course Outcomes	
Students should be able to	At the end of the course, students will be able to	
 Analyze the asymptotic performance of algorithms Apply various algorithm design strategies to solve engineering problems. 	 Compare asymptotic behavior of functions obtained by elementary composition of polynomials, exponentials and logarithmic functions. Apply fundamental algorithmic paradigms like The Divide and conquer paradigm and greedy strategy in designing algorithms. Design algorithms by using Dynamic Programming Adapt and design algorithms for specific problems by using backtracking, and branch & bound algorithm design techniques Distinguish different complexity classes P,NP, NP-Hard, and NP-complete. 	

UNIT – I

Introduction: what is an algorithm, algorithm specification.

Performance analysis: space complexity, time complexity. Asymptotic notations, amortized analysis

UNIT – II

Divide and Conquer: General method, binary search, finding maximum and minimum, Merge sort, quick sort, performance measurement, Masters theorem.

The Greedy Method: The general method, Knapsack problem, Job sequencing with deadlines, minimum cost spanning trees, optimal Storage on Tapes, Optimal Merge Patterns, single Source Shortest Paths.

UNIT – III

Dynamic Programming: the general method, matrix-chain multiplication problem, multistage graph, All Pairs Shortest Paths, Optimal Binary Search Trees (OBST), 0/1 Knapsack, Reliability Design, Traveling Salesman Problem, Bi-connected Components and DFS, Longest Common Subsequence (LCS) problem.

UNIT – IV

Backtracking: General method, the 8-Queens Problem, Graph Coloring, Hamiltonian Cycles, Knapsack Problem.

Branch and Bound: The method, 0/1 Knapsack problem, Traveling Salesperson problem.

UNIT – V

NP-Hard and NP-Complete problems: Basic concepts, Cook's theorem, NP-hard graph problems- clique decision problem, Node cover decision problem, NP-Hard scheduling problems- scheduling Identical processors. NP-Hard code generation problems-code generation with common sub expressions.

Suggested Books:

- 1. Ellis Horowitz, Sartaj Sahani, Sanguthevar Rajasekaran," Fundamentals of computer Algorithms", Second edition (2008), Universities Press.
- 2. Thomas H. Cormen, Leiserson C.E, Rivest.R.L , Stein.C, Introduction to Algorithm, 2nd edition (2001), MIT press, USA.

Reference Books:

- 1. Michael T. Goodrich, Roberto Tamassia, Algorithm Design, foundations, analysis, and internet examples, WIELEY student edition (2006).
- 2. Aho, Hopcroft, Ulman, The Design and Analysis of Computer Algorithms, (2000), Pearson Education.
- 3. Steven S.Skiena, The Algorithm Design Manual, Springer (1997).

Online Resources:

- 1. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-046j-design-and-analysis-of-algorithms-spring-2015/index.htm.
- http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=I ntroToAlgorithms
- 3. http://nptel.ac.in/courses/106101060/

With effect from the A.Y 2017-18 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E IV- SEMESTER COMPUTER ARCHITECURE

Instruction: 3+1Hrs /week	SEE Marks :70	Course Code : PC440CS
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs

Course Objectives	Course Outcomes	
Students should be able to	At the end of the course, students will be able to	
 Learn the structure and behavior of various functional modules of a computer and identify how they interact to provide the processing needs of the user. Understand memory hierarchy and analyze different ways of communicating with I/O of digital computer. 	 Identify major components of a computer and design basic hardware for functional modules of digital computer. Understand organization and design of digital computer and build micro programmed control unit. Understand internal organization of CPU and apply pipeline concepts to increase computational speed of CPU. Analyze techniques used by a computer to communicate with I/O devices. Identify various types of memory organizations and evaluate performance of a CPU. 	

UNIT-I

Overview of Computer Function and Interconnection: Computer Components, Interconnection Structures, Bus Interconnection, Bus Structure, Data Transfer.

Register Transfer Micro operations: Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic, Logic, Shift Micro operations, Arithmetic Logic Shift Unit.

UNIT-II

Basic Computer organization and Design: Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory Reference Instruction, Input-Output and Interrupt.

Micro programmed Control: Control memory, Address Sequencing, Micro program Example, Design of Control Unit.

UNIT-III

Central Processing Unit: General Register organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, RISC.

Pipeline: Parallel processing, Pipelining, Arithmetic pipeline, Instruction Pipeline.

Computer Arithmetic: Addition and Subtraction, Multiplication, Division, Floating Point Arithmetic Operations, Decimal Arithmetic Unit.

UNIT-IV

Input-Output organization: Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access, Input-Output Processor (IOP), Serial Communication.

UNIT-V

Memory Organization: Memory Hierarchy, Main Memory, RAM and ROM, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware.

Assessing and Understanding Performance: CPU Performance and its Factors, Evaluating Performance.

Suggested Books:

1. M.Morris Mano, Computer System Architecture, 3rd Edition (2007), Pearson Education Asia.

Reference Books:

- William Stallings, Computer Organization & Architecture, 8th Edition (2011), Pearson Education Asia.
- David A Patterson, John L Hennessy, Computer Organization and Design, 4th Edition (2014), Morgan Kaufmann.
- 3. Carl.V Hamacher, Vranesic Z.G, Zaky S.G, Computer Organization, 5th Edition (2011), McGraw Hill.
- 4. Pal Chaudhuri.P, Computer Organization and Design, , 3rd Edition(2009), Prentice Hall of India.

Online Resources:

- 1. http://nptel.ac.in/courses/106102157/
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/

With effect from the Academic Year 2017-18

DEPARTMENT OF HUNANITIES AND SOCIAL SCIENCES FS-II: COMMUNICATION SKILLS IN ENGLISH-II SYLLABUS FOR B.E. IV-SEMESTER

Instruction: 2+2Hrs/ Week	SEE Marks: 70	Course Code:HS410EH
Credits: 2	CIE Marks: 30	Duration of SEE: 3 Hrs

Course Objective	Course Outcomes	
1. identify the various features	1. Participate in group and forum discussions	
and functions of human	by providing factual information, possible	
language and	solutions, and examples.	
communication.	2. Debate on a topic by picking up the key	
2. develop the habit of listening	points from the arguments placed.	
effectively so as to analyze	3. Provide logical conclusions to the topics	
the speaker's tone and	under discussion.	
tenor.	2. Prepare, present, and analyze reports.	
3. choose appropriate words so	3. choose appropriate words and tone to	
as to speak and write	present accurate, specific, and factual	
accurately.	reports.	
4. read various types of texts	4. Compose a summary of beginning high	
and sift information	level reading text that identifies the thesis	
correctly.	and key supporting details.	
5. study organizational	5. Summarize with 70% comprehension	
structures and behavioral	6. Apply reading skills, including how to	
patterns and adapt	approach different types of literature.	
appropriately.		

UNIT I: PROFESSIONAL DISCUSSIONS AND DEBATES Competencies:

- Analytical and Probing Skills
- Interpersonal Skills

Topics Covered:

Discussing

Debating

Topic Level Details

Discussing

Competencies:

- Thinking
- Assimilating

Debating

Competencies:

• Comprehending key points of the debate and note decisive points

including supporting details.

- Construct a logical chain of arguments and decisive points.
- Writing a review about a product by providing reasons, causes, and effects

UNIT II: DRAWING CONCLUSIONS

Competencies:

- Reasoning skills Coherent and logical thinking
- Reporting and Analyzing skills.

Topics Covered:

How to draw conclusions Importance of Logic

Topic Level Details:

Drawing conclusions

Competencies:

- Analyzing the points discussed.
- Connecting all points without gaps.
- Identifying clinchers.
- Communicating the decisions

UNIT III - REPORTING Competencies:

- Reporting an incident
- Writing/Presenting a project report

UNIT IV - READING FOR CONTEXT

Competencies

Develop metacognitive strategies

Topics covered

Develop critical reading skills:

- Recognition of author's purpose
- Awareness of stylistic differences
- Discernment of fact and opinion
- Evaluation of fact and opinion
- Recognition of propaganda techniques
- Present vocabulary building methods
- Use comprehension and vocabulary strategies to raise reading rate.

UNIT V- SOFT-SKILLS

- 1. Professional integrity
- 2. Managing time
- 3. Coping with stress
- 4. Organizational skills

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR BE IV SEMESTER ENVIRONMENTAL SCIENCE

Instruction: 2Hrs /week	SEE Marks :70	Course Code : MC320CE
Credits : 1	CIE Marks: 30	Duration of SEE : 3 Hrs

UNIT-I

Environmental Studies: Definition, importance of environmental studies. Natural resources: Water resources; floods, drought, conflicts over water, dams-benefits and problems. Food resources; Effects of modern agriculture, fertilizer-pesticide problems, water logging salinity. Energy resources: Renewable and non-renewable energy resources. Land Resources, soil erosion and desertification.

UNIT-II

Ecosystems: Structure and function of an ecosystem, producers, consumers and decomposers, food chains, food webs, ecological pyramids, aquatic ecosystem (ponds, oceans, estuaries).

UNIT-III

Biodiversity: Genetic species and ecosystem diversity. Values of biodiversity, threats to biodiversity, endangered and endemic species of India, conservation of biodiversity.

UNIT-IV

Environmental Pollution: Causes, effects and control measures of air pollution, water pollution, soil pollution, noise pollution, thermal pollution and solid waste & e-waste management.

UNIT-V

Social Aspects and the Environment: Water conservation, Climate change, global warming, acid rain, ozone layer depletion. Environmental Impact Assessment, population explosion.

Suggested Books:

- 1. Deswal S. and Deswal A., A Basic Course on Environmental studies, Dhanpat Rai & Co Pvt. Ltd. 2013.
- 2. Benny Joseph, Environmental Studies, Tata McGraw-Hill, 2006.
- 3. Suresh K. Dhameja, Environmental Studies, S.K. Kataria & Sons, 2010.

References Books:

- 1. De A.K., Environmental Chemistry, New Age International, 2003.
- 2. Odum E.P., Fundamentals of Ecology, W.B. Sunders Co., USA, 2004.
- 3. Sharma V.K., Disaster Management, National Centre for Disaster Management, IIPE, Delhi, 2013.
- 4. Rajagopalan R., Environmental Studies, Second Edition, Oxford University Press, 2013.

With effect from the A.Y 2017-18 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E. IV SEMESTER JAVA LAB

Instruction: 2Hrs /week	SEE Marks :50	Course Code : PC411CS
Credits : 1	CIE Marks: 25	Duration of SEE : 3 Hrs

Course objectives	Course outcomes	
Students should be able to	At the end of the course, students will be able to	
 Implement object oriented system development using Java Develop graphical user interface using Java constructs 	 At the end of the course, students will be able to Implement object oriented system development using java Apply various data structures for solving a use cases using Collection framework Implement IO programming to work with console, files and network streams Develop applets and frames implementing event driven programming Develop a front end application using Java Swing framework 	

Programming Exercise:

- 1. Illustrating the class with constructors, methods and overloading
- 2. Demonstrate the inheritance and dynamic polymorphism
- 3. Program to illustrate the usage of abstract class
- 4. A program to illustrate multithreading and thread synchronization
- 5. Write a program using StringTokenizer
- 6. Write a program using Linkedlist and TreeSet
- 7. A program using HashSet, Iterator Map classes
- 8. A program using Enumeration and Comparator interfaces
- 9. Program to illustrate the usage of Filter, Buffered I/O streams
- 10. Program to create TCP/UDP Sockets
- 11. A program to illustrate the usage of Serialization
- 12. Program for Regular Expressions processing
- 13. An application involving GUI with different controls, menus and event handling

- 14. A program to implement an Applet
- 15. Program to create GUI for Bank Account Simulation
- 16. Simple Calculator in Java Using Remote Method Invocation

Suggested Books:

1. Herbert Schildt, The Complete Reference Java, 7th Edition (2007), Tata McGraw Hill, New Delhi.

Reference Books:

- 1. C Thomas Wu, An Introduction to Object Oriented Programming with Java, 5th Edition (2010), Tata McGraw Hill, India
- 2. P. Radha Krishna, Object Oriented Programming through Java, (2007), Universities Press, India
- 3. Sachin Malhotra and Saurabh Choudhary, Programming in Java, 2nd Edition (2013), Oxford Press, 2014, India
- 4. James M Slack, Programming and Problem Solving with JAVA, (2011), Thomson Learning, India

Online Resources:

1. https://docs.oracle.com/javase/7/docs/api/

With effect from the A.Y 2017-18

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E. IV- SEMESTER OPERATING SYSTEMS LAB

Instruction: 2Hrs /week	SEE Marks :50	Course Code : PC421CS
Credits : 1	CIE Marks: 25	Duration of SEE : 3 Hrs

Course objective	Course outcomes
Students should be able to	At the end of the course, students will be
	able to
 Implement system calls 	 Implement operations on Files and
related to files and process	Process by using system calls
 Implement techniques related 	 Develop CPU Scheduling mechanisms
to CPU Scheduling, Main	 Implement Contiguous memory allocation
memory management,	techniques and Page Replacement
Process synchronization and	techniques
deadlock avoidance and	 Design solutions for Inter-Process
detection	Communication
	 Develop Deadlock handling techniques

Programming Exercise:

- 1. Implement Shell script programs
- 2. Implement system calls for
 - i) File system management
 - ii) Process management
- 3. Implementation of CPU scheduling algorithms (FCSF, SJF, Priority, RR, Multi level)
- 4. Implement contiguous Memory management techniques
 - i. Best Fit
 - ii. Worst Fit
 - iii. First Fit
- 5. Implementation of Page Replacement algorithms
 - i) FIFO
 - ii) LRU
 - iii) OPTIMAL

- 6. Implement Inter-process communication using
 - i) Pipes
 - ii) Message Queues
 - iii) Shared Memory
- 7. Implementation of Process Synchronization for Bounded buffer, Readers-Writers and Dining philosophers problems
- 8. Implementation of Deadlock handling
 - i) Resource Allocation Graph
 - ii) Safety Algorithm
 - iii) Resource Request algorithm
 - iv) Wait for graph
- Build a real operating system kernel by using an open source operating system (Linux) kernel to implement services such as Process Scheduling, Process synchronization, Virtual memory and File system

Suggested Books:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, 9th Edition (2016), Wiley India.

Reference Books:

- 1. Andrew S. Tanenbaum, Modern Operating Systems, 2nd Edition (2001), Pearson Education, Asia.
- 2. Dhananjay, Dhamdhere.M, Operating System-concept based approach, 3rd edition (2009), Tata McGraw Hill, Asia
- 3. Robet Love: Linux Kernel Development, (2004) Pearson Education
- 4. Richard Stevens, Stephen Rago, Advanced Programming in the UNIX Environment, 3rd
- 5. Edition(2013), Pearson Education

Online Resources:

1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/