VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Ibrahimbagh, Hyderabad-31 Approved by A.I.C.T.E., New Delhi and Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad



SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR B.E. (CSE)III and IV Semesters With effect from 2022-23 (For the batch admitted in 2021-22) (R-21)



DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Phones: +91-40-23146020, 23146021 Fax: +91-40-23146090

# Institute Vision

Striving for a symbiosis of technological excellence and human values

# Institute Mission

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow

# **Department Vision**

To be a center for academic excellence in the field of Computer Science and Engineering education to enable graduates to be ethical and competent professionals

# **Department Mission**

To enable students to develop logic and problem solving approach that will help build their careers in the innovative field of computing and provide creative solutions for the benefit of society.

#### B.E (CSE) Program Educational Objectives (PEO's)

Graduates should be able to utilize the knowledge gained from their academic program to:

| PEO I   | Solve problems in a modern technological society as valuable and productive engineers.                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------|
| PEO II  | Function and communicate effectively, both individually and within multidisciplinary teams.                             |
| PEO III | Be sensitive to the consequences of their work, both ethically and professionally, for productive professional careers. |
| PEO IV  | Continue the process of life-long learning.                                                                             |

|             | B.E. (CSE) PROGRAM OUTCOMES (PO's)                                                    |
|-------------|---------------------------------------------------------------------------------------|
| Engir       | neering Graduates will be able to:                                                    |
| P01         | Engineering Knowledge: Apply the knowledge of mathematics, science,                   |
|             | engineering fundamentals, and an engineering specialization to the solution of        |
|             | complex engineering problems.                                                         |
| PO2         | <b>Problem Analysis:</b> Identify, formulate, review research literature, and analyze |
|             | complex engineering problems reaching substantiated conclusions using first           |
|             | principles of mathematics, natural sciences, and engineering sciences.                |
| PO3         | Design/development of solutions: Design solutions for complex                         |
|             | engineering problems and design system components or processes that meet              |
|             | the specified needs with appropriate consideration for the public health and          |
| DO 4        | safety, and the cultural, societal, and environmental considerations.                 |
| P04         | knowledge and recearch methods including design of experiments, analysis and          |
|             | interpretation of data, and synthesis of the information to provide valid             |
|             | conclusions                                                                           |
| PO5         | Modern tool usage: Create, select, and apply appropriate techniques.                  |
|             | resources, and modern engineering and IT tools including prediction and               |
|             | modeling to complex engineering activities with an understanding of the               |
|             | limitations.                                                                          |
| P06         | The engineer and society: Apply reasoning informed by the contextual                  |
|             | knowledge to assess societal, health, safety, legal and cultural issues and the       |
|             | consequent responsibilities relevant to the professional engineering practice.        |
| P07         | Environment and sustainability: Understand the impact of the professional             |
|             | engineering solutions in societal and environmental contexts, and demonstrate         |
|             | the knowledge of, and need for sustainable development.                               |
| P08         | Ethics: Apply ethical principles and commit to professional ethics and                |
| <b>D</b> 00 | responsibilities and norms of the engineering practice.                               |
| P09         | <b>Individual and team work:</b> Function effectively as an individual, and as a      |
| D10         | Communication: Communicate officiatively on complex engineering activities            |
| PIU         | with the opgineering community and with society at large, such as being able          |
|             | to comprehend and write effective reports and design documentation make               |
|             | effective presentations, and give and receive clear instructions                      |
| P11         | <b>Project management and finance:</b> Demonstrate knowledge and                      |
|             | understanding of the engineering and management principles and apply these            |
|             | to one's own work, as a member and leader in a team, to manage projects and           |
|             | in multidisciplinary environments.                                                    |
| P12         | Lifelong learning: Recognize the need for, and have the preparation and               |
|             | ability to engage in independent and lifelong learning in the broadest context of     |
|             | technological change.                                                                 |

|         | B.E (CSE) PROGRAM SPECIFIC OUTCOMES (PSO's)                                                                                                                        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO I   | Graduates will have knowledge of programming and designing to develop solutions for engineering problems.                                                          |
| PSO II  | Graduates will be able to demonstrate an understanding of system architecture, information management and networking.                                              |
| PSO III | Graduates will possess knowledge of computer science and engineering in<br>the areas of Cloud Computing & Data Analytics and apply them in<br>appropriate domains. |

#### VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) SCHEME OF INSTRUCTION AND EXAMINATION(R-21) FOR B.E 2021-22 ADMITTED BATCH III SEMESTER (A.Y 2022-23)

|                | B.E (CSE) III Semester                                         |       |                |              |                       |                  |     |       |
|----------------|----------------------------------------------------------------|-------|----------------|--------------|-----------------------|------------------|-----|-------|
|                |                                                                |       | heme<br>truc   | e of<br>tion | Scheme of Examination |                  |     |       |
| Course Code    | Name of the Course                                             | Но    | ours  <br>Weel | oer<br>K     | Duration              | Maximum<br>Marks |     | edits |
|                |                                                                | L     | Т              | P/D          | IN HIS                | SEE              | CIE | č     |
|                | THEORY                                                         |       |                |              |                       | •                |     |       |
| UI21PC310CS    | Microprocessors, Microcontrollers & Interfacing                | 3     | -              | -            | 3                     | 60               | 40  | 3     |
| UI21PC320CS    | Data Structures                                                | 3     | -              | -            | 3                     | 60               | 40  | 3     |
| UI21PC330CS    | Object Oriented Programming                                    | 3     | -              | -            | 3                     | 60               | 40  | 3     |
| UI21PC340CS    | Computer Architecture                                          | 3     | -              | -            | 3                     | 60               | 40  | 3     |
| UI21PC350CS    | Discrete Structures                                            | 3     | -              | -            | 3                     | 60               | 40  | 3     |
| UI210E3XXXX    | Open Elective-I                                                | 2     | -              | -            | 3                     | 60               | 40  | 2     |
| UI21HS320EH    | Skill Development Course-I(Communication Skills in English-I)  | 1     | -              | -            | 2                     | 40               | 30  | 1     |
| UI21BS330MA    | Skill Development Course- II (Aptitude-I)                      | 1     | -              | -            | 2                     | 40               | 30  | 1     |
| UI21HS010EH    | Human Values and Professional Ethics-II                        | 1     | -              | -            | 2                     | 40               | 30  | 1     |
|                | PRACTICALS                                                     |       |                | n            |                       | n                |     |       |
| UI21PC311CS    | Microprocessors, Microcontrollers & Interfacing Lab            | -     | -              | 2            | 3                     | 50               | 30  | 1     |
| UI21PC321CS    | Data Structures Lab                                            | -     | -              | 2            | 3                     | 50               | 30  | 1     |
| UI21PC331CS    | Object Oriented Programming Lab                                | -     | -              | 2            | 3                     | 50               | 30  | 1     |
|                | TOTAL                                                          | 20    | 0              | 6            |                       | 630              | 420 | 23    |
|                | GRAND TOTAL                                                    |       | 26             |              |                       | 10               | 50  |       |
| Student shoul  | d acquire one online course certification equivalent to two    | credi | ts du          | ring l       | II Sem to V           | II Sem           |     |       |
| Left over hour | s are allocated for Extra Curricular Activities, Co-Curricular | Acti  | vities         | , Spo        | rts / Library         | / Men            | tor |       |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

### **Department of Computer Science & Engineering**

# MICROPROCESSORS, MICROCONTROLLER & INTERFACING SYLLABUS FOR B.E. III-SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks : 60 | Course Code: UI21PC310CS  |
|--------------------------|----------------|---------------------------|
| Credits : 3              | CIE Marks : 40 | Duration of SEE : 3 Hours |

|        | COURSE OBJECTIVES                                                                                                                                                  | COURSE OUTCOMES<br>On completion of the course,<br>students will be able to                                                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2 | Explain the architecture of 8086<br>microprocessor, 8051<br>microcontroller and ARM processor<br>Write assembly language programs<br>to interface I/O devices with | <ol> <li>Explain the architecture, addressing<br/>modes and instruction set of 8086<br/>microprocessor</li> <li>Explain interrupt handling<br/>mechanisms of 8086</li> </ol>                            |
|        | processor and controller                                                                                                                                           | <ul> <li>Microprocessor</li> <li>Interface analog and digital I/O devices with8086 microprocessor</li> <li>Write assembly language programs using instruction set of 8051 and ARM controller</li> </ul> |
|        |                                                                                                                                                                    | 5 Write programs to interface 8051<br>microcontroller with I/O devices<br>such as keyboard and stepper<br>motor                                                                                         |

#### UNIT-I:

**Microprocessor:** Introduction, Overview of Micro computer structure and Operation, Microprocessor Evolution and Types, 8086 Internal Architecture, Pin Configuration, Minimum and Maximum mode, addressing modes, Instruction set, Programming the 8086, Accessing Data in Memory.

**UNIT-II:** Implementing standard program structures in 8086, Strings, Procedures and Macros, Assembler directives, Interrupts and Interrupt Applications, Hardware and software interrupt applications, Interrupt examples.

#### UNIT-III:

**Digital Interfacing:** Programmable Parallel Ports and Handshake Input/Output, Keyboard and display Controller (8279) Interfacing, Programmable Interrupt Controller (8259), Interfacing to Alpha Numeric Displays, Interfacing LCD displays. **Analog Interfacing** – A/D & D/A interfacing, DMA Controller (8257).

**UNIT-IV:** Introduction to Microcontrollers, 8051 Architecture, Instruction set, Addressing modes and Programming techniques. Comparison of various families of 8-bit micro controllers, System Design Techniques.

**UNIT-V:** Interfacing of LCD, ADC, Sensors, Stepper motor, keyboard and DAC using 8051 microcontrollers.

**ARM Processor:** Introduction, Processor and Memory Organization, Data Operations, Flow of Control.

**Case studies:** Case study on Home protection system, Case study on closed loop DC motor speed control system.

#### Learning Resources:

- 1. Douglas V. Hall, Microprocessors and Interfacing, 2ndEdition (2006), McGraw Hill.
- 2. Kenneth J. Ayala, The 8051 Microcontroller Architecture, Programming and Application, Penram International (2007)
- Marilyn Wolf, Computers as Components: Principles of Embedded Computing System Design, 3rd Edition (2012), Elsevier Morgan Kauffmann Publishers.
- 4. Yu-cheng Liu, Glenn A. Gibson, Microcomputer Systems The 8086/8088 Family - Architecture, Programming and Design 2ndEdition (2011)
- Barry B. Brey, The Intel Microprocessor, 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium pro-processors – Architecture, Programming and interfacing, 8thEdition (2013), Prentice Hall.
- 6. Ray A.K & Bhurchandhi K.M, Advanced Microprocessor and Peripherals,2ndEdition(2007),TMH.
- 7. K. Shibu, Introduction to Embedded Systems, (2009), Paperback.
- Speed Control of 2-pole DC Motor Using Pwm PROTEUS VSM 7.9 & AVR STUDIO (SOFTWARE)By IJSTE - International Journal of Science Technology and Engineering.
- 9. http://nptel.ac.in/courses/108107029/

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1   | No. of Internal Tests    |   | : 2       | Max. Marks for each Internal Test | : | 30 |
|-----|--------------------------|---|-----------|-----------------------------------|---|----|
| 2   | No. of Assignments       |   | : 3       | Max. Marks for each Assignment    | : | 5  |
| 3   | No. of Quizzes           |   | : 3       | Max. Marks for each Quiz Test     | : | 5  |
| Dur | ration of Internal Tests | : | 1 Hour 30 | ) Minutes                         |   |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

# **Department of Computer Science & Engineering**

#### DATA STRUCTURES

#### SYLLABUS FOR B.E. III-SEMESTER

| L:T:P (Hrs./week):3:0:0 | SEE Marks: 60 | Course Code: UI21PC320CS  |
|-------------------------|---------------|---------------------------|
| Credits : 3             | CIE Marks :40 | Duration of SEE : 3 Hours |

|                   |                                                                                                                        |   | COURSE OUTCOMES                                                                                                                               |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| COURSE OBJECTIVES |                                                                                                                        |   | On completion of the course, students                                                                                                         |  |  |
|                   |                                                                                                                        | W | will be able to                                                                                                                               |  |  |
| 1                 | Identify and use appropriate<br>data structure for a given<br>problem with effective<br>utilization of space and time. | 1 | Compute time and space complexities of Algorithms. Design a solution to a given problem using arrays.                                         |  |  |
| 2                 | Describe the linear and nonlinear data structures.                                                                     | 2 | Develop applications using stacks, queues and linked lists.                                                                                   |  |  |
| 3                 | Analyze the complexities of different sorting techniques.                                                              | 3 | Choose the appropriate nonlinear data structure and perform operations on them.                                                               |  |  |
|                   |                                                                                                                        | 4 | Choose suitable sorting technique to maximize the performance of the solution. Select the hashing technique to perform dictionary operations. |  |  |
|                   |                                                                                                                        | 5 | Explain operations on Efficient Binary<br>Search Trees and Multiway Search Trees.                                                             |  |  |

#### UNIT-I:

**Basic concepts:** Algorithm Specification- Introduction, Recursive algorithms, Data Abstraction, Performance analysis- time complexity and space complexity, Asymptotic Notation-Big O, Omega and Theta notations. **Arrays:** Arrays - ADT, Polynomials, Sparse matrices, Strings-ADT, Pattern Matching.

#### UNIT-II:

**Stacks and Queues:** Stacks, Stacks using dynamic arrays, Queues, Circular Queues using dynamic arrays, A Mazing Problem, Evaluation of Expressions – Evaluating Postfix Expression, Infix to Postfix.

**Linked Lists:** Singly Linked Lists and Chains, Linked Stacks and Queues, Polynomials, Operations for Circularly linked lists, Equivalence Classes, Sparse matrices, Doubly Linked Lists.

# UNIT-III:

**Trees:** Introduction, Binary Trees, Binary Tree Traversals, Heaps, Binary Search trees (BST): Definition, Searching a BST, Insertion into a BST, Deletion from a BST.

**Graphs:** The Graph ADT, Elementary graph operations, Minimum Cost Spanning Trees- Kruskal's Algorithm, Prim's Algorithm.

#### UNIT-IV:

**Sorting:** Insertion Sort, Quick sort, Merge sort, Heap sort, Sorting on Several Keys, List and Table Sorts.

Hashing : Introduction, Static Hashing: Hash tables, Hash functions, Overflow handling.

#### UNIT-V:

**Efficient Binary Search Trees:** AVL Trees, Red-Black Trees, Splay Trees. **Multiway Search Trees:** m-way search trees-Definition and properties, Searching an m-way search tree, B-Trees-Definition and properties, Number of Elements in a B-Tree, Insertion into a B-Tree and Deletion from a B-Tree. **Trie Data Structure**: Introduction, Basic Operations.

#### Learning Resources:

- 1. Horowitz E, Sahni S and Susan Anderson-Freed, Fundamentals of Data structures in C, 2nd Edition(2008), Universities Press.
- 2. Mark A Weiss, Data Structures and Algorithm Analysis In C, 2nd Edition (2002), Pearson.
- Kushwaha D. S and Misra A.K, Data Structures A Programming Approach with C, Second Edition(2014), PHI.,
- 4. Gilberg R. F and Forouzan B. A, Data Structures: A Pseudocode Approach with C, Second Edition(2007), CengageLeaming
- 5. Tanenbaum A. M ,Langsam Y. Augenstein M. J, Data Structures using C, Second Edition (2008), Pearson.
- 6. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, Introduction to Algorithms, Third Edition(2009), MIT Press
- 7. YedidyahLangsam , Moshe J. Augenstein , Aaron M. Tenenbaum, Data Structures Using C and C++ , Second Edition(2009), PHI
- 8. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006introduction-to-algorithms-fall-2011/lecture-videos
- 9. http://nptel.ac.in/courses/106106127/
- 10. http://www.nptel.ac.in/courses/106102064

The break-up of CIE: Internal Tests + Assignments + Quizzes



With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

### **Department of Computer Science & Engineering**

# **OBJECT ORIENTED PROGRAMMING**

SYLLABUS FOR B.E. III-SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks:60   | Course Code: UI21PC330CS  |
|-------------------------|----------------|---------------------------|
| Credits : 3             | CIE Marks : 40 | Duration of SEE : 3 Hours |

|   |                                                                                 | COURSE OUTCOMES                                                                                                         |  |  |  |  |
|---|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   | COURSE OBJECTIVES                                                               | On completion of the course, students                                                                                   |  |  |  |  |
|   |                                                                                 | will be able to                                                                                                         |  |  |  |  |
| 1 | Apply object oriented<br>principles for developing an<br>application using Java | 1 Apply the object oriented<br>programming concepts to solvea<br>problem                                                |  |  |  |  |
| 2 | constructs.<br>Design model view and<br>controller enabled Java<br>application. | 2 Employ runtime error handling,<br>concurrent programming practices to<br>develop a parallel processing<br>application |  |  |  |  |
|   |                                                                                 | 3 Perform I/O operations to develop an interactive Java application.                                                    |  |  |  |  |
|   |                                                                                 | 4 Design a Java utility using the collection framework                                                                  |  |  |  |  |
|   |                                                                                 | 5 Apply functional programming<br>constructs and understand a large<br>scale project development architecture<br>style. |  |  |  |  |

#### UNIT-I:

**Object Oriented System Development:** Understanding Object Oriented Development, Understanding Object Concepts, Benefits of Object Oriented Development.

**Java Programming Fundamentals:** Introduction, Overview of Java, JVM Architecture, Data types, Variables and Arrays, Operators, Control Statements, Classes and Methods, Garbage Collection, this keyword, final, Inheritance, Method Overriding.

**UNIT-II:** Singleton class, Abstract class, Nested class, Interface, Package. Exception Handling, Multithreaded Programming, Deadlock.

#### UNIT-III:

**StringHandling**: String, StringBuffer and StringBuilder

**Java.lang:** Type Wrapper, Process, Runtime, Object class, Generics **IO:**Java I/O Classes and Interfaces, Files and Directories, Byte and Character Streams, Serialization.

#### UNIT-IV: Collections:

Overview, Collection Interfaces, Collection Classes, Iterators, List, Set, Maps, Comparator, Arrays, Legacy Classes and Interfaces, StringTokenizer, BitSet, Date, Calendar, Random, Flow, Timer.

#### UNIT-V:

Lambda expressions: Expressions, Functions, lambda as argument Stream API: Basics, Filter, Sort, Map, Collect

**Regular Expressions:** Pattern, Matcher, Regular expression Syntax **MVC:** Architecture, Usecase

#### Learning Resources:

- 1. Herbert Schildt, The Complete Reference Java, 10th Edition, Tata McGraw Hill 2018.
- 2. Joshua Bloch, Effective Java, 3<sup>rd</sup> Edition, Pearson, 2017
- 3. Timothy Budd, An introduction to Object-Oriented Programming, 3rd Edition, Pearson Education, 2008
- Eric Freeman, Bert Bates, Kathy Sierra, Head First Design Patterns: A Brain-Friendly Guide, 1<sup>st</sup> Edition, O'Reilly, 2016
- 5. P. RadhaKrishna, Object Oriented Programming through Java, UniversitiesPress, 2007.
- 6. Sachin Malhotra, Saurabh Choudhary, Programming in Java, 2nd Edition, Oxford Press, 2014.
- 7. https://docs.oracle.com/javase/tutorial/java

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1   | No. of Internal Tests   | : [ | 2 Max. Marks for each Internal<br>Test | : | 30 |
|-----|-------------------------|-----|----------------------------------------|---|----|
| 2   | No. of Assignments      | : [ | 3 Max. Marks for each Assignment       | : | 5  |
| 3   | No. of Quizzes          | :   | 3 Max. Marks for each Quiz Test        | : | 5  |
| Dur | ation of Internal Tests | :   | 1 Hour 30 Minutes                      |   |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

### **Department of Computer Science & Engineering**

#### COMPUTER ARCHITECTURE

SYLLABUS FOR B.E. III-SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks : 60 | Course Code: UI21PC340CS  |
|--------------------------|----------------|---------------------------|
| Credits : 3              | CIE Marks : 40 | Duration of SEE : 3 Hours |

| Course Objectives                               | Course Outcomes                            |  |  |
|-------------------------------------------------|--------------------------------------------|--|--|
| Students should be able to                      | At the end of the course, students will be |  |  |
|                                                 | able to                                    |  |  |
| Learn the structure and                         | 1. Analyze the major components of a       |  |  |
| behavior of various functional                  | computer and design basic hardware for     |  |  |
| modules of a computer and                       | functional modules of digital computer.    |  |  |
| identify how they interact to                   | 2. Analyze micro programmed control unit   |  |  |
| provide the processing needs of                 | for designing a digital computer.          |  |  |
| the user.                                       | 3. Apply pipeline concepts to increase     |  |  |
| <ul> <li>Understand memory hierarchy</li> </ul> | computational speed of CPU and analyze     |  |  |
| and analyze different ways of                   | the flow of data and instructions in the   |  |  |
| communicating with I/O of                       | CPU operations.                            |  |  |
| digital computer.                               | 4. Analyze techniques used by a computer   |  |  |
|                                                 | to communicate with I/O devices.           |  |  |
|                                                 | 5. Evaluate the memory organization        |  |  |
|                                                 | techniques and assess the performance      |  |  |
|                                                 | of a CPU.                                  |  |  |

#### UNIT-I

**Overview of Computer Function and Interconnection:** Computer Components, Interconnection Structures, Bus Interconnection, Bus Structure, Data Transfer.

**Register Transfer Micro operations:** Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic, Logic, Shift Micro operations, Arithmetic Logic Shift Unit.

#### UNIT-II

**Basic Computer organization and Design:** Instruction codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory Reference Instruction, Input-Output and Interrupt.

**Micro programmed Control:** Control memory, Address Sequencing, Micro program Example, Design of Control Unit.

# UNIT-III

**Central Processing Unit:** General Register organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, RISC.

**Pipeline:** Parallel processing, Pipelining, Arithmetic pipeline, Instruction Pipeline.

**Computer Arithmetic:** Addition and Subtraction, Multiplication, Division, Floating Point Arithmetic Operations, Decimal Arithmetic Unit.

# UNIT-IV

**Input-Output organization:** Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access, Input-Output Processor (IOP), Serial Communication.

# UNIT-V

**Memory Organization:** Memory Hierarchy, Main Memory, RAM and ROM, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory, Memory Management Hardware.

**Assessing and Understanding Performance:** CPU Performance and its Factors, Evaluating Performance.

# Suggested Books:

1. M.Morris Mano, Computer System Architecture, 3<sup>rd</sup> Edition (2007), Pearson Education Asia.

# **Reference Books:**

- William Stallings, Computer Organization & Architecture, 8<sup>th</sup> Edition (2011), Pearson Education Asia.
- David A Patterson, John L Hennessy, Computer Organization and Design, 4<sup>th</sup> Edition (2014), Morgan Kaufmann.
- Carl.V Hamacher, Vranesic Z.G, Zaky S.G, Computer Organization, 5<sup>th</sup> Edition (2011), McGraw Hill.
- Pal Chaudhuri.P, Computer Organization and Design, 3<sup>rd</sup> Edition(2009), Prentice Hall of India.

# **Online Resources:**

- 1. http://nptel.ac.in/courses/106102157/
- 2. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-823-computer-system-architecture-fall-2005/

| The b | preak-up of CIE: Internal | Tests | + Assignments + Quizzes                |   |    |
|-------|---------------------------|-------|----------------------------------------|---|----|
| 1     | No. of Internal Tests     | :     | 2 Max. Marks for each<br>Internal Test | : | 30 |
| 2     | No. of Assignments        | :     | 3 Max. Marks for each<br>Assignment    | : | 5  |
| 3     | No. of Quizzes            | :     | 3 Max. Marks for each Quiz<br>Test     | : | 5  |
| Dura  | tion of internal lests :  | IH    | iour 30 minutes                        |   |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

### **Department of Computer Science & Engineering**

# DISCRETE STRUCTURES

SYLLABUS FOR B.E. III-SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks : 60 | Course Code: UI21PC350CS  |
|--------------------------|----------------|---------------------------|
| Credits : 3              | CIE Marks : 40 | Duration of SEE : 3 Hours |

| COURSE OBJECTIVES                                                                                                                                                                                                             | <b>COURSE OUTCOMES</b><br>On completion of the course, students will be<br>able to                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Understand the<br/>concepts of set theory,<br/>arithmetic logic and<br/>proof techniques</li> <li>Build mathematical<br/>models to solve the<br/>real world problems by<br/>using appropriate<br/>methods</li> </ol> | <ol> <li>Construct compound statements<br/>using logical connectives and verify<br/>the validity of conclusion using<br/>inference rules</li> <li>Apply number theory concepts to<br/>check the given number is prime or<br/>not</li> <li>Compare types of relations and<br/>functions and also apply principle of<br/>inclusion and exclusion to solve<br/>counting problems</li> <li>Solve types of recurrence relations to<br/>find the complexity of an algorithm</li> <li>Develop crypto system using Ring and</li> </ol> |

#### UNIT – I : Fundamentals of Logic

Basic Connectives and Truth Tables, Logical Equivalence, Logical Implication, Use of Quantifiers, Definitions and the Proof of Theorems. **Functions:** Cartesian Product, One-to-one, Onto Functions, Special Functions, Pigeonhole Principle, Composition and Inverse Functions.

#### UNIT – II : Number Theory: Properties of the Integers

Prime Numbers, The division algorithms, The Greatest Common Divisor, The Integers modulo nFermat's and Euler Theorems, The Fundamental theorem of arithmetic. Fermat's and Euler Theorems The Chinese Reminder Theorem(without proof)

#### UNIT – III : Relations

Partial Orders, Equivalence Relations and Partitions.

**Principle of Inclusion and Exclusion:** Principles of Inclusion and Exclusion, Generalizations of Principle, Derangements, Rook Polynomials, Arrangements with Forbidden Positions.

#### **UNIT – IV : Generating Functions**

Introductory Examples, Definition and Examples, Partitions of Integers, Exponential Generating Function, Summation Operator.

**Recurrence Relations:** First – Order Linear Recurrence Relation, Second – Order Linear Homogenous Recurrence Relation with Constant Coefficients, Non Homogenous Recurrence Relation.

# UNIT – V : Algebraic Structures& Ring Theory

Algebraic System – General Properties, semi groups, Monoids, Homomorphism, Cosets and Lagrange's Theorem. The Ring structure: Definition and Examples, Ring Properties and Substructures, Ring Homomorphism and Isomorphism.

# Learning Resources:

- Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, 4<sup>th</sup> Edition (2003), Pearson Education.
- 2. Kenneth H Rosen, Discrete mathematics and its applications, 5<sup>th</sup> Edition (2006), Tata McGraw-Hill Edition, New Delhi.
- J.P. Tremblay, R. Manohar, Discrete Mathematical Structure with Applications to Computer Science, 4<sup>th</sup> Edition (1987),McGraw Hill, New Delhi.
- 4. Joe L. Mott, A. Kandel, T.P. Baker, Discrete Mathematics for Computer Scientists & Mathematicians, 2<sup>nd</sup> Edition (1986), Prentice Hall.
- Thomas Koshy, Discrete Mathematics with Applications, 1<sup>st</sup>Edition (2004), Elsevier Inc.
- 6. http://nptel.ac.in/courses/106106094/
- 7. https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-042j-mathematics-for-computer-science-fall-2010

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1         | No. of Internal Tests                     | :         | 2 Max. Marks for each Internal Test                | : | 30 |
|-----------|-------------------------------------------|-----------|----------------------------------------------------|---|----|
| 2         | No. of Assignments                        | :         | 3 Max. Marks for each Assignment                   | : | 5  |
| 3<br>Dura | No. of Quizzes<br>ation of Internal Tests | :<br>: 11 | 3 Max. Marks for each Quiz Test<br>Jour 30 Minutes | : | 5  |

#### With effect from the Academic Year 2022-23 OPEN ELECTIVES OFFERED IN B.E. III SEMESTER (2022-23)

| Dept                                  | Title<br>(Open Elective-I)                  | Code       | Credits |
|---------------------------------------|---------------------------------------------|------------|---------|
| CIVIL                                 | Green Buildings                             | U210E310CE | 2       |
|                                       | Introduction to Signals & Systems           | U210E310EC | 2       |
| ECE                                   | Principles of Communication<br>Engineering  | U210E320EC | 2       |
| EEE                                   | Non Conventional Energy Sources             | U210E310EE | 2       |
|                                       | Geometric Modelling                         | U210E310ME | 2       |
| Mech                                  | Introduction to Unmanned Aerial<br>Vehicles | U210E320ME | 2       |
|                                       | Basic Heat Transfer for Electronic Systems  | U210E330ME | 2       |
| Matha                                 | Linear Algebra                              | U210E310MA | 2       |
| Maths                                 | Complex Variables                           | U210E320MA | 2       |
| H&SS                                  | Learning to Learn                           | U210E310EH | 2       |
| Phy. Smart Materials and Applications |                                             | U22OE310PH | 2       |
| Chom                                  | Battery Science and Technology              | U22OE310CH | 2       |
| Chem.                                 | Corrosion And Its Prevention                | U22OE320CH | 2       |

# VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF CIVIL ENGINEERING

# **GREEN BUILDINGS (Open Elective-I)**

SYLLABUS FOR B.E. III-SEMESTER

| L : T : P (Hrs./week):2:0:0 | SEE Marks:60 | Course Code: U210E310CE |
|-----------------------------|--------------|-------------------------|
| Credits: 2                  | CIE Marks:40 | Duration of SEE: 3 Hrs  |

| COURSE OBJECTIVES                   | COURSE OUTCOMES                    |  |  |
|-------------------------------------|------------------------------------|--|--|
| Objectives of this course are to:   | Upon the completion of this course |  |  |
|                                     | the students will be expected to:  |  |  |
| 1. Learn the principles of planning | 1. Explain the principles of       |  |  |
| and orientation of buildings.       | building planning, its bylaws      |  |  |
| 2. Environmental implications of    | and provide facilities for         |  |  |
| natural and building materials      | rainwater harvesting               |  |  |
| along with green cover              | 2. Relate safety to Green          |  |  |
| 3. Acquire knowledge on various     | Technology                         |  |  |
| aspects of green buildings          | 3. Understand the concepts of      |  |  |
|                                     | green buildings                    |  |  |
|                                     | 4. Understand rating systems of    |  |  |
|                                     | GRIHA and LEED                     |  |  |

**UNIT-I: Planning of buildings:** Principles of planning, Relevant building bylaws, site selection for buildings, orientation of buildings, common errors in planning, Provision of rain water harvesting

**UNIT-II: Building-Energy-Implications:** Environmental implications of buildings energy, carbon emissions, water use, waste disposal; Building materials: sources, methods of production and environmental Implications. Green cover and built environment

**UNIT-III: Green Building Technologies:** Introduction- Necessity - Concept of Green building. Principles of green building – Site selection criteria for Green Buildings – usage of low energy materials – effective cooling and heating systems – effective electrical systems – effective water conservation systems

UNIT-IV: Certification Systems: Certification systems- Green Rating for Integrated Habitat Assessment (GRIHA), Indian Green Building Council

30

5

5

(IGBC) and Leadership in Energy and Environmental Design (LEED), case studies

# Learning Resources:

- 1. Kumara Swamy N.Kameswara Rao A., Building Planning And Drawing, Charotar, Publications, 2013.
- 2. Shahane, V. S, "Planning and Designing Building", Poona, Allies Book Stall, 2004.
- 3. Michael Bauer, Peter Mösle and Michael Schwarz "Green Building -Guidebook for Sustainable Architecture" Springer, 2010.
- 4. Tom Woolley, Sam Kimmins, Paul Harrison and Rob Harrison "Green Building Handbook" Volume I, Spon Press, 2001.
- Mili Majumdar, "Energy-efficient buildings in India" Tata Energy 5. Research Institute, 2002.
- 6. TERI "Sustainable Building Design Manual- Volume I & II" Tata Energy Research Institute, 2009.
- 7.

# The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1 No. of Internal Tests : 2 Max. Marks for each Internal Test 2 No. of Assignments
  - : 2 Max. Marks for each Assignment
- 3 No. of Quizzes
- 2 Max. Marks for each Quiz Test

Duration of Internal Tests

: 90 Minutes

:

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**INTRODUCTION TO SIGNALS & SYSTEMS** (OPEN ELECTIVE-I) SYLLABUS FOR B.E. III – SEMESTER (for CSE & IT)

| L:T:P (Hrs./week) : 2:0:0 | SEE Marks : 60 | Course Code: U210E310EC   |
|---------------------------|----------------|---------------------------|
| Credits : 2               | CIE Marks : 40 | Duration of SEE : 3 Hours |

|    | COURSE OBJECTIVES                 | COURSE OUTCOMES                      |
|----|-----------------------------------|--------------------------------------|
| 1. | Define and classify continuous    | On completion of the course,         |
|    | and discrete time signals and     | students will be able to             |
|    | systems.                          | 1. Analyze basic signals and         |
| 2. | Determine frequency domain        | systems in continuous and            |
|    | characteristics of continuous and | discrete time domain                 |
|    | discrete time signals.            | 2. Apply the properties of different |
|    |                                   | transformation techniques to         |
|    |                                   | analyze continuous time domain       |
|    |                                   | signals and systems in frequency     |
|    |                                   | domain                               |
|    |                                   | 3. Determine the response of an      |
|    |                                   | LTI system using Convolution         |
|    |                                   | 4. Apply the properties of different |
|    |                                   | transformation techniques to         |
|    |                                   | convert a discrete time domain       |
|    |                                   | signal to frequency domain           |

# UNIT - I

**Continuous time signals:** types of signals, representation of signals, basic elementary signals, operations on signals.

**Continuous time systems:** classification of systems - static and dynamic, linear and non linear, time invariant and time variant.

# UNIT - II

**Continuous time Fourier transforms:** Introduction, existence, properties, magnitude and phase spectrums.

Laplace transforms: Introduction, existence, Laplace transform of basic elementary signals, properties, inverse Laplace transforms

30

5

5

# UNIT - III

**Discrete time signals:** types of signals, representation of signals, basic elementary signals, operations on signals.

**Discrete time systems:** classification of systems - static and dynamic, linear and non linear, time invariant and time variant.

# UNIT - IV

**LTI Systems:** Introduction to continuous and discrete time LTI systems, properties, impulse response, convolution, causality, stability, transfer function.

**Z-transform:** Introduction, existence, Z-transform of basic elementary signals, properties, inverse Z-transforms.

Applications: Basic network Analysis, Servo Motor

# Learning Resources:

- 1. P. Ramakrishna Rao, Signals and Systems, McGraw Hill, 2008.
- Alan V. Oppenheim, Alan S. Wilsky and S. Hamid Nawab, Signals and Systems, 2<sup>nd</sup> ed., PHI, 2009.
- 3. Nagoor kani , Signals and Systems McGraw Hill, 2013
- https://onlinecourses.nptel.ac.in/noc19\_ee07/preview (Principle of Signals and Systems by Prof. Aditya K Jagannatham)
- 5. https://www.edx.org/course/signals-and-systems-part-1-1
- https://www.edx.org/course/signals-systems-part-2-iitbombayx-ee210-2x-3

The break-up of CIE : Internal Tests + Assignments + Quizzes

No. of Internal Tests
 Max. Marks for each Internal Tests
 Mo. of Assignments
 Max. Marks for each Assignment
 Max. Marks for each Assignment
 Max. Marks for each Assignment

Duration of Internal Tests: 90 Minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031

# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

**PRINCIPLES OF COMMUNICATION ENGINEERING** (OPEN ELECTIVE-I) SYLLABUS FOR B.E. III – SEMESTER (for EEE, CSE & IT)

| L:T:P (Hrs./week) : 2:0:0 | SEE Marks : 60 | Course Code: U210E320EC   |
|---------------------------|----------------|---------------------------|
| Credits : 2               | CIE Marks : 40 | Duration of SEE : 3 Hours |

| COURSE OBJECTIVES              | COURSE OUTCOMES                   |
|--------------------------------|-----------------------------------|
| Distinguish analog and digital | On completion of the course,      |
| Modulation techniques used in  | students will be able to          |
| various Communication systems. | 1. Analyze the power and          |
|                                | transmission bandwidth of         |
|                                | Amplitude and Frequency           |
|                                | Modulated signals.                |
|                                | 2. Familiarize the process of     |
|                                | reproduction of base band         |
|                                | signal.                           |
|                                | 3. Analyze various pulse analog   |
|                                | and pulse digital Modulation      |
|                                | Techniques.                       |
|                                | 4. Understand the transmission of |
|                                | binary data in communication      |
|                                | systems.                          |

#### UNIT - I

**Amplitude Modulation:** Introduction to Modulation, Need for Modulation, Ordinary Amplitude Modulation – Modulation index, Side bands, AM Power, Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM demodulation, Applications of AM.

# UNIT - II

**Angle Modulation:** Angle Modulation fundamentals, Frequency Modulation – Modulation index and sidebands, Narrowband FM, Wideband FM, Principles of Phase Modulation, Frequency Modulation verses Amplitude Modulation, FM demodulation, Frequency Division Multiplexing, Applications of FM.

#### UNIT - III

Signal Sampling and Analog Pulse Communication: Ideal Sampling, Pulse Amplitude Modulation, Pulse Width Modulation, Pulse Position Modulation.

Digital Communication Techniques: Quantization, Digital Transmission of Data, Parallel and Serial Transmission, Data Conversion, Time Division Multiplexing, Pulse Code Modulation, Delta Modulation.

# UNIT - IV

Transmission of Binary Data in Communication Systems: Digital Codes, Principles of Digital Transmission, Transmission Efficiency, Modem Concepts and Methods - FSK, BPSK, Error Detection and Correction.

#### Learning Resources:

- 1. Louis E. Frenzel, Principles of Electronic Communication Systems, 3rd Edition. Tata Mcgraw Hill.
- 2. Wayne Tomasi, Electronic Communications Systems, 5<sup>th</sup> Edition, Pearson Education.

The break-up of CIE : Internal Tests + Assignments + Quizzes



Duration of Internal Tests: 90 Minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

#### Non Conventional Energy Sources

Open Elective-I SYLLABUS FOR B.E. III SEMESTER

| L: T: P (Hrs/Week):2:0:0 | SEE Marks: 60 | Course Code: U210E310EE |
|--------------------------|---------------|-------------------------|
| Credits:2                | CIE Marks: 40 | Duration of SEE: 3Hours |

| <b>COURSE OBJECTIVES</b><br>The course will enable the students to:                                                                                                                                                            | <b>COURSE OUTCOMES</b><br>On completion of the course, students<br>will be able to                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To provide a survey of the most<br>important renewable energy resources<br>and the technologies for harnessing<br>these resources within the framework of<br>a broad range of simple to state- of -<br>the-art energy systems. | <ol> <li>Demonstrate the generation of<br/>electricity from various Non-<br/>Conventional sources of energy and<br/>solar power generation</li> <li>Illustrate the generation of energy<br/>from wind and generation of energy<br/>from waste</li> <li>Demonstrate the generation of<br/>energy by biomass and fuel cells</li> <li>Illustrate the ocean and geo thermal<br/>energy generation</li> </ol> |

#### UNIT-I: Introduction and Solar Energy:

**Introduction:** Need for Non-conventional energy sources, Types of Non-Conventional energy sources. Renewable energy across the Global and in India. Renewable energy for rural applications, Renewable energy for urban, industrial and commercial applications

**Solar Energy:** Solar cell fundamentals: Semiconductors, Photovoltaic effect, Solar PV cell, module, panel, array, Solar cell operating characteristics: Voltage-current characteristic, energy losses, maximising the performance. Applications of solar energy, Solar energy program in India, Case study

#### UNIT-II: Wind Energy and Waste to Energy:

**Wind Energy:** Nature of wind, Basic components of Wind Energy Conversion System(WECS), Power extraction from the wind, Applications of wind energy. Wind energy program in India, Case Study

Waste to Energy: Key issues, Waste recovery management, Case study

# UNIT-III: Biomass Energy and Fuel Cells:

**BiomassEnergy**: Definition, Bio fuels, Biomass resources, Biomass conversion technologies: Incineration- Thermo chemical conversion- Biochemical conversion. Advantages and disadvantages of biomass energy, Case study

**Fuel Cells:** Definition-Classification of fuel cells, Principle of operation, Hydrogen-oxygen fuel cell, Alkaline fuel cell, Proton exchange membrane fuel cell, Molten carbonate fuel cell, Solid oxide electrolyte cells, Comparison of fuel cells- Advantages and Disadvantages of fuel cells-Applications of Fuel cells. Case study

# UNIT-IV: Ocean Energy and Geothermal Energy:

**Ocean Energy:** Ocean thermal electric conversion (OTEC) methods: Open cycle and Closed cycle- Principles of tidal power generation-Advantages and limitations of tidal power generation, Case study

**Geothermal Energy:** Geothermal resources- Vapour dominated geothermal plant- Liquid dominated geothermal plant- Applications of Geothermal Energy, Case study

# Learning Resources:

- B H KHAN, Non-Conventional Energy Resources, McGraw Hill, 2<sup>nd</sup> Edition, 2009.
- G. S. Sawhney, Non-Conventional Energy Resources, PHI Learning Pvt Ltd, 2012
- 3. ShobhNath Singh, Non-Conventional Energy Resources, Pearson, 2016
- 4. G.D. Rai, Non-Conventional Energy Sources ,Khanna Publishers, New Delhi, 2011.
- 5. Ashok Desai V, Non-Conventional Energy, Wiley Eastern Ltd, 1990.
- 6. Mittal K.M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, 1997.
- 7. Ramesh R, Kurnar K.U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 1997.

The break-up of CIE : Internal Tests+Assignments+Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test
- 2. No. of Assignments : 3 Max. Marks for each Assignment
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test

Duration of Internal Tests :90 Minutes

: <u>30</u> : <u>5</u> : <u>5</u>

# VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 Department of Mechanical Engineering

GEOMETRIC MODELLING (Open Elective-I)

SYLLABUS FOR B.E.III-SEMESTER

| L:T:P(Hrs/week):2:0:0 | SEE Marks:60 | Course Code: U210E310ME |
|-----------------------|--------------|-------------------------|
| Credits :02           | CIE Marks:40 | Duration of SEE:03Hours |

|                                    | COURSE OUTCOMES                   |
|------------------------------------|-----------------------------------|
| COURSE OBJECTIVE                   | On completion of the course,      |
|                                    | students will be able to          |
| The objective of this course is to | 1 identify various Wire frame     |
| understand wire-frame modelling &  | modelling entities and their      |
| transformations, surface, solid    | representations.                  |
| modelling and assembly modelling   | 2 interpret synthetic curve       |
| techniques.                        | representations and various 2D    |
|                                    | transformations for geometric     |
|                                    | model by matrix approach.         |
|                                    | 3 development of various surfaces |
|                                    | using surface modelling.          |
|                                    | 4 analyze various solid models    |
|                                    | using various solid modelling     |
|                                    | schemes and Study various         |
|                                    | Assembly constraints, Assembly    |
|                                    | tree and develop few assembled    |
|                                    | models.                           |

#### UNIT-I: INTRODUCTION TO CAD

product life cycle, conventional design and computer aided design.

**Wire Frame Modelling:** wire frame entities and their definitions. Interpolation and approximation of curves. Concept of parametric and non– parametric representation of circle and helix curves, demonstration of 2D geometry through CAD software.

# UNIT-II: SYNTHETIC CURVES

Parametric representation of cubic spline, Bezier and B– spline curves, continuity, properties and characteristics of splines. Concepts of NURBS, synthetic curves demonstration.

**2D** transformation and their mathematics: Translation, scaling, rotation, Homogeneous co-ordinates, Concatenated transformations.

### UNIT-III: SURFACE MODELING

Analytical surfaces: Definitions of planar, surface of revolution, Tabulated cylinder. Synthetic surfaces: Cubic and Bezier surfaces, visualization of different surfaces.

# UNIT-IV: SOLID MODELLING

C– rep and B– rep and feature instancing, Octree encoding, spatial enumeration, cell decomposition, sweeping approaches. Euler's representation of solid models, creation of solid model in CAD software.

**ASSEMBLY MODELING:** Assembly constraints, assembly tree, top down assembly, bottom up assembly, development of a history tree for a simple assembly, demonstration of simple assembly.

#### Learning Resources:

- 1. Ibrahim Zeid, "CAD/CAM- Theory and Practice", McGraw-Hill Inc. New York, 2011.
- 2. Steven Harrington, "Computer graphics: a programming approach", McGraw-Hill, 1987.
- 3. David Rogers, J. Alan Adams, "Mathematical elements for computer graphics", McGraw Hill, 1990.
- 4. McConnell, J. J. "Computer graphics theory into practice", Jones and Bartlett Publishers, 2006.

# The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1 No. of Internal Tests: 02 Max. Marks for each Internal Test: 30
- 2 No. of Assignments: 02 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 02 Max. Marks for each Quiz Test: 05 Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

# **Department of Mechanical Engineering**

# INTRODUCTION TO UNMANNED AERIAL VEHICLES (Open Elective-I)

SYLLABUS FOR B.E.III-SEMESTER

| L:T:P(Hrs/week):2:0:0 | SEE Marks:60 | Course Code: U210E320ME  |
|-----------------------|--------------|--------------------------|
| Credits :02           | CIE Marks:40 | Duration of SEE: 03Hours |

|                                      | COURSE OUTCOMES                          |
|--------------------------------------|------------------------------------------|
| COURSE OBJECTIVE                     | On completion of the course, students    |
|                                      | will be able to                          |
| The objective of this Course is to   | 1. Explain the types and characteristics |
| understand the features of UAV,      | of UAVs and their applications.          |
| elements, navigation and guidance of | 2.Illustrate the concepts of             |
| DAV and to design and simulate DAV   | aerodynamics of flight vehicle.          |
|                                      | 3. Identify and explain the components,  |
|                                      | sensors and payload of UAVs,             |
|                                      | their navigation and guidance.           |
|                                      | 4. Design and perform structural,        |
|                                      | aerodynamic analysis of UAV              |
|                                      | components                               |

# **Unit-I: Introduction to UAV**

UAV: Definition, History; Difference between aircraft and UAV; DGCA Classification of UAVs; Types and Characteristics of Drones: Fixed, Multirotor, and Flapping Wing; Applications: Defense, Civil, Environmental monitoring.

# Unit-II: Basics of Flight

Different types of flight vehicles; Components and functions of an airplane; Forces acting on Airplane; Physical properties and structure of the atmosphere; Aerodynamics – aerofoil nomenclature, aerofoil characteristics, Angle of attack, Mach number, Lift and Drag, Propulsion and airplane structures.

# Unit-III: UAV Elements, Navigation and Guidance

Components: Arms, motors, propellers, electronic speed controller (ESC), flight controller; Propulsion; Data Link; Sensors and Payloads: GPS, IMU,

Light Detection and Ranging (LiDAR), Imaging cameras, Classification of payload based on applications; Hyper-spectral sensors; Laser Detection and Range (LADAR); Synthetic Aperture Radar (SAR); Thermal cameras; ultrasonic detectors; Case study on payloads. Introduction to navigation systems and types of guidance; Mission Planning and Control.

# **Unit-IV: Design & Simulation of UAV**

Introduction to CAD; Design of UAV components; Structural Analysis using CAE; Aerodynamic Analysis using CFD; Manufacturing of the components of UAVs: 3D printing; Case studies;

# Learning Resources:

- 1. Andey Lennon, "Basics of R/C Model Aircraft Design" Model Airplane News Publication
- 2. John Baichtal, Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs.
- 3. K Valavanis, George J Vachtsevanos, Handbook of Unmanned Aerial Vehicles, New York,
- 4. Springer, Boston, Massachusetts : Credo Reference, 2014. 2016.
- 5. DGCA RPAS Guidance Manual, Revision 3 2020

# The break-up of CIE: Internal Tests+ Assignments + Quizzes

- 1 No. of Internal Tests: 02 Max.Marks for each Internal Test: 30 2 No. of Assignments: 02 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 02 Max. Marks for each Quiz Test: 05 Duration of Internal Test: 1 Hour 30 Minutes

# VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD – 500 031

### **Department of Mechanical Engineering**

#### BASIC HEAT TRANSFER FOR ELECTRONIC SYSTEMS (Open Elective-I) SYLLABUS FOR B.E.III-SEMESTER

| L:T:P(Hrs/week):2:0:0 | SEE Marks:60 | Course Code: U210E330ME |
|-----------------------|--------------|-------------------------|
| Credits :02           | CIE Marks:40 | Duration of SEE:03Hours |

| COURSE OBJECTIVE                                                                                                                                                         | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                          | able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The objective of this course is<br>to study the basic laws of<br>thermodynamics and the<br>cooling of electronic equipment<br>along with basic modes of heat<br>transfer | <ol> <li>understand and apply the first and Second<br/>laws of thermodynamics to various<br/>engineering problems.</li> <li>formulate heat conduction problems in<br/>rectangular, cylindrical and spherical<br/>coordinate system by transforming the<br/>physical system into a mathematical model.</li> <li>to determine heat transfer coefficient in<br/>forced and free convection heat transfer.</li> <li>analyse heat transfer processes involved in<br/>cooling of electronic components</li> </ol> |

#### UNIT-I: BASIC THERMODYNAMICS

Basic Concepts-System, Types of Systems, Control Volume, Surrounding, Boundaries, Universe, Macroscopic and Microscopic viewpoints, Thermodynamic Equilibrium, State, Property, Process, Cycle – Reversibility – Quasi–static process; Zeroth Law of Thermodynamics, First and Second laws of Thermodynamics. Numerical problems.

#### UNIT-II: heat transfer:conduction

Heat Transfer – Different Modes, governing laws and application to heat transfer: Fourier, Newton, Stefan–Boltzmann laws; general heat conduction equation - Steady state one-dimensional heat conduction through slabs, hollow cylinders and spheres. Concept of thermal resistance in series and parallel (composite systems), contact resistance, overall heat transfer coefficient. Critical radius of insulation. Heat transfer with and without internal heat generation. Numerical problems.

#### UNIT-III: heat transfer:convection

Extended surfaces: Fins - Applications of fins, Fin Equation, Fin Effectiveness and Efficiency. Convection Heat Transfer: Heat transfer coefficient - Forced and Natural Convection in Electronic Devices, non dimensional numbers - Nusselt number, Reynolds number, Grashoff number and Prandlt number, forced and free convection correlations - flat plates and cylinders. Numerical problems.

# UNIT-IV: COOLING OF ELECTRONIC EQUIPMENT

Needs & Goals; Temperature effects on different failure modes; Electronic equipment for airplanes, missiles, satellites and spacecraft; electronic equipment for ships & submarines; electronic equipment for communication systems and ground support system; chassis and circuit boards cooling.

#### Learning Resources:

- 1. P.K. Nag, "Engineering Thermodynamics", Tata Mc Graw Hill, 4th Edition, 2008.
- Yunus Cengel & Boles, "Thermodynamics An Engineering Approach", TMH New Delhi, 2008.
- 3. Sachadeva R.C., "Fundamentals of Engineering Heat and Mass Transfer", New Age International (P) Ltd Publishers, New Delhi, 2010.
- 4. Dave S. Steinberg, "Cooling Techniques for Electronic Equipment", Second Edition, John Wiley & Sons, 1991.
- 5. Yunus Cengel & Afshin J Ghajar, "Heat and Mass Transfer: Fundamentals & its Applications", Mc Graw Hill, 5th Edition, 2013.

# The break-up of CIE: Internal Tests+ Assignments + Quizzes

| 1 | No. of Internal Tests: | 02 | Max. Marks for each Internal Test: | 30 |
|---|------------------------|----|------------------------------------|----|
| 2 | No. of Assignments:    | 02 | Max. Marks for each Assignment:    | 05 |
| 3 | No. of Quizzes:        | 02 | Max. Marks for each Quiz Test:     | 05 |

Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

# **DEPARTMENT OF MATHEMATICS**

# LINEAR ALGEBRA

# (Open Elective-I)

# SYLLABUS FOR B.E.III-SEMESTER

| L:T:P(Hrs/week):2:0:0 | SEE Marks:60 | Course Code: U210E310MA |
|-----------------------|--------------|-------------------------|
| Credits :02           | CIE Marks:40 | Duration of SEE:03Hours |

| COURSE OBJECTIVES                                                                                                                                            | COURSE OUTCOMES                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| The course will enable the students                                                                                                                          | At the end of the course students                                                                                                                     |
| to:                                                                                                                                                          | will be able to:                                                                                                                                      |
| <ol> <li>Study the concept of Vector<br/>Spaces and understand the<br/>meaning of Basis and Dimension<br/>of a vector Space and Co-<br/>ordinatos</li> </ol> | 1. Solve the problems on<br>Vector Spaces and<br>determine the Basis and<br>Dimension of a Vector Space<br>and find the Ca ordinates                  |
| <ol> <li>Understand the meaning of<br/>Linear transformation, properties.</li> <li>Understand Range and Kernel,</li> </ol>                                   | <ol> <li>Determine Linear<br/>Transformation, Range and<br/>Kernel and Matrix of Linear</li> </ol>                                                    |
| Rank-Nullity and Matrix of Linear<br>Transformation                                                                                                          | Transformation.<br>3 Determine Range and                                                                                                              |
| <ol> <li>Understand Inner Product<br/>Spaces, Orthonormal sets, Gram-<br/>Schmidt's Orothogonalization</li> </ol>                                            | Kernel, Rank-Nullity and<br>Matrix of Linear<br>Transformation.                                                                                       |
| process.                                                                                                                                                     | 4. Determine distance,<br>orthogonal, orthonormal<br>sets and construct<br>orthonormal basis based on<br>Gram-Schmidt's<br>Orothogonalization process |

# UNIT – I (8 classes)

**Vector Spaces**-Definition of a Vector Space, Subspaces, Basis and Dimension, Coordinates and Change of Basis.

#### **UNIT – II** (6 classes) Linear Transformation -I

Definition of Linear Transformation- Properties of Linear Transformations -Product of Linear Transformations – Algebra of Linear Operators- Linear sum- Scalar multiple-Composition of maps.

# UNIT – III (6 classes)

#### Linear Transformation -II

Range and kernel of a linear map – Dimension of Range and Kernel - Rank and nullity - Inverse of linear transformation - Rank nullity theorem (without Proof)- Matrix of Linear Transformation.

# UNIT – IV (8 classes)

Inner Product Spaces-The Dot Product on R and Inner Product Spaces, Orthogonal Orthonormal Bases. Complements-Gram-Schmidt's Orthonormolization process.

# Learning Resources:

- 1. Introduction to Linear Algebra with Application, Author : Jim Defranza, Daniel Gagliardi, Publisher : Tata McGraw-Hill
- 2. An Introduction to Linear Algebra, V.Krishna Murthy, V.P Mainra, J.L Arora, Affiliated to East-West Press Pvt Ltd

# **Reference Books:**

- (i) Elementary Linear Algebra, Author: Anton and Rorres, Publisher: Wiley India Edition.
- Advanced Engineering Mathematics, Author : Erwin Kreysig, (ii) Publisher : Wilev Publication
- Elementary Linear Algebra, Author : Ron Larson, Publisher : (iii) Cengage Learning

# Online Resources :

- http://mathworld.wolfram.com/topics 1
- http://www.nptel.ac.in/course.php 2

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
- 2 No. of Assignments : 2 Max. Marks for each Assignment

:

3 No. of Ouizzes : 2 Max. Marks for each Ouiz Test 90 Minutes

: 5

: 5

Duration of Internal Tests

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

#### DEPARTMENT OF MATHEMATICS

# **COMPLEX VARIABLES**

# (Open Elective-I)

### SYLLABUS FOR B.E.III-SEMESTER

| L:T:P(Hrs/week):2:0:0 | SEE Marks:60 | Course Code: U210E320MA |
|-----------------------|--------------|-------------------------|
| Credits :02           | CIE Marks:40 | Duration of SEE:03Hours |

| COURSE OBJECTIVES                | COURSE OUTCOMES                    |
|----------------------------------|------------------------------------|
| The course will enable the       | At the end of the course students  |
| students to :                    | should be able to:                 |
| 1. Understand the Analytic       | 1. Apply the condition(s) for a    |
| functions, conditions and        | complex variable function to be    |
| harmonic functions.              | analytic and/or harmonic and to    |
| 2. Evaluate a line integral of a | construct an Analytic function.    |
| function of a complex variable   | 2. Evaluate complex integrals by   |
| using Cauchy's integral formula, | Cauchy's theorem and Cauchy's      |
| and how to                       | Integral formula                   |
| 3. Evaluate Taylor's and Laurent | 3. Identify the singularities of a |
| Series.                          | function and to expand a given     |
| 4. Understand the Cauchy's       | function as a Taylor's / Laurent's |
| residue theorem                  | series.                            |
|                                  | 4. Evaluate complex integrals by   |
|                                  | Cauchy's Residue theorem           |

#### UNIT – I (8 classes) DIFFERENTIATION OF COMPLEX FUNCTION

Introduction to complex function-Limits and Continuity of function - Differentiability and Analyticity - Necessary & Sufficient Condition for a Function to be Analytic(Cartesian) - Milne-Thompson's method -Harmonic Functions.

# UNIT – II (6 classes)

# INTEGRATION OF COMPLEX FUNCTION

Complex Integration- Cauchy's Theorem (with proof) - Cauchy's Integral Formula (with proof) - Evaluation of integrals by Cauchy's Integral formula.
#### UNIT – III (6 classes) SERIES OF COMPLEX FUNCTIONS

Power series - Taylor's Series - Laurent's Series (without proofs) –Zero and singularities of complex function.

#### UNIT – IV (8 classes) RESIDUES

Introduction to Residues- Residues at singularities-Cauchy's Residue theorem (without proof) – Evaluation of integrals by Cauchy's Residue theorem.

#### Learning Resources:

- Advanced Engineering Mathematics 3<sup>rd</sup> Edition, R.K.Jain & S.R.K.Iyengar, Narosa
- 2. Publishing House.
- 3. Higher Engineering Mathematics 40th Edition Dr. B.S Grewal, Khanna Publishers.
- 4. A Text book of Engineering Mathematics, N.P.Bali & Manish Goyal, Laxmi Publications.

#### **Online Resources :**

- 1 http://mathworld.wolfram.com/topics
- 2 <u>http://www.nptel.ac.in/course.php;</u>

| The | e break-up of CIE : Interna | l Te | ests | + Assignments + Quizzes        |   |    |
|-----|-----------------------------|------|------|--------------------------------|---|----|
| 1   | No. of Internal Tests       | :    | 2    | Max. Marks for each Internal   | : | 30 |
|     |                             |      |      | Tests                          |   |    |
| 2   | No. of Assignments          | :    | 2    | Max. Marks for each Assignment | : | 5  |
| 3   | No. of Quizzes              | :    | 2    | Max. Marks for each Quiz Test  | : | 5  |
|     | Duration of Internal Tests  | :    | 90   | Minutes                        |   |    |
|     |                             |      |      |                                |   |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Humanities and Social Sciences**

### LEARNING TO LEARN

#### (Open Elective-I)

SYLLABUS FOR B.E.III-SEMESTER

| L:T:P(Hrs/Week):2:0:0 | SEE Marks: 60 | Course Code: U210E310EH   |  |
|-----------------------|---------------|---------------------------|--|
| Credits: 2            | CIE Marks: 40 | Duration of SEE : 3 Hours |  |

| COU                                 | RSE OBJECTIVES                       | COURSE OUTCOMES |                              |  |  |
|-------------------------------------|--------------------------------------|-----------------|------------------------------|--|--|
| The course will enable the learners |                                      |                 | At the end of the course the |  |  |
| to:                                 |                                      | lea             | rners will be able to: -     |  |  |
| 1.                                  | Develop effective study skills, and  | 1.              | Get learners maximize        |  |  |
|                                     | enable students to cut down on the   |                 | their learning in a          |  |  |
|                                     | number of hours spent studying.      |                 | stipulated amount of time.   |  |  |
| 2.                                  | Explore illusions of competence in   | 2.              | Become competent             |  |  |
|                                     | learning, the challenges of          |                 | learners and learn           |  |  |
|                                     | overlearning, and the advantages of  |                 | creatively.                  |  |  |
|                                     | interleaving.                        | 3.              | Meet deadlines, submit       |  |  |
| 3.                                  | Handle procrastination and learn for |                 | progress reports and recall  |  |  |
|                                     | long term.                           |                 | what has been learnt for     |  |  |
| 4.                                  | Plan, prioritise and carry out tasks |                 | effective usage.             |  |  |
|                                     | based on goals and priority.         | 4.              | Set Performance              |  |  |
|                                     |                                      |                 | Standards and take           |  |  |
|                                     |                                      |                 | initiative based on set      |  |  |
|                                     |                                      |                 | goals.                       |  |  |

#### OVERVIEW:

No matter what your skill levels in topics you would like to master, you can change your thinking and change your life. If you are struggling to cope, you'll see a structured treasure trove of practical techniques that walk you through what you need to do to get on track. If you've ever wanted to become better at anything, this course will help serve as your guide.

#### UNIT 1: STUDY SKILLS

Good study skills can increase a student's confidence, competence, and selfesteem. They can also reduce anxiety about tests and deadlines. This module is designed to develop effective study skills, and enable students to cut down on the number of hours spent studying, leaving more time for other important things in their life

- 1.1 Study Skills Checklist
- 1.2 Learning Styles
- 1.3 Habits of Effective Students
- 1.4 Using the Focused and Diffuse Modes
- 1.5 Introduction to memory and Memory Technique

#### UNIT 2: Chunking

In this module, we're going to be talking about chunks. Chunks are compact packages of information that your mind can easily access. We'll talk about how you can form chunks, how you can use them to improve your understanding and creativity with the material, and how chunks can help you to do better on tests. We'll also explore illusions of competence in learning, the challenges of overlearning, and the advantages of interleaving.

- 2.1 Knowledge Chunking
- 2.2 Skill and Will
- 2.3 Sleep and Learning

#### UNIT 3: Procrastination and Memory

In this module, we talk about two intimately connected ideas procrastination and memory. Building solid chunks in long term memory-chunks that are easily accessible by your short term memory—takes time. This is why learning to handle procrastination is so important. Finally, we talk about some of the best ways to access your brain's most powerful long term memory systems so that learning is long term and the learner has the ability to recall and use it as per need.

- 3.1 Controlling Procrastination
- 3.2 Ranking the importance of tasks with a to- do list
- 3.3 Finding their most productive time
- 3.4 Keeping track of time spent on different tasks
- 3.5 Introduction to Deep learning

With effect from the Academic Year 2022-23

**UNIT 4: Renaissance Learning and Unlocking Your Potential** In this module we're going to talk more about important ideas and techniques that will enhance student's ability to learn. Students will also discover how to more profitably interact with fellow learners, how to recognize your own strengths, and how to avoid the "imposter syndrome." Fighter pilots and surgeons use checklists to help them with their critical duties—you can use a similar checklist to help you prepare for tests. Ultimately, you will learn more about the joys of living a life filled with learning!

- 4.1 Psychology of Goal Setting
- 4.2 Criteria for Goal Setting
- 4.3 Steps in Goal Setting
- 4.4 Visioning
- 4.5 Strategy & Action Plan
- 4.6 Goal Progress Review

#### LEARNING RESOURCES

learn.talentsprint.com

The break-up of marks for CIE : Internal Tests + Quiz Tests + Assignments

2

- 1. No. of Internal Tests: 2
- 2. No. of Assignments: 2
- 3. No. of Quizzes:
- Max. Marks for each Internal Tests:30
- Max. Marks for each Assignments: 5
- Max. Marks for each Quiz Tests: 5

Duration of Internal Tests

: 90 minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Physics**

#### SMART MATERIALS AND APPLICATIONS (Open Elective-I)

SYLLABUS FOR B.E.III-SEMESTER

| Instruction :2Hrs/Week | SEE Marks : 60 | Course Code : U22OE310PH            |  |  |
|------------------------|----------------|-------------------------------------|--|--|
| Credits: 2             | CIE Marks : 40 | Duration of Semester End Exam:3 hrs |  |  |

| Course Objectives                  | Course Outcomes                 |  |  |
|------------------------------------|---------------------------------|--|--|
| The student will be able to        | The student should at least     |  |  |
| 1. grasp the concepts of peizo and | be able:                        |  |  |
| ferro electric materials           | 1. summarize various properties |  |  |
| 2. Learn fundamentals of pyro and  | and applications of peizo and   |  |  |
| thermo electric materials          | ferro electric materials        |  |  |
| 3. gain knowledge on shape         | 2. apply fundamental principles |  |  |
| memory alloys                      | of pyro and thermo electricity  |  |  |
| 4. acquire fundamental             | in relevant fields of           |  |  |
| knowledge on chromic               | engineering                     |  |  |
| materials                          | 3. Explain types of shape       |  |  |
|                                    | memory alloys and their         |  |  |
|                                    | properties and applications     |  |  |
|                                    | 4. Outline the importance of    |  |  |
|                                    | chromic materials in            |  |  |
|                                    | engineering fields.             |  |  |

#### UNIT I: PIEZO AND FERRO MATERIALS (8 hours)

Piezo electric effect and inverse piezoelectric effect, Piezo electric materials, Structure of Quartz crystal, Piezoelectric oscillator, Magnetostriction, Magnetostriction oscillator, piezo-electric sensors, applications of Piezo-electric materials.

Characteristics and properties of ferro-electric materials, Structure of Barium Titanate, Curie-Weiss law, applications of Ferro electric materials

With effect from the Academic Year 2022-23

**UNIT II: PYRO AND THERMO-ELECTRIC MATERIALS (6 hours)** *Pyroelectricity*: pyro electric effect, pyro electric materials, pyro-electric sensors.

*Thermoelectricity*: thermoelectric effect, Seebeck effect, Peltier effect, thermocouple and laws of thermocouples, Principle and working of thermoelectric generator and Thermoelectric cooler, applications of thermoelectric materials

#### UNIT III: SHAPE MEMORY MATERIALS (8 hours)

Introduction to shape memory alloys (SMA)- Shape Memory Effect (SME) different phases of Shape memory alloys, Austenite, Martensite, Properties and characteristics of engineering SMAs, Super elasticity, one and two way shape memory effects, Properties of Ni-Ti shape memory alloy, Cu-based shape memory alloys, biomedical Materials and their applications, Advantages, disadvantages of SMAs, Applications of SMAs.

#### UNIT-IV: (6 hours)

Electro-chromaticity, Electro-chromic materials, Electro-chromic sensors and devices.

Photo-chromaticity, Photo-chromic materials, Photo-chromic sensors and devices.

Thermo-chromaticity, thermo-chromic materials, thermo-chromic sensors and devices.

Smart fluids: Magneto-rheological and Electro-rheological fluids.

#### Learning Resources:

- 1. K. Otsuka and C M Wayman, Shape memory materials, Cambridge university press, 1998.
- 2. T W Duerig, K N Melton, D Stockel, C M Wayman, Engineering aspects of shape memory alloys, Butterworth-Heinemann, 1990
- 3. A.K. Sawhney, A Course in Electronic Measurements and Instrumentation, Dhanpat Rai & Sons, 2015
- 4. D. Patranabis, Sensors and Transducers, PHI Learning Pvt. Ltd., 2013

The break-up of marks for CIE : Internal Tests + Quiz Tests + Assignments

| 1. | No. of Internal Tests: | 2 | Max. | Marks for each Internal Tests | 3:30 |
|----|------------------------|---|------|-------------------------------|------|
| 2. | No. of Assignments:    | 2 | Max. | Marks for each Assignments:   | 5    |
| 3. | No. of Quizzes:        | 2 | Max  | Marks for each Quiz Tests:    | 5    |
|    |                        |   |      |                               |      |

Duration of Internal Tests : 90 minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Chemistry**

#### BATTERY SCIENCE AND TECHNOLOGY (Open Elective-I) SYLLABUS FOR B.F.III-SEMESTER

| Instruction :2Hrs /<br>Week | SEE Marks :<br>60 | Course Code : U22OE310CH |  |  |
|-----------------------------|-------------------|--------------------------|--|--|
| Credits: 2                  | CIE Marks :<br>40 | Duration of SEE : 3Hours |  |  |

| LEARNING OBJECTIVES:                                                                                                                                                                                                  | LEARNING OUTCOMES                                                                                                                                                                                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| The course will enable the                                                                                                                                                                                            | At the end of the course, students                                                                                                                                                                                                    |  |  |
| students to:                                                                                                                                                                                                          | should be able to:                                                                                                                                                                                                                    |  |  |
| <ol> <li>Introduce the various terms<br/>to understand the efficiency<br/>of batteries.</li> <li>Know the relevant materials<br/>required for the construction<br/>of primary and secondary<br/>batteries.</li> </ol> | <ol> <li>Discuss the construction,<br/>electrochemistry, technology<br/>and applications of selected<br/>primary batteries</li> <li>Discuss the construction,<br/>electrochemistry, technology<br/>and applications of few</li> </ol> |  |  |
| <ol> <li>raminalize with the reactions<br/>involved during charging and<br/>discharging processes.</li> <li>Emphasise the need of fuel<br/>cells and the concept of their</li> </ol>                                  | <ol> <li>Explain the working principle,<br/>electrochemistry, technology<br/>and applications of prominent<br/>fuel cells</li> </ol>                                                                                                  |  |  |
| construction and functioning.                                                                                                                                                                                         | <ol> <li>Evaluate different batteries or<br/>fuel cells in order to select a<br/>suitable battery or fuel cell for<br/>a given application</li> </ol>                                                                                 |  |  |

#### UNIT-I: BATTERIES – FUNDAMENTALS

Introduction and types of batteries: Primary and secondary. Battery characteristics: Free energy change, electromotive force of battery,

ampere - hour, capacity, power, power density, energy density, efficiency, cycle life, tolerance to service conditions, performance characteristics.

#### UNIT-II: PRIMARY BATTERIES

Construction, chemistry and technology of Zinc - Air Battery, Zinc - HgO battery and their applications.

Primary lithium batteries: Soluble cathode cells, solid cathode cells - Lithium manganese dioxide, solid electrolyte cells- Lithium polymer electrolyte battery - Applications. Reserve battery - Electrochemistry of perchloric acid cell - applications.

#### UNIT-III: SECONDARY BATTERIES

Construction, chemistry and technology of maintenance free lead acid battery (MFLA), valve regulated lead acid battery (VRLA), absorbed glass mat lead acid battery (AGMLA) - comparision between lead acid battery and VRLA along with advantages - Construction, electro chemistry and applications of Nickel - Cadmium battery, Nickel metalhydride battery.

Lithium ion batteries: Construction, chemistry and applications of liquid organic electrolyte cells, polymer electrolyte cells, lithium ion cells.

#### UNIT- IV: FUEL CELLS

Introduction, classification based on temperature and nature of electrolyte. Working principle, components, applications and environmental aspects of alkaline fuel cell (AFC) - Hydrogen - Oxygen alkaline fuel cell, Molten carbonate fuel cell (MCFC), Polymer electrolyte membrane fuel cell (PEMFC), Solid oxide fuel cell (SOFC).

#### Learning Resources:

#### Text Books:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai and Pub, Co., New Delhi (2002)
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand and Co.Ltd., New Delhi (2006).
- 3. Dell R. M. and Rand D. A. J., "Understanding Batteries", Royal Society of Chemistry, UK, 2001.
- 4. 4. Chemistry of Engineering Materials by R. P. Mani and K. N. Mishra, CENGAGE learning
- 5. 5. Shasi Chawla, "Text Book of Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2008.

#### Suggested Reading:

- 1. Dell R. M. and Rand D. A. J., "Understanding Batteries", Royal Society of Chemistry, UK, 2001.
- 2. Derek Pletcher and Frank C. Walsh, "Industrial Electrochemistry", Chapman and Hall, New York, 1993.

The break-up of marks for CIE :

Internal Tests + Quiz Tests + Assignments

- 1. No. of Internal Tests: 2 Max. Marks for each Internal Tests: 30
- 2. No. of Assignments: 2 Max. Marks for each Assignments: 5
- 3. No. of Quizzes:
- 2 Max. Marks for each Quiz Tests: 5

Duration of Internal Tests : 90 minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Chemistry**

#### CORROSION AND ITS PREVENTION (Open Elective-I)

SYLLABUS FOR B.E.III-SEMESTER

| Instruction :2Hrs / Week | SEE Marks : 60 | Course Code : U22OE320CH |  |
|--------------------------|----------------|--------------------------|--|
| Credits: 2               | CIE Marks : 40 | Duration of SEE : 3Hours |  |

| LEARINING OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At the end of the course, students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| should be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ol> <li>Explain different types of corrosion and factors that affect corrosion and passivation of metals.</li> <li>Select a suitable metallic coating, organic coating and inhibitors for corrosion control of the equipment in a given application.</li> <li>Discuss the principles and applications of cathodic protection and surface conversion coatings for corrosion control.</li> <li>Apply the knowledge of various methods of corrosion control to suggest a solution for corrosion control of a given equipment in a</li> </ol> |
| At <u>sh</u> 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### UNIT-I: CHEMICAL AND ELECTROCHEMICAL CORROSION

Introduction - gravity, cause, chemical and electrochemical corrosion, Pilling – Bed worth rule, effect of nature of oxide layer on rate of chemical corrosion. Galvanic corrosion, electrochemical series and galvanic series. Formation of anodic and cathodic areas, Differential aeration corrosion - pitting, waterline corrosion, crevice corrosion, stress corrosion and corrosion fatigue. Passivation of metals, polarization curve of passivating metals,

effect of pH and potential for iron (pourbaix diagram) and the polarization curve of iron.

#### Factors influencing corrosion

a. Nature of metal: Relative position of metal in galvanic series, over voltage, relative areas of anode and cathode and nature of corrosion product.

b. Nature of environment: Temperature, pH, humidity and dissolved oxygen. UNIT-II: CORROSION CONTROL BY METALLIC COATINGS

Metallic coatings: Types - anodic and cathodic. Pre treatment of surface of base metal. Methods of application of metallic coatings: Hot dipping-galvanization - applications of galvanized RCC steel bars. Cladding, electro plating and electroless plating- Principle and their differences. Electroplating of Cu and Cr on Fe, electroless plating of Ni and Cu on insulators, Preparation of printed circuit board (PCB) by electrolessplating.

## UNIT-III: CORROSION CONTROL BY ORGANIC COATINGS AND INHIBITORS

Organic Coatings: Paints – constituents and their functions. Vitreous enamel coatings. Varnishes. Super hydrophobic and self healing coatings. Epoxy coatings on RCC steel bars- impervious coatings.

Corrosion inhibitors: Anodic, cathodic and vapour phase inhibitors.

### UNIT-IV: CORROSION CONTROL BY CATHODIC PROTECTION AND SURFACE MODIFICATION

Cathodic protection: Principle, sacrificial anodic protection (SAP), impressed current cathodic protection (ICCP). Application of cathodic protection for bridges, ship hulls and underground pipelines.

Surface conversion coatings: Carburizing, nitriding, cyaniding.

#### Learning Resources:

#### Text Books:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Pub, Co., New Delhi (2002)
- 2. S. S. Dara "A text book of engineering chemistry" S. Chand and Co. Ltd., New Delhi (2006).
- 3. Shasi Chawla, "Text Book of Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi (2008).
- 4. Wiley Engineering chemistry, Wiley India pvt Ltd, II edition.
- 5. Chemistry in engineering and technology by J. C. Kuriacose and Rajaram.

5

#### Suggested Reading:

- 1. Principles and prevention of corrosion: Denny A. Jones, Prentice Hall, 1996.
- 2. Derek Pletcher and Frank C. Walsh, "Industrial Electrochemistry", Chapman and Hall, New York, 1993
- 3. Fundamentals of Corrosion: Michael Henthorne, Chemical Engineering
- 4. Corrosion Engineering: Mars G Fontana, Mc Graw Hill, 1987

The break-up of marks for CIE :

Internal Tests + Quiz Tests + Assignments

- 1. No. of Internal Tests: 2 Max. Marks for each Internal Tests:30
- 2. No. of Assignments: 2 Max. Marks for each Assignments: 2
- 5
- 3. No. of Ouizzes:
- Max. Marks for each Ouiz Tests:
- Duration of Internal Tests
- : 90 minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Humanities and Social Sciences**

### Skill Development Course - I (Communication Skills in English-I)

SYLLABUS FOR BE -III SEMESTER

(COMMON FOR ALL BRANCHES)

| L:T:P(Hrs/Week):1:0:0 | SEE Marks: 40 | Course Code: UI210HS320EH |  |
|-----------------------|---------------|---------------------------|--|
| Credits: 1            | CIE Marks: 30 | Duration of SEE : 2 Hours |  |

| COURSE OBJECTIVES          |                                  |     | COURSE OUTCOMES               |  |  |
|----------------------------|----------------------------------|-----|-------------------------------|--|--|
| The course will enable the |                                  |     | At the end of the course      |  |  |
| lear                       | ners to:                         | the | the learners will be able to: |  |  |
| 1.                         | Get students proficient in both  | 1.  | Introduce themselves          |  |  |
|                            | receptive and productive skills  |     | effectively and converse      |  |  |
|                            | especially virtually             |     | in a formal environment       |  |  |
| 2.                         | Enable students to understand    |     | especially in the online      |  |  |
|                            | the importance and method of     |     | space                         |  |  |
|                            | exchanging information in a      | 2.  | Write emails with             |  |  |
|                            | formal space- both written and   |     | appropriate structure and     |  |  |
|                            | spoken                           |     | content                       |  |  |
| 3.                         | Introduce students to an ideal   | 3.  | Use appropriate structure     |  |  |
|                            | structure for a presentation and |     | based on the content          |  |  |
|                            | discussion- individually and in  |     | employing appropriate         |  |  |
|                            | groups                           |     | transitions in written and    |  |  |
| 4.                         | Develop and improve reading      |     | spoken communication          |  |  |
|                            | skills needed for college work   | 4.  | Paraphrase content and        |  |  |
|                            | and reproduce the content based  |     | write an effective            |  |  |
|                            | on the situational need.         |     | summary                       |  |  |

# Unit 1: Delightful Descriptions 6 hrs

- Introductions on an Online Forum
- Making Observations and Giving Opinion
- Recalling and Describing

#### Unit 2: Formal Conversation Skills 6 hrs

- Ask for Information
- Give Information
- Give Feedback
- Seek Permission

#### **Unit 3: Technical Expositions and Discussions** 8 hrs

- Classification
- Sequence
- Compare and Contrast
- Cause and Effect
- Problem and solution

### Unit 4: Rational Recap

- 4 hrs
- Paraphrasing
- Summarizing

#### **METHODOLOGY**

- Case Studies
- Demonstration
- Presentations
- Expert lectures
- Writing and Audio-visual lessons

#### Learning Resources:

learn.talentsprint.com

The break-up of marks for CIE :

Internal Tests + Quiz Tests + Assignments

- 1. No. of Internal Tests: 2
- 3. No. of Ouizzes:
- Max. Marks for each Internal Tests:20 2. No. of Assignments: 2 Max. Marks for each Assignments: 5 5
  - 2 Max. Marks for each Ouiz Tests:

#### Duration of Internal Tests : 90 minutes

#### ASSESSMENTS

- Online assignments
- Individual and Group

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES**

#### Skill Development Course-II (Aptitude-I)

SYLLABUS FOR III Semester

| L:T:P(Hrs/Week): 1:0:0 | SEE Marks : 40 | Course Code: UI21BS330MA  |
|------------------------|----------------|---------------------------|
| Credits: 1             | CIE Marks : 30 | Duration of SEE : 2 Hours |

| CO  | URSE OBJECTIVES                         | CO  | URSE OUTCOMES                |  |
|-----|-----------------------------------------|-----|------------------------------|--|
| Th  | The course will enable the learners     |     | At the end of the course the |  |
| to: |                                         | lea | rners will be able to: -     |  |
| 1   | . Students will be trained to enhance   | 1.  | Solve questions in the       |  |
|     | their employability skills.             |     | mentioned areas using        |  |
| 2   | . Students will be introduced to        |     | shortcuts and smart          |  |
|     | higher order thinking and problem       |     | methods.                     |  |
|     | solving skills in the following areas - | 2.  | Understand the               |  |
|     | Arithmetic Ability, Numerical Ability   |     | fundamentals concept of      |  |
|     | and General Reasoning.                  |     | Aptitude skills.             |  |
| 3   | . Students will be trained to work      | 3.  | Perform calculations with    |  |
|     | systematically with speed and           |     | speed and accuracy.          |  |
|     | accuracy while problem solving.         | 4.  | Solve complex problems       |  |
| 4   | . Students will be trained to apply     |     | using basic concepts.        |  |
|     | concepts like percentages and           | 5.  | Use shortcuts with ease for  |  |
|     | averages to solve complex               |     | effective problem solving.   |  |
|     | problems.                               |     |                              |  |
| 5   | . Students will be trained to use       |     |                              |  |
|     | effective methods like elimination of   |     |                              |  |
|     | options and shortcuts to solve          |     |                              |  |
|     | problem accurately.                     |     |                              |  |

#### UNIT 1: QUANTITATIVE APTITUDE - NUMERICAL ABILITY

- 1.1 Introduction to higher order thinking skills
- 1.2 Speed Math
- 1.3 Number systems
- 1.4 LCM & HCF

# UNIT 2: QUANTITATIVE APTITUDE- ARITHMETIC ABILITY FOUNDATION

- 2.1 Ratio proportions
- 2.2 Partnership
- 2.3 Ages
- 2.4 Allegations and mixtures
- 2.5 Averages

#### UNIT 3: QUANTITATIVE APTITUDE- WORD PROBLEMS PART 1

- 3.1 Percentages
- 3.2 Profit and loss

#### UNIT 4: REASONING ABILITY- GENERAL REASONING PART 1

- 4.1 Blood Relations
- 4.2 Number Series
- 4.3 Coding and decoding

#### UNIT 5: QUANTITATIVE APTITUDE- WORD PROBLEMS PART 2

- 5.1 Time and Work
- 5.2 Chain Rule
- 5.3 Pipes and Cisterns

#### Prescribed textbook for theory:

- 1. Quantitative Aptitude S.CHAND by Dr. R S Aggarwal
- A Modern Approach to Verbal & Non-Verbal Reasoning S.CHAND by Dr. R S Aggarwal

#### Suggested Reading

- 1. Learn.talentsprint.com/References Courses
- 2. Quantitative Aptitude Disha Publications
- 3. LOGICAL Reasoning Disha Publications

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal tests Max.Marks : 2 : 20 2 No. of assignments 2 Max. Marks 5 : No. of Quizzes Max. Marks 3 : 2 5

Duration of Internal Tests : 90 Minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Humanities & Social Sciences**

#### Human Values and Professional Ethics-II

SYLLABUS FOR B.E- III SEMESTER (COMMON FOR ALL BRANCHES)

| L:T:P(Hrs/Week):1:0:0 | SEE Marks: 40 | Course Code: UI21HS010EH  |  |
|-----------------------|---------------|---------------------------|--|
| Credits: 1            | CIE Marks: 30 | Duration of SEE: 02 Hours |  |

#### COURSE OBJECTIVES The course will enable the learners to:

- 1. Grasp the meaning of basic human aspirations vis-a-vis the professional aspirations
- 2. Understand professionalism in harmony with self and society.
- 3. Develop ethical human conduct and professional competence.
- Enrich their interactions with the world around, both professional and personal.

#### COURSE OUTCOMES At the end of the course the learners will be able to: -

- Distinguish between Personal and Professional life goals-constantly evolving into better human beings and professionals.
- 2. Work out the strategy to actualize a harmonious environment wherever they work.
- Distinguish between ethical and unethical practices, and start implementing ethical practices
- Apply ethics and values in their personal and professional interactions.

#### UNIT 1: NORMATIVE ETHICS & SOCIETAL ETHICS

This unit deals with normative ethics, the branch of moral philosophy, or ethics, concerned with criteria of what is morally right and wrong. It includes the formulation of moral rules that have direct implications for what human actions, institutions, and ways of life should be like. This unit also covers societal ethics which is the systematic reflection on the moral dimensions of social structures, systems, issues, and communities.

- 1.1 Ethical Accountability
- 1.2 Society & Ethics
- 1.3 Rights & Responsibilities

#### UNIT 2: PROFESSIONAL ETHICS - NEED FOR ETHICAL CODES

This unit covers the code of Professional Ethics- it is designed to ensure that students learn the necessary skills that groom them to behave like employees should, one that is socially acceptable and respectful of one another. It establishes the rules for behavior and sends a message to every employee that universal compliance is expected.

- 2.1 Professional Ethics
- 2.2 Ethical Code
- 2.3 Flipped Classroom

#### UNIT 3: PRIVACY

This unit covers "Cyber ethics" - the code of responsible behaviour on the Internet. Just as we are taught to act responsibly in everyday life with lessons such as "Don't take what doesn't belong to you" and "Do not harm others," we must act responsibly in the cyber world as well. The basic rule is "Do not do something in cyberspace that you would consider wrong or illegal in everyday life."

- 3.1 Basics of Cyber Ethics
- 3.2 Privacy
- 3.3 Flipped Classroom

#### UNIT 4: MEDIA AND MEDICAL ETHICS

This unit covers Media and Medical ethics is the best division of applied ethics dealing with the specific ethical principles and standards of media (including broadcast media, film, theatre, the arts, print media and the internet) and medicine (practice of clinical medicine and related scientific research)

- 4.1 Media Ethics
- 4.2 Medical Ethics
- 4.3 Flipped Classroom

#### MODE of DELIVERY

| Questionnaires            | Discussions                                         |
|---------------------------|-----------------------------------------------------|
| Quizzes                   | Skits                                               |
| Case-studies              | <ul> <li>Short Movies/documentaries</li> </ul>      |
| Observations and practice | <ul> <li>Team tasks and individual tasks</li> </ul> |
| Home and classroom        | <ul> <li>Research based tasks</li> </ul>            |
| assignments               | Viva                                                |

#### **Relevant Websites, CD's and Documentaries**

- Value Education website, Http://www.universalhumanvalues.info UPTU website, Http://www.uptu.ac.in
- Story of stuff, Http://www.storyofstuff.com
- Al Gore, As Inconvenient Truth, Paramount Classics ,USA
- Charlie Chaplin, Modern Times, United Artists, USA
- IIT Delhi, Modern Technology-The Untold story-Anand Gandhi, Right Here Right Now, Cyclewala production.

#### Learning Resources:

- 1. PL Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 2. B.L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 3. A.N Tripathy, 2003 Human values, New Age International Publishers.
- 4. EG Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists and Engineers, Oxford University Press.

The break-up of marks for CIE : Internal Tests +Quiz Tests+ Assignments

1

No. of Internal Tests:
 No. of Assignments:

3. No. of Quizzes:

Max. Marks for each Internal Tests: 20

5

- 2 Max. Marks for each Assignments:
- 2 Max. Marks for each Quiz Tests: 5

Duration of Internal Tests : 90 minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### MICROPROCESSORS, MICROCONTROLLER & INTERFACING LAB

#### SYLLABUS FOR B.E. III-SEMESTER

| L:T:P (Hrs./week): :0:2 | SEE Marks : 50 | Course Code: UI21PC311CS  |
|-------------------------|----------------|---------------------------|
| Credits : 1             | CIE Marks : 30 | Duration of SEE : 3 Hours |

|   | COURSE OBJECTIVES                                                                     | 0i<br>st | <b>COURSE OUTCOMES</b><br>In completion of the course,<br>sudents will be able to |
|---|---------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|
| 1 | Implement assembly language programs in 8086 microprocessor, 8051 and ARM controller. | 1        | Implement programs using<br>instruction set of 8086<br>microprocessor.            |
| 2 | Interface I/O devices to<br>Microprocessor and<br>Microcontroller.                    | 2        | Implement programs using macros and sub routines in 8086 microprocessor.          |
|   |                                                                                       | 3        | Develop an application to<br>interface I/O devices with<br>8086 microprocessor.   |
|   |                                                                                       | 4        | Develop an application to<br>interface I/O devices using<br>8051 microcontroller. |
|   |                                                                                       | 5        | Implement assembly language<br>programs using ARM<br>processor.                   |

#### 8086 PROGRAMMING USING MICROPROCESSOR TRAINER KIT

- 1. Execution of basic programs on 8086Microprocessor.
- 2. Programs using different addressing modes.
- 3. Programs using single byte, multi byte, binary, BCD addition and subtraction.
- 4. Programs on searching and sorting.
- 5. Generation of waveforms using DAC interface.
- 6. Interfacing and programming of 8255. (E.g. traffic light controller).
- 7. Interfacing keypad/display unit.

#### 8051 PROGRAMMING

- 8. Execution of basic programs on 8051 Microcontroller.
- 9. Programs on searching and sorting.
- 10. Interfacing Stepper Motor.
- 11. Interfacing LCD Display.
- 12. Interfacing Keypad.
- 13. Execution of basic programs using ARM Processor
- 14. ARM's Barrel Shifter program

#### Learning Resources:

- 1. Douglas V. Hall, Microprocessors and Interfacing, 2ndEdition (2006), McGraw Hill.
- 2. Kenneth J. Ayala, "The 8051 Microcontroller Architecture, Programming and Application", Penram International (2007)
- 3. Marilyn Wolf, Computers as Components: Principles of Embedded Computing System Design, 3rd Edition (2012), Elsevier Morgan Kauffmann Publishers.
- 4. Yu-cheng Liu, Glenn A. Gibson, Microcomputer Systems The 8086/8088 Family -Architecture, Programming and Design 2ndEdition (2011)
- Barry B. Brey, The Intel Microprocessor, 8086/8088,80186/80188, 80286, 80386, 80486, Pentium and Pentium pro-processors – Architecture, Programming and interfacing, 8thEdition (2013), Prentice Hall.
- 6. Ray A.K &Bhurchandhi K.M, Advanced Microprocessor and Peripherals,2ndEdition (2007),TMH.
- 7. http://nptel.ac.in/courses/108107029/

| No. of Internal Tests:                     | 01 | Max. Marks for Internal Test: | 12 |
|--------------------------------------------|----|-------------------------------|----|
| Marks for day-to-day laboratory class work |    |                               | 18 |
| Duration of Internal Test: 2 Hours         |    |                               |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### DATA STRUCTURES LAB

#### SYLLABUS FOR B.E. III-SEMESTER

| L:T:P(Hrs./week): 0:0:2 | SEE Marks : 50 | Course Code: UI21PC321CS  |
|-------------------------|----------------|---------------------------|
| Credits : 1             | CIE Marks : 30 | Duration of SEE : 3 Hours |

|   |                                                                                       | COURSE OUTCOMES                                                                                                                                      |
|---|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | COURSE OBJECTIVES                                                                     | On completion of the course, students                                                                                                                |
|   |                                                                                       | will be able to                                                                                                                                      |
| 1 | Design and analyze linear and nonlinear data structures                               | <ol> <li>Implement insert, delete, search, sort<br/>and traverse operations on array and<br/>linked list</li> </ol>                                  |
| 2 | Acquire programming skills to<br>implement sorting and<br>searching techniques        | 2 Develop applications using stack and queue                                                                                                         |
| 3 | Identify and apply the suitable<br>data structure for the given real<br>world problem | <ol> <li>Apply nonlinear data structures to solve<br/>a problem</li> <li>Implement appropriate sorting<br/>technique for a given data set</li> </ol> |
|   |                                                                                       | 5 Implement hashing techniques to<br>perform dictionary operations                                                                                   |

#### Programming Exercise:

- 1. Implementation of Formula based representation.
- 2. Implementation of Singly Linked List, Doubly Linked List and Circular Linked List.
- 3. Implementation of Polynomial Arithmetic using Linked List.
- 4. Implementation of String Matching algorithms.
- 5. Implementation of Stacks, Queues. (Using both Arrays and Linked Lists)
- 6. Implementation of Infix to Postfix Conversion, Postfix Expression Evaluation.
- 7. Implementation of Recursive and Iterative Traversals on Binary Tree.
- 8. Implementation of Binary Search Tree.
- 9. Implementation of Operations on Binary Tree (Delete Entire Tree, Copy Entire Tree, Mirror Image, Level Order, Search for a Node etc.)
- 10. Implementation of Traversal on Graphs.
- 11. Implementation of Selection, Merge, Quick, Heap, and Insertion Sort.
- 12. Implementation of Binary Search and Hashing

- 13. Implementation of operations on AVL Trees.
- 14. Implementation of B-Trees.
- 15. Develop application using appropriate data structures.

#### Learning Resources:

- 1. Horowitz E, Sahni S and Susan Anderson-Freed, Fundamentals of Data structures in C, 2nd Edition(2008), Universities Press
- 2. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition(2002), Pearson
- 3. Kushwaha D. S and Misra A.K, Data structures A Programming Approach with C, Second Edition(2014), PHI.,
- 4. Gilberg R. F and Forouzan B. A, Data structures: A Pseudocode Approach with C, Second Edition(2007), CengageLearning
- 5. Tanenbaum A. M ,Langsam Y. Augenstein M. J, Data Structures using C, Second Edition (2008), Pearson.
- 6. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, Introduction to Algorithms, Third Edition(2009), MIT Press
- 7. YedidyahLangsam , Moshe J. Augenstein , Aaron M. Tenenbaum, Data Structures Using C and C++, Second Edition(2009), PHI
- 8. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006introduction-to-algorithms-fall-2011/lecture-videos
- 9. http://nptel.ac.in/courses/106106127/
- 10. http://www.nptel.ac.in/courses/106102064

| No. of Internal Tests:                     | 01 | Max. Marks for Internal Test: | 12 |
|--------------------------------------------|----|-------------------------------|----|
| Marks for day-to-day laboratory class work |    |                               | 18 |
| Duration of Internal Test: 2 Hours         |    |                               |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### **OBJECT ORIENTED PROGRAMMING LAB**

SYLLABUS FOR B.E. III-SEMESTER

| L:T:P(Hrs./week):0:0:2 | SEE Marks: 50  | Course Code: UI21PC331CS  |
|------------------------|----------------|---------------------------|
| Credits : 1            | CIE Marks : 30 | Duration of SEE : 3 Hours |

|   |                                                                                  | COURSE OUTCOMES                                                                                                                                                                                                                                                        |
|---|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | COURSE OBJECTIVES                                                                | On completion of the course,                                                                                                                                                                                                                                           |
|   |                                                                                  | students will be able to                                                                                                                                                                                                                                               |
| 1 | Implement object oriented system<br>development using Java<br>constructs         | 1 Implement a use-case using OOP<br>concepts                                                                                                                                                                                                                           |
| 2 | Develop robust Java application<br>applying right data structures<br>and streams | <ol> <li>2 Develop applications using multi<br/>threaded programming</li> <li>3 Implement I/O operations using<br/>console and file streams</li> <li>4 Apply collection framework to<br/>implement a given scenario</li> <li>5 Apply functional programming</li> </ol> |
|   |                                                                                  | constructs                                                                                                                                                                                                                                                             |

#### Programming Exercise:

- 1. A program to illustrate the concept of class with constructors, methods and overloading.
- 2. A program to illustrate the concept of inheritance and dynamic Polymorphism
  - A program oil lustrate the usage of abstract class & Interface
- 3. A program to create Packages.
- 4. A program to illustrate Exception Handling.
- 5. A program to illustrate Thread Synchronization.
- 6. A program to work on strings using String classes.
- 7. A program to illustrate the usage of Filter and Buffered I/Ostreams
- 8. A program to demonstrate Serialization and Deserialization
- 9. A program using List & Set interfaces, Iterator & List Iterator
- 10. A program using Mapinterface, Date, Calendar & Timer.
- 11. A program to implement object comparison using comparator
- 12. A program to implement Lambda Functions
- 13. A program to implement Stream API

#### With effect from the Academic Year 2022-23

- 14. A program to demonstrate usage of Regular Expressions
- 15. A program to implement event handling using JFrame

#### Learning Resources:

- 1. Herbert Schildt, The Complete Reference Java, 10th Edition, Tata McGraw Hill 2018.
- 2. Joshua Bloch, Effective Java, 3<sup>rd</sup> Edition, Pearson, 2017
- 3. TimothyBudd, An introduction to Object-Oriented Programming, 3rd Edition, Pearson Education, 2008
- Eric Freeman, Bert Bates, Kathy Sierra, Head First Design Patterns: A Brain-Friendly Guide, 1<sup>st</sup> Edition, O'Reilly, 2016
- 5. P. RadhaKrishna, Object Oriented Programming through Java, UniversitiesPress, 2007.
- 6. Sachin Malhotra, Saurabh Choudhary, ProgramminginJava,2<sup>nd</sup>Edition,Oxford Press,2014.
- 7. https://docs.oracle.com/javase/tutorial/java

| No. of Internal Tests:                     | 01 | Max. Marks for Internal Test: | 12 |  |  |
|--------------------------------------------|----|-------------------------------|----|--|--|
| Marks for day-to-day laboratory class work |    |                               |    |  |  |
| Duration of Internal Test: 2 Hours         |    |                               |    |  |  |

#### VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) SCHEME OF INSTRUCTION AND EXAMINATION(R-21) FOR B.E BRIDGE COURSE III SEMESTER (A.Y 2022-23)

|                                | B.E III Sem                     | ester                    |   |   |                       |               |     |      |  |
|--------------------------------|---------------------------------|--------------------------|---|---|-----------------------|---------------|-----|------|--|
| Course Code Name of the Course |                                 | Scheme of<br>Instruction |   |   | Scheme of Examination |               |     |      |  |
|                                |                                 | Hours per Week           |   |   | Duration in           | Maximum Marks |     | lits |  |
|                                |                                 | L                        | т | Р | Hrs                   | SEE           | CIE | Crec |  |
|                                | THEORY                          |                          |   |   |                       |               |     |      |  |
| UB21BS300MA                    | Matrix Theory & Vector Calculus | 2                        | - | - | 3                     | 50            | -   | -    |  |
| UB21ES310CS                    | Computer Programming            | 2                        | - | - | 3                     | 50            | -   | -    |  |
|                                | TOTAL                           | 4                        | - | - | -                     | 100           | -   | -    |  |
|                                | GRAND TOTAL                     |                          |   |   |                       | 10            | 00  |      |  |

#### VASAVICOLLEGEOFENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD- 500031

#### **DEPARTMENT OF MATHEMATICS**

#### MATRIX THEORY & VECTOR CALCULUS

BRIDGE COURSE FOR B.E. III-SEMESTER (For CSE, EEE, ECE & IT)

| L:T:P (Hrs./week): 2:0:0 | SEE Marks : 50 | Course Code : UB21BS300MA |
|--------------------------|----------------|---------------------------|
| Credits :                | CIE Marks :    | Duration of SEE : 3 Hours |

#### UNIT-I: (4 Hours) DIFFERENTIATION & INTEGRATION

Differentiation of standard functions(Formulae) - Partial Derivatives – Derivative of Composite functions and Implicit functions - Chain Rule - Total Derivative Integration - Elementary Integration – Integration of standard functions-Methods of Integration-Integration by substitution- Integration by parts.

#### UNIT – II (6 Hours) VECTOR DIFFERENTIATION

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface - Directional Derivative – Divergence and Curl of a Vector field - Conservative vector field.

#### UNIT – III (6 Hours) VECTOR INTEGRATION

Line, Surface and Volume integrals- Green's Theorem – Gauss Divergence theorem - Stokes's Theorem. (all theorems without proof).

#### UNIT- IV(8 Hours) MATRIX THEORY

Rank of matrix- Echelon form - -System of Linear Equations- Consistency of Homogeneous and Non-homogeneous system of equations- Eigen values and Eigen Vectors.

#### Suggested Books:

- 1. B.S. Grewal, Higher Engineering Mathematics
- Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House

#### VASAVICOLLEGEOFENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD- 500031

#### **Department of Computer Science & Engineering**

#### COMPUTER PROGRAMMING

SYLLABUS FOR BRIDGE COURSE B.E. III-SEMESTER

| L:T:P (Hrs./week): 2:0:0 | SEE Marks : 50 | Course Code : UB21ES310CS |
|--------------------------|----------------|---------------------------|
| Credits :                | CIE Marks :    | Duration of SEE : 3 Hours |

|    |                         |    | COURSE OUTCOMES                         |
|----|-------------------------|----|-----------------------------------------|
|    | COURSE OBJECTIVES       | Or | completion of the course, students will |
|    |                         | be | able to                                 |
| 1. | Acquire problem solving | 1. | Design flowcharts and algorithms for    |
|    | skills                  |    | solving a problem and choose            |
| 2. | Develop flow charts     |    | appropriate data type for writing       |
| 3. | Understand structured   |    | programs in C language                  |
|    | programming concepts    | 2. | Design modular programs involving       |
| 4. | Write programs in C     |    | input output operations, decision       |
|    | Language                |    | making and looping constructs           |
|    |                         | 3. | Apply the concept of arrays for         |
|    |                         |    | storing, sorting and searching data     |
|    |                         | 4. | Apply the concept of pointers for       |
|    |                         |    | dynamic memory management and           |
|    |                         |    | string handling                         |
|    |                         | 5. | Design programs to store data in        |
|    |                         |    | structures and files                    |

#### UNIT-I

**Introduction to Computers:** Computer Systems, Computing Environments, Computer Languages, Creating and Running Programs, Flowcharts.

**Introduction to C Language**- Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Expressions, Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion, Statements, Bitwise Operators.

#### UNIT-II

**Selection:** Logical Data and Operators, if... else, switch Statements, Standard Functions.

**Repetition:** Loops, while, for, do-while Statements, Loop Examples, break, continue, goto.

**Functions:** Designing Structured Programs, Functions Basics, User Defined Functions.

#### UNIT-III

**Recursion**-Recursive Functions, Preprocessor Commands.

**Arrays:** Two-Dimensional Arrays, Linear Search and Binary Search, Selection Sort and Bubble Sort.

#### UNIT-IV

**Pointers:** Introduction, Pointers to Pointers, Arithmetic operations using pointers

**Strings** – Concepts, C Strings, String Input/output, Functions, Arrays of Strings, String Manipulation Functions.

#### UNIT-V

**Structure:** Definition and Initialization of Structures, Accessing Structures, Nested Structures, Arrays of Structures, Structures and Functions, Pointers to Structures, Unions.

**Input and Output:** Files, Streams, Standard Library Input/Output Functions, Character Input/Output Functions.

#### Learning Resources:

- 1. B. A. Forouzan& Richard F. Gilberg, "A Structured Programming Approach using C", 3rd Edition, Cengage Learning, 2013.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall, 2006.
- 3. Rajaraman V, "The Fundamentals of Computer", 4th Edition, Prentice-Hall of India, 2006.
- 4. Steve Oualline, "Practical C Programming", 3rd Edition, O'Reilly Press.
- 5. Jeri R. Hanly, Elliot B. Koffman, "Problem Solving and Program Design in C", 5th Edition, Pearson Education, 2007.
- 6. E. Balagurusamy, "Programming in ANSI C", 4th Edition, TMG, 2008.
- 7. Gottfried, "Programming with C", 3<sup>rd</sup> Edition, TMH, 2010.
- 8. R G Dromey, "How to Solve it by Computer", 1st Edition, Pearson Education, 2006.

#### VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) SCHEME OF INSTRUCTION AND EXAMINATION(R-21) FOR B.E 2021-22 ADMITTED BATCH IV SEMESTER (A.Y. 2022-23)

| B.E (CSE) IV Semester                                                                                                                                                                                                                          |                                                   |                          |          |      |                       |            |             |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|----------|------|-----------------------|------------|-------------|------|
|                                                                                                                                                                                                                                                |                                                   | Scheme of<br>Instruction |          |      | Scheme of Examination |            |             |      |
| Course Code                                                                                                                                                                                                                                    | Name of the Course                                |                          | rs per \ | Neek | Duration in           | Maxi<br>Ma | mum<br>irks | its  |
|                                                                                                                                                                                                                                                |                                                   |                          | т        | P/D  | Hrs                   | SEE        | CIE         | Cred |
|                                                                                                                                                                                                                                                | THEORY                                            |                          |          |      |                       |            |             |      |
| UI21BS430MA                                                                                                                                                                                                                                    | Transform Techniques, Probability & Statistics    | 3                        | -        | -    | 3                     | 60         | 40          | 3    |
| UI21PC420CS                                                                                                                                                                                                                                    | Database Management Systems                       | 3                        | -        | -    | 3                     | 60         | 40          | 3    |
| UI21PC430CS                                                                                                                                                                                                                                    | Operating Systems                                 | 3                        | -        | -    | 3                     | 60         | 40          | 3    |
| UI21PC440CS                                                                                                                                                                                                                                    | Design and Analysis of Algorithms                 | 3                        | -        | -    | 3                     | 60         | 40          | 3    |
| UI21PC450CS                                                                                                                                                                                                                                    | Machine Learning                                  | 3                        | -        | -    | 3                     | 60         | 40          | 3    |
| UI210E4XXXX                                                                                                                                                                                                                                    | Open Elective-II                                  | 3                        | -        | -    | 3                     | 60         | 40          | 3    |
| UI21BS430MA                                                                                                                                                                                                                                    | Skill Development Course -III (Aptitude-II)       | 1                        | -        | -    | 2                     | 40         | 30          | 1    |
| UI21PE430CS                                                                                                                                                                                                                                    | Skill Development Course -IV (Technical Skills-I) | 1                        | -        | -    | 2                     | 40         | 30          | 1    |
|                                                                                                                                                                                                                                                | PRACTICALS                                        |                          | -        |      | -                     |            |             |      |
| UI21PC421CS                                                                                                                                                                                                                                    | Database Management Systems Lab                   | -                        | -        | 2    | 3                     | 50         | 30          | 1    |
| UI21PC431CS                                                                                                                                                                                                                                    | Operating Systems Lab                             | -                        | -        | 2    | 3                     | 50         | 30          | 1    |
| UI21PC441CS                                                                                                                                                                                                                                    | Design and Analysis of Algorithms Lab             | -                        | -        | 2    | 3                     | 50         | 30          | 1    |
|                                                                                                                                                                                                                                                | TOTAL 20 - 6 590 390 23                           |                          |          |      |                       |            | 23          |      |
| GRAND TOTAL 26 980                                                                                                                                                                                                                             |                                                   |                          |          |      |                       |            |             |      |
| Student should acquire one online course certification equivalent to two credits during III Sem to VII Sem<br>Left over hours are allocated for Extra Curricular Activities, Co-Curricular Activities, Sports / Library / Mentor Interaction / |                                                   |                          |          |      |                       |            |             |      |
|                                                                                                                                                                                                                                                |                                                   |                          |          |      |                       |            |             |      |

#### VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF MATHEMATICS TRANSFORM TECHNIQUES, PROBABILITY & STATISTICS

#### SYLLABUS FOR B.E. IV-SEMESTER

| L :T:P(Hrs/week): 3:0:0 | SEE Marks :60 | Course Code: UI21BS430MA  |
|-------------------------|---------------|---------------------------|
| Credits :3              | CIE Marks :40 | Duration of SEE : 3 Hours |

|                                                                                                                                                                |                                 | COURSE OUTCOMES                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COURSE OBJECTIVES                                                                                                                                              |                                 | <i>On completion of the course, students will be able to</i>                                                                                                                            |
| <ol> <li>Study the Fourier ser<br/>conditions for expansion<br/>function and half range series</li> </ol>                                                      | ies,<br>of                      | <ol> <li>Expand any function which is<br/>continuous, Discontinuous, even or<br/>odd in terms of its Fourier series.</li> </ol>                                                         |
| <ol> <li>Study the concept of Four<br/>Sine, Cosine and inverse Fou<br/>Transform Sine and Cos<br/>transform of a function and vari<br/>properties.</li> </ol> | rier, 2<br>irier<br>sine<br>ous | 2. <b>Determine</b> Fourier transform,<br>Fourier sine and cosine transform<br>and inverse Fourier, Sine and Cosine<br>transform of a function.                                         |
| <ol> <li>Study various methods of test<br/>large samples</li> </ol>                                                                                            | ting                            | 3. <b>Infer</b> properties of population conducting tests on samples                                                                                                                    |
| <ol> <li>Analyze standard statistical te<br/>employed for small samples</li> </ol>                                                                             | ests                            | <ol> <li>Categorize population based on tests on small samples</li> </ol>                                                                                                               |
| <ol> <li>Understand fitting of a straigh<br/>line to a given data and measur<br/>Correlation between variables</li> </ol>                                      | t !<br>ing                      | 5. <b>Solve</b> problems on fitting of a straight line to the given data and also to find co-efficient of correlation and to determine regression lines and their application problems. |

#### UNIT-I:

**Fourier series:** Introduction to Fourier series – Conditions for a Fourier expansion – Functions having points of discontinuity – Change of Interval - Fourier series expansions of even and odd functions - Fourier Expansion of Half- range Sine and Cosine series.

#### UNIT-II:

**Fourier Transforms:** Fourier Integral Theorem (without Proof) - Fourier Transforms – Inverse Fourier Transform - Properties of Fourier Transform – Fourier Cosine & Sine Transforms.

#### UNIT-III:

#### Probability Distribution:

Random Variables - Discrete and Continuous Random variables-Properties-Distribution functions and densities - Normal Distribution-Properties-Standard Normal Variate..

#### UNIT-IV:

#### Test of Hypothesis

Introduction -Testing of Hypothesis- Null and Alternative Hypothesis -Errors- -Level of Significance-Confidence Intervals -Tests of Significance for small samples - t-test for single mean - F- test for comparison of variances - Chisquare test for goodness of fit..

#### UNIT-V:

#### **Regression & Correlation:**

The Method of Least Squares - Fitting of Straight line of Straight line- Second order curve (parabola) - Exponential Curve-Correlation – Karl Pearson's Coefficient of Correlation

#### Learning Resources:

- 1. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

#### Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.
- 3. Fundamentals of Mathematical Statistics, Gupta & Kapoor, Sultan chand & sons, New Delhi.

#### Online Resources :

- 1 http://mathworld.wolfram.com/topics
- 2 http://www.nptel.ac.in/course.php

With effect from the Academic Year 2022-23

| The b  | reak-up of CIE: Internal | Tests + | - Assignments + Quizzes              |   |    |  |
|--------|--------------------------|---------|--------------------------------------|---|----|--|
| 1      | No. of Internal Tests    | : 2     | Max. Marks for each<br>Internal Test | : | 30 |  |
| 2      | No. of Assignments       | : 3     | Max. Marks for each<br>Assignment    | : | 5  |  |
| 3      | No. of Quizzes           | : 3     | Max. Marks for each Quiz<br>Test     | : | 5  |  |
| Durati | ion of Internal Tests    | : 1     | Hour 30 Minutes                      |   |    |  |

#### VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### DATABASE MANAGEMENT SYSTEMS

SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P(Hrs./week):3:0:0 | SEE Marks:60 | Course Code: UI21PC420CS  |
|------------------------|--------------|---------------------------|
| Credits: 3             | CIE Marks:40 | Duration of SEE : 3 Hours |

|                                                                                                   |                            | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COURSE OBJECTI                                                                                    | VES                        | On completion of the course, students will be                                                                                                                                                                                                                                                                   |
|                                                                                                   |                            | able to                                                                                                                                                                                                                                                                                                         |
| <ol> <li>Identify issues inv<br/>in the design<br/>implementation<br/>database system.</li> </ol> | volved<br>and<br>of a      | 1 Identify the functional components of database<br>management system. Design conceptual data<br>model using Entity Relationship Diagram.                                                                                                                                                                       |
| 2 Understand trans<br>processing, concur<br>control and rec<br>techniques.                        | action<br>rrency<br>covery | <ol> <li>2 Transform a conceptual data model into a relational model.</li> <li>3 Apply normalization techniques in database design.</li> <li>4 Apply indexing and hashing techniques for effective data retrieval.</li> <li>5 Analyze strategies for managing security, backup and recovery of data.</li> </ol> |

#### UNIT-I:

**Introduction:** Database System Application, Purpose of Database Systems, View of Data, Database Languages, Relational Database, Database Design, Data Storage and Querying, Data Mining and Information retrieval, Database Architecture, Database Users and Administrators.

**Database Design and E-R Model:** Overview of the Design Process, The E-R Model, Constraints, E-R Diagrams, E-R Design Issues, Extended E-R features, Reduction to Relational Schemas.

#### UNIT-II:

**Relational Model:** Structure of Relation Database, Fundamental Relational Algebra Operations, Additional Relational Algebra Operations, Extended Relational Algebra Operations, Modification of the Database, Relational Calculus.
**Structured Query Language:** Introduction, Basic Structure of SQL Queries, Set Operations, Additional Basic Operations, Aggregate Functions, Null Values, Nested Sub queries, Views, Join Expression.

#### UNIT-III:

**Advanced SQL:** SQL Data Types, Integrity constraints Authorization, Functions and Procedural Constructs, Recursive Queries, Triggers, JDBC, ODBC and Embedded SQL.

**Relational Database Design:** Features of Good Relational Designs, Atomic Domains and first Normal form, Decomposition Using Functional Dependencies, functional Dependency Theory and Decomposition using Multivalue Dependencies

#### UNIT-IV:

**Indexing and Hashing: Basic** Concepts, Ordered Indices, B+ Tree Index Files, B-Tree Files, Multiple – Key Access, Static Hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing.

**Transaction Management:** Transaction concept, Storage Structure, Transaction Atomicity and Durability, Transaction Isolation and Atomicity, Serializability, Recoverability.

#### UNIT-V:

**Concurrency Control:** Lock Based Protocols, Timestamp – Based Protocols Validation Based Protocols, Deadlock Handling.

**Recovery System:** Failure Classification, Storage Structure Recovery and Atomicity, Log Based Recovery, Advanced Recovery Techniques and Remote Backup Systems.

#### Learning Resources:

- 1. Abraham Silberschatz, Henry F Korth, Sudharshan S, Database System Concepts, 6th Edition(2011), McGraw-Hill International Edition.
- 2. Date CJ, Kannan A, Swamynathan S, An Introduction to Database System , 8th Edition(2006) Pearson Education.
- 3. Raghu Ramakrishna, and Johannes Gehrke, Database Management Systems, 3rd Edition(2003), McGraw Hill.
- 4. RamezElmasri, Durvasul VLN Somyazulu, Shamkant B Navathe, Shyam K Gupta, Fundamentals of Database Systems, 4th Edition(2006), Pearson Education.
- 5. Peter Rob, Carlos coronel, Database Systems, (2007), Thomoson.
- 6. http://nptel.ac.in/courses/106106093/

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1   | No. of Internal Tests   | :   | 2     | Max. Marks for each Internal<br>Test | : | 30 |   |
|-----|-------------------------|-----|-------|--------------------------------------|---|----|---|
| 2   | No. of Assignments      | :   | 3     | Max. Marks for each<br>Assignment    | : | 5  |   |
| 3   | No. of Quizzes          | : [ | 3     | Max. Marks for each Quiz Test        | : | 5  | l |
| Dur | ation of Internal Tests | :   | 1 Ηοι | r 30 Minutes                         |   |    |   |

# VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

#### **Department of Computer Science & Engineering**

#### **OPERATING SYSTEMS**

#### SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks: 60  | Course Code: UI21PC430CS  |
|--------------------------|----------------|---------------------------|
| Credits : 3              | CIE Marks : 40 | Duration of SEE : 3 Hours |

|   | COURSE OBJECTIVES                                                                                       | <b>COURSE OUTCOMES</b><br>On completion of the course, students<br>will be able to                                                                                                    |
|---|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Understand Operating<br>system Structures, Services<br>and threading models                             | 1 Explain Operating system<br>structures and internal structure<br>of a process and operations on a<br>process.                                                                       |
| 2 | Learn operating system<br>services by considering case<br>studies such as Linux,<br>Windows and Android | <ul> <li>Compare CPU scheduling<br/>algorithms and apply contiguous<br/>&amp; non- contiguous techniques for<br/>main memory management.</li> </ul>                                   |
|   |                                                                                                         | 3 Design solutions for classical<br>synchronization problems and<br>describe deadlock handling<br>methods                                                                             |
|   |                                                                                                         | 4 Explain file system<br>Implementation and device<br>management                                                                                                                      |
|   |                                                                                                         | 5 Explain I/O operation<br>implementation techniques and<br>apply Access matrix for system<br>protection. Describe the features<br>of Linux, Windows and Android<br>Operating systems |

#### UNIT-I:

**Introduction to operating systems:** Definition, User view and System view of the Operating system, Computer- system organization, Computer-system architecture, Operating system structure, Operating system operations, Operating system services, System calls

**Process**: Process concept, Process Scheduling, Operations on process, Interprocess communication, Threads, Multithreading Models, Multicore programming.

#### UNIT-II:

**CPU Scheduling:** Scheduling Criteria, Scheduling Algorithms, Multiprocessor scheduling.

**Memory Management**: Swapping, Contiguous memory allocation, Paging, Segmentation, Structure of the page table.

Virtual memory: Demand paging, Page replacement Algorithms, Thrashing.

#### UNIT –III:

**Process synchronization:** The critical Section problem, Peterson's solution, Synchronization Hardware, Semaphores, Classic problems of Synchronization, Monitors.

**Deadlocks**: System model, deadlock characterization, Methods for handling deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from deadlock.

#### UNIT –IV:

File System Interface: File Concept, Access Methods, Directory and Disk Structure

**File System Implementation**: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, Free Space management.

**Device Management**: Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, Swap Space Management, RAID structure.

#### UNIT-V:

**I/O System**: I/O hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O request to hardware operation.

**Protection**: Goals of protection, Principles of protection, Domain of protection, Access matrix, Implementation of Access matrix

**Case Studies**: Linux System: Design Principles, Process Management, Scheduling

Windows - Design Principles, System components ,File system Android: Architecture, Activity and Service life cycle.

#### Learning Resources:

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, *Operating System Concepts*, 9<sup>th</sup> Edition (2016), Wiley India.
- 2. Andrew S. Tanenbaum, *Modern Operating Systems*, 2<sup>nd</sup> Edition (2001), Pearson Education, Asia.
- Dhananjay, Dhamdhere.M, Operating System-concept based approach, 3<sup>rd</sup> edition (2009), Tata McGraw Hill, Asia
- 4. Robet Love: Linux Kernel Development, (2004) Pearson Education
- 5. Richard Stevens, Stephen Rago, *Advanced Programming in the UNIX Environment*, 3rd Edition(2013), Pearson Education
- 6. http://web.stanford.edu/~ouster/cgi-bin/cs140-spring19/index.php

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1   | No. of Internal Tests   | : | 2 Max. Marl<br>Test     | ks for each Internal | : | 30 |
|-----|-------------------------|---|-------------------------|----------------------|---|----|
| 2   | No. of Assignments      | : | 3 Max. Marl<br>Assignme | ks for each<br>nt    | : | 5  |
| 3   | No. of Quizzes          | : | 3 Max. Marl<br>Test     | ks for each Quiz     | : | 5  |
| Dur | ation of Internal Tests | : | 1 Hour 30 Minu          | tes                  |   |    |

#### VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### DESIGN AND ANALYSIS OF ALGORITHMS

SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P (Hrs./week):3:0:0 | SEE Marks:60 | Course Code: UI21PC440CS  |
|-------------------------|--------------|---------------------------|
| Credits : 3             | CIE Marks:40 | Duration of SEE : 3 Hours |

|   | COURSE OBJECTIVES                                                                  | <b>COURSE OUTCOMES</b><br>On completion of the course, students<br>will be able to                                                                                                                                                                                                                                                                                   |                       |
|---|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1 | Analyze the asymptotic<br>performance of algorithms                                | 1 Compare asymptotic behavior o<br>functions derived from algorithms                                                                                                                                                                                                                                                                                                 | of                    |
| 2 | Apply algorithm design<br>strategies to solve science and<br>engineering problems. | <ol> <li>Apply divide &amp; conquer and greedy<br/>algorithmic design paradigms to<br/>solve problems</li> <li>Design algorithms using Dynamic<br/>Programming strategy</li> <li>Design algorithms for problems using<br/>backtracking and branch &amp; bound<br/>algorithm design techniques</li> <li>Identify the complexity class of<br/>given problem</li> </ol> | y<br>o<br>g<br>d<br>a |

#### UNIT – I:

Introduction: Introduction to Algorithm, algorithm specification.

**Performance analysis**: space complexity, time complexity. Asymptotic notations, amortized analysis, Masters theorem.

#### UNIT – II:

**Divide and Conquer:** General method, Binary search, finding maximum and minimum, Merge sort, Quick sort, Expected Running Time of Randomized Quick Sort, Strassen's Matrix Multiplication Algorithm, Karatsuba's large Integer Multiplication.

**The Greedy Method:** The general method, Knapsack problem, Job sequencing with deadlines, Minimum cost spanning trees, Optimal Storage on Tapes, Optimal Merge Patterns, Single Source Shortest Path, Ford–Fulkerson algorithm for Maximum flow problem.

**UNIT – III: Dynamic Programming:** The general method, Matrix-chain multiplication problem, Multistage graph, All Pairs Shortest Paths, Optimal Binary Search Trees (OBST), 0/1 Knapsack, Reliability Design, Traveling Salesman Problem, Bi-connected Components and DFS, Longest Common Subsequence (LCS) problem.

#### UNIT – IV:

**Backtracking:** General method, the 8-Queens Problem, Graph Coloring, Hamiltonian Cycles, Knapsack Problem.

**Branch and Bound:** The method, 0/1 Knapsack problem, Traveling Salesperson problem.

**UNIT – V: NP-Hard and NP-Complete problems:** Tractable and intractable problems, Non-Deterministic search and sorting, classes P, NP, NP-Complete, NP-Hard, Satisifiability (SAT), Cook's theorem, reductions, Procedure for NP-Complete, Clique Decision Problem,Traveling Salesperson problem, Approximation algorithm for Vertex Cover Problem, Set Cover Problem.

#### Learning Resources:

- 1. Ellis Horowitz, SartajSahani, SanguthevarRajasekaran," Fundamentals of computer Algorithms", Second edition (2008), Universities Press.
- 2. Thomas H. Cormen, Leiserson C.E, Rivest.R.L , Stein.C, Introduction to Algorithm, 2nd edition (2001), MIT press, USA.
- 3. Michael T. Goodrich, Roberto Tamassia, Algorithm Design, foundations, analysis, and internet examples, WIELEY student edition (2006).
- 4. Aho, Hopcroft, Ulman, The Design and Analysis of Computer Algorithms, (2000), Pearson Education.
- 5. Algorithm Design, 1<sup>st</sup> Edition, Jon Kleinberg and ÉvaTardos, Pearson.

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1  | No. of Internal Tests    | : | 2      | Max. Marks for each Internal Test | : | 30 |
|----|--------------------------|---|--------|-----------------------------------|---|----|
| 2  | No. of Assignments       | : | 3      | Max. Marks for each Assignment    | : | 5  |
| 3  | No. of Quizzes           | : | 3      | Max. Marks for each Quiz Test     | : | 5  |
| Du | ration of Internal Tests | : | 1 Hour | 30 Minutes                        |   |    |

#### VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### MACHINE LEARNING

SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P(Hrs./week):3:0:0 | SEE Marks:60 | Course Code: UI21PC450CS  |
|------------------------|--------------|---------------------------|
| Credits : 3            | CIE Marks:40 | Duration of SEE : 3 Hours |

|                                                                               | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COURSE OBJECTIVE                                                              | On completion of the course,                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                               | students will be able to                                                                                                                                                                                                                                                                                                                                                                              |
| To formulate machine learning<br>problems corresponding to an<br>application. | <ol> <li>Explain the basics of concept<br/>learning and inductive learning.</li> <li>Design decision tree neural network<br/>solve classification problems.</li> <li>Comprehend probabilistic methods<br/>for learning.</li> <li>Explain the instance based learning<br/>and reinforcement learning.</li> <li>Build optimal classifiers using<br/>Genetic Algorithm and deep<br/>learning.</li> </ol> |

#### UNIT-I:

**Introduction:** Well-Posed Learning Problems, Designing a Learning System, Perspectives and Issues in Machine Learning.

**The Concept Learning:** A concept Learning Task, Concept learning as Search : General –to- Specific Ordering of Hypothesis, Find-S: Finding Maximally Specific Hypothesis, Version spaces and the CANDIDATE-ELIMINATION ALGORITHM : Representation, The List-Then-Eliminate Algorithm, Candidate Elimination Learning Algorithm, Inductive bias.

#### UNIT-II:

**Decision Tree Learning:** Introduction, Decision Tree Representation, Approximate Problems for Decision Tree Learning, The Basic Decision Tree Algorithm, Hypothesis space search in Decision Tree Learning, Issues in Decision Tree Learning.

Artificial Neural Networks: Introduction, Neural Network Representation, Perceptrons, Gradient descent and the Delta rule, Multilayer Networks and the

Backpropagation Algorithm, Derivatives of back propagation rule. Back propagation algorithm- Convergence, Generalization.

**Evaluating Hypotheses:** Estimating hypotheses Accuracy, Basics of sampling theory.

#### UNIT-III:

**Bayesian Learning:** Introduction, Bayes Theorem, Concept Learning, Bayes Optimal Classifier, Naïve Bayes Classifier, Bayesian Belief networks, EM algorithm.

**Computational Learning Theory:** Introduction, Probably Learning an Approximately Correct Hypothesis, Sample Complexity for Finite Hypothesis Spaces : E-Exhausting the version space, Sample Complexity for Infinite Hypothesis Spaces : Shattering a set of Instances , The Vapnik-Chervomenkis Dimension

#### UNIT-IV:

**Instance-based Learning:** Introduction, k-Nearest Neighbor Learning , Locally Weighted Regressions, Radial Basis Functions, Case –based learning. **Reinforcement Learning:** Introduction, Learning Task, Q Learning.

#### UNIT-V:

**Genetic Algorithms:** Motivation, Genetic Algorithm-Representing Hypotheses, Genetic Operators, Fitness Function and Selection, An Illustrative Example, Hypothesis Space Search, Genetic programming, Models of Evolution and Learning.

Deep Learning: Convolutional neural networks, recurrent neural networks.

#### Learning Resources:

- 1. Tom Mitchell, —Machine Learning||, McGraw-Hill Science, First edition.
- 2. Christopher Bishop, —Pattern Recognition and Machine learning∥, Springer (2006).
- 3. Stephen Marsland, Machine Learning an algorithmic perspectivell, CRC Press.
- 4. Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville, "Deep learning ", An MIT Press book in preparation (2015).
- 5. Daniela witten, Trevor Hastie Robert Tibshirani and Gareth James, —An introduction to statistical Learning with applications in R, Springer 2013
- 6. https://onlinecourses.nptel.ac.in/noc18\_cs26/preview
- 7. https://www.coursera.org/learn/machine-learning

- 8. http://www.holehouse.org/mlclass
- 9. https://in.udacity.com/course/intro-to-machine-learning--ud120
- 10. https://github.com/JannesKlaas/MLiFC

The break-up of CIE: Internal Tests + Assignments + Quizzes

| 1 | No. of Internal Tests | : 2 Max. Marks for each Internal<br>Test | : | 30 |
|---|-----------------------|------------------------------------------|---|----|
| 2 | No. of Assignments    | : 3 Max. Marks for each<br>Assignment    | : | 5  |
| 3 | No. of Quizzes        | : 3 Max. Marks for each Quiz<br>Test     | : | 5  |
| _ |                       |                                          |   |    |

Duration of Internal Tests : 1 Hour 30 Minutes

### OPEN ELECTIVES OFFERED IN B.E. IV SEMESTER (2022-23)

| Dept  | Title<br>Open Elective-II                             | Code       | credits |
|-------|-------------------------------------------------------|------------|---------|
| CIVIL | Disaster Management                                   | U210E410CE | 3       |
| ГОГ   | Mathematical Programming for Engineers                | U210E410EC | 3       |
| ECE   | Introduction to Communication Systems                 | U210E420EC | 3       |
| EEE   | Mathematical Programming for Numerical<br>Computation | U210E410EE | 3       |
| Mech. | Optimization Methods                                  | U210E410ME | 3       |
| H&SS  | Critical Thinking                                     | U210E430EH | 3       |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

DEPARTMENT OF CIVIL ENGINEERING

#### DISASTER MANAGEMENT (Open Elective-II)

SYLLABUS FOR B.E. IV-SEMESTER

| L : T : P (Hrs./week): 3 : 0 : 0 | SEE Marks:60 | Course Code: U210E410CE |
|----------------------------------|--------------|-------------------------|
| Credits : 3                      | CIE Marks:40 | Duration of SEE: 3 Hrs  |

| COURSE OBJECTIVES                                                                                                                                                                                                                                                                | COURSE OUTCOMES                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objectives of this course are to:                                                                                                                                                                                                                                                | Upon the completion of this course the students will be expected to:                                                                                                                                                                                                       |
| <ol> <li>Know about the state of art of<br/>disaster management in world<br/>and explore the history of the<br/>disasters and comprehend how<br/>past events have helped shape<br/>the future.</li> <li>Study the various natural and<br/>manmade disasters and apply</li> </ol> | <ol> <li>Attain knowledge on various<br/>types, stages, phases in disaster<br/>with international &amp; national<br/>policies and programmes with<br/>reference to the disaster<br/>reduction.</li> <li>Understand various types of<br/>natural disaster, their</li> </ol> |
| the mitigation measures<br>3. Expose students to various<br>technologies used for disaster                                                                                                                                                                                       | occurrence, Effects, Mitigation<br>and Management Systems in<br>India                                                                                                                                                                                                      |
| mitigation and management.                                                                                                                                                                                                                                                       | 3. Understand different types of manmade disasters, their occurrence, Effects, Mitigation and Management Systems in India.                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                  | 4. Explain the utility of geography<br>information systems (GIS),<br>Remote sensing technology in<br>all phases of disaster mitigation<br>and management.                                                                                                                  |
|                                                                                                                                                                                                                                                                                  | 5. Understand the Role of Remote<br>Sensing and Geographical<br>Information Systems (GIS) in<br>Disaster Management                                                                                                                                                        |

#### UNIT-I

**Introduction**: Hazard, vulnerability and risk, Types of disasters, Disaster management cycle, Progress of disaster management in world, vulnerability profile of India, Disaster management act, Disaster management in India

#### UNIT-II

**Natural Disasters – Hydro- meteorological based disasters**: Tropical cyclones, floods, drought and desertification zones - Causes, Types, effects and Mitigation measures.

#### UNIT-III

**Natural Disasters** – **Geographical based disasters**: Earthquake, Tsunamis, Landslides and avalanches – Causes, Types, effects and Mitigation measures.

#### UNIT-IV

**Human induced hazards**: Chemical industrial hazards, major power breakdowns, traffic accidents, etc. UNEP initiative- Ecosystem based disaster risk reduction (Eco-DRR) and Partnership of Environment and Disaster Risk Reduction (PEDDR)

#### UNIT-V

# Role of Remote Sensing and Geographical Information Systems (GIS) in Disaster Management: Introduction to remote sensing and GIS,

its applications in disaster management.

#### Learning Resources:

- 1. Rajib, S and Krishna Murthy, R.R.(2012) "Disaster Management Global Challenges and Local Solutions", Universities Press, Hyderabad, 2012.
- 2. Navele, P & Raja, C.K. (2009), Earth and Atmospheric Disasters Management, Natural and Manmade, B.S. Publications, Hyderabad, 2009.
- 3. Battacharya, T. Disaster Science and Management, Tata McGraw Hill Company, New Delhi, 2012.

#### The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Test: 90 minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### MATHEMATICAL PROGRAMMING FOR ENGINEERS

(OPEN ELECTIVE-II)

SYLLABUS FOR B.E. IV – SEMESTER (for other branches)

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks : 60 | Course Code: U210E410EC   |
|---------------------------|----------------|---------------------------|
| Credits : 3               | CIE Marks : 40 | Duration of SEE : 3 Hours |

| COURSE OBJECTIVES                          | COURSE OUTCOMES                                                                        |
|--------------------------------------------|----------------------------------------------------------------------------------------|
| To provide fundamental                     | On completion of the course, students will be                                          |
| knowledge of                               | able to                                                                                |
| programming language for solving problems. | <ol> <li>Generate arrays and matrices for numerical<br/>problems solving.</li> </ol>   |
|                                            | 2. Represent data and solution in graphical display.                                   |
|                                            | 3. Write scripts and functions to easily execute series of tasks in problem solving.   |
|                                            | <ol> <li>Use arrays, matrices and functions in<br/>Engineering applications</li> </ol> |
|                                            | <ol> <li>Design GUI for basic mathematical<br/>applications.</li> </ol>                |

#### UNIT - I : Introduction:

Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on-line help, file types.

**MATLAB Basics:** Variables and Constants –Vectors and Matrices- Arrays - manipulation- Built-in MATLAB Functions. Creating and printing simple plots, Creating, Saving and Executing a Script File, Creating and Executing a function file.

**Programming Basics:** Data types-Operators – Hierarchy of operations, Relational and logical operators, if-end structure, if-else-end structure, ifelseif-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

#### UNIT - II : Scripts and Functions

Script Files, Function Files, Debugging methods in MATLAB.

**Graphics: Basic 2D plots:** Printing labels- grid and axes box- Entering text in a box- Axis control-Style options-Multiple plots-subplots-specialized 2D plots: stem-,bar, hist, pi, stairs, loglog , semilog ,polar ,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

#### UNIT - III : Numerical Methods Using MATLAB

Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration.

**Linear Equations-** Linear algebra in MATLAB, Solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

#### UNIT - IV : Nonlinear Equations

System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation-Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit, cubic fit using least square method. Finding roots of a polynomial -roots function, Newton-Raphson Method.

#### UNIT - V :

**Solution of Ordinary differential Equations (ODEs)**-The 4<sup>th</sup> order Rungekutta Method, ODE Solvers in MATLAB, Solving First –order equations using ODE23 and ODE45.

**Structures and Graphical user interface(GUI):**Advanced data Objects, How a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

#### Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by Rudra Pratap, Oxford publications.
- Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt. Ltd.
- 3. Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition-Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Math works.
- An Introduction to MATLAB® Programming and Numerical Methods for Engineers 1st Edition by Timmy Siauw Alexandre Bayen, Elsevier-18th April 2014.

- 5. https://nptel.ac.in/courses/103106118/2
- 6. <u>https://www.udemy.com/numerical-methods/</u>

The break-up of CIE : Internal Tests + Assignments + Quizzes

| 1. | No. of Internal Tests : | 2 | Max. Marks for each Internal<br>Test | : | 30 |
|----|-------------------------|---|--------------------------------------|---|----|
| 2. | No. of Assignments :    | 3 | Max. Marks for each<br>Assignment    | : | 5  |
| 3. | No. of Quizzes :        | 3 | Max. Marks for each Quiz<br>Test     | : | 5  |

Duration of Internal Tests: 90 Minutes

### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### INTRODUCTION TO COMMUNICATION SYSTEMS

(OPEN ELECTIVE-II)

SYLLABUS FOR B.E. IV – SEMESTER (for other branches)

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks : 60 | Course Code: U210E420EC   |
|---------------------------|----------------|---------------------------|
| Credits : 3               | CIE Marks : 40 | Duration of SEE : 3 Hours |

|    | COURSE OBJECTIVES                |    | COURSE OUTCOMES                 |
|----|----------------------------------|----|---------------------------------|
| 1. | Distinguish between Amplitude    | On | completion of the course,       |
|    | and Frequency modulation         |    | students will be able to        |
|    | methods and their application in | 1. | Identify the Radio frequency    |
|    | Communication Receivers          |    | spectrum and the bands of       |
| 2. | Explain why multiplexing         |    | different types of radio        |
|    | methods are necessary in         |    | systems                         |
|    | communications and compare       | 2. | Analyze the power, efficiency   |
|    | FDM with TDM                     |    | and transmission bandwidth      |
| 3. | Compare and contrast FSK and     |    | of Amplitude and Frequency      |
|    | BPSK modulation schemes          |    | Modulated signals.              |
|    | employed in digital data         | 3. | Convert the Radio frequency     |
|    | transmission                     |    | to Intermediate frequency       |
| 4. | Draw the block diagrams of       |    | and explain the operation of    |
|    | different types of communication |    | Superheterodyne Receiver.       |
|    | systems and explain their        | 4. | Compare and contrast            |
|    | operation                        |    | Frequency Division              |
|    |                                  |    | Multiplexing and Time Division  |
|    |                                  |    | Multiplexing used in the        |
|    |                                  |    | Communication systems           |
|    |                                  | 5. | Detect and correct errors       |
|    |                                  |    | present in bit stream data      |
|    |                                  |    | using parity check              |
|    |                                  | 6. | Explain the basic principles of |
|    |                                  |    | different types of              |
|    |                                  |    | communication systems.          |

#### UNIT - I :

**Introduction to Electronic Communication:** Communication systems, Types of Electronic Communication, Modulation and Multiplexing, The Electromagnetic Spectrum, Bandwidth, Communication Applications, Gain and Attenuation definitions

**Amplitude Modulation Fundamentals**: AM concepts, Modulation Index and Percentage of Modulation, Sidebands and the Frequency Domain, AM Power

#### UNIT - II :

**Fundamentals of Frequency Modulation:** Basic principles of Frequency Modulation, Principles of Phase Modulation, Modulation Index and Sidebands, Noise – Suppression Effects of FM, Frequency Modulation verses Amplitude Modulation.

**Communication Receivers**: Basic Principles of Signal Reproduction, Superheterodyne Receivers, Frequency Conversion, Intermediate Frequency and Images, Noise.

#### UNIT - III :

**Digital Communication Techniques:** Digital Transmission of Data, Parallel and Serial Transmission, Data Conversion, Pulse Modulation.

**Multiplexing and De-multiplexing**: Multiplexing Principles, Frequency Division Multiplexing, Time Division Multiplexing, PCM Multiplexing.

#### UNIT - IV :

**Transmission of Binary Data in Communication Systems:** Digital Codes, Principles of Digital Transmission, Transmission Efficiency, Modem Concepts and Methods – FSK, BPSK, Error Detection and Correction

#### UNIT - V :

**Different Types of Communication Systems:** Microwave Concepts, Optical Principles, Optical Communication System, Satellite Communication Systems, Satellite Orbits, Cellular Telephone Systems, Bluetooth and Wi-Fi basics

#### Learning Resources:

- Louis E. Frenzel, Principles of Electronic Communication Systems, 3<sup>rd</sup> Edition. Tata Mcgraw Hill.
- 2. Wayne Tomasi, Electronic Communications Systems, 5<sup>th</sup> Edition, Pearson Education.
- 3. <u>https://nptel.ac.in/syllabus/syllabus.php?subjectId=117102059</u>
- 4. https://nptel.ac.in/courses/117101051/12

The break-up of CIE : Internal Tests + Assignments + Quizzes

| 1. | No. of Internal Tests | : 2 | Max. Marks for each Interna<br>Test | l : | 30 |
|----|-----------------------|-----|-------------------------------------|-----|----|
| 2. | No. of Assignments    | : 3 | Max. Marks for each<br>Assignment   | :   | 5  |
| 3. | No. of Quizzes        | : 3 | Max. Marks for each Quiz<br>Test    | :   | 5  |

Duration of Internal Tests: 90 Minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

#### MATHEMATICAL PROGRAMMING FOR NUMERICAL COMPUTATION

Open Elective-II SYLLABUS FOR B.E. IV SEMESTER

| L: T: P (Hrs/Week):3:0:0 | SEE Marks: 60 | Course Code: U210E410EE  |
|--------------------------|---------------|--------------------------|
| Credits:3                | CIE Marks: 40 | Duration of SEE: 3 Hours |

| <b>COURSE OBJECTIVES</b><br>The course will enable the students to:                  | <b>COURSE OUTCOMES</b><br>On completion of the course, students<br>will be able to                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To provide fundamental knowledge of<br>programming language for solving<br>problems. | <ul> <li>On completion of the course, students will be able to</li> <li>1. Generate arrays and matrices for numerical problems solving.</li> <li>2. Represent data and solution in graphical display.</li> <li>3. Write scripts and functions to easily execute series of tasks in problem solving.</li> <li>4. Use arrays, matrices and functions in Engineering applications</li> <li>5. Design GUI for basic mathematical applications.</li> </ul> |

#### UNIT - I : Introduction:

Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on- line help, file types.

**MATLAB Basics:** Variables and Constants –Vectors and Matrices- Arrays manipulation- Built-in MATLAB Functions. Creating and printing simple plots, Creating ,Saving and Executing a Script File, Creating and Executing a function file.

**Programming Basics:** Data types-Operators – Hierarchy of operations, Relational and logical operators, if-end structure, if- else-end structure, ifelseif-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

#### UNIT - II : Scripts and Functions

Script Files, Function Files, Debugging methods in MATLAB. **Graphics: Basic 2D plots:** Printing labels- grid and axes box- Entering text in a box-Axis control-Style options-Multiple plots- subplots-specialized 2D plots: stem-,bar, hist, pi, stairs, loglog , semilog ,polar ,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

#### UNIT - III : Numerical Methods Using MATLAB

Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration.

**Linear Equations-** Linear algebra in MATLAB, Solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

#### **UNIT - IV : Nonlinear Equations**

System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation-Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit,

cubic fit using least square method. Finding roots of a polynomial - roots function, Newton-Raphson Method.

#### UNIT - V :

**Solution of Ordinary differential Equations(ODEs)**-The 4<sup>th</sup> order Runge-kutta Method, ODE Solvers in MATLAB,Solving First – order equations using ODE23 and ODE45.

**Structures and Graphical user interface(GUI):**Advanced data Objects, How a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

#### Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by Rudra Pratap, Oxford publications.
- Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt. Ltd.
- Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition- Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Math works.
- An Introduction to MATLAB<sup>®</sup> Programming and Numerical Methods for Engineers 1st Edition by Timmy Siauw Alexandre Bayen, Elsevier-18th April 2014.

The break-up of CIE : Internal Tests+Assignments+Quizzes

- 1. No. of Internal Tests
- : 2 Max. Marks for each Internal Test
- 2. No. of Assignments
- : 3 Max. Marks for each Assignment
- 3. No. of Quizzes
- : 3 Max. Marks for each Quiz Test
- Duration of Internal Tests :90 Minutes

| : | 30 |
|---|----|
| : | 5  |
| : | 5  |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF MECHANICAL ENGINEERING

OPTIMIZATION METHODS (Open Elective-II) SYLLABUS FOR B.E. IV-SEMESTER

| Instruction :3Hours /week | SEE Marks : 60 | Course Code: U210E410ME   |
|---------------------------|----------------|---------------------------|
| Credits : 3               | CIE Marks :40  | Duration of SEE : 3 Hours |

| Course Objectives                | Course Outcomes                            |
|----------------------------------|--------------------------------------------|
| The objectives of this course    | On completion of the course, the student   |
| are to:                          | will be able to:                           |
|                                  | 1. Optimization of resources in multi      |
| understand Linear & non-         | disciplinary areas through linear          |
| linear programming,              | programming under different                |
| transportation modeling , CPM    | conditions.                                |
| & PERT for project scheduling    | 2. Understand revised simplex method as    |
| and control, and application of  | per customer requirements to suit for      |
| various optimization             | various Organizations.                     |
| techniques for respective field  | 3. Minimization of total cost to apply for |
| engineering (Inter disciplinary) | transportation techniques for the          |
|                                  | transhipment of Goods and products         |
|                                  | and Implement techniques like project      |
|                                  | management                                 |
|                                  | 4. Optimization of resources in multi      |
|                                  | disciplinary areas through non-linear      |
|                                  | programming under different                |
|                                  | conditions.                                |

#### UNIT-I

#### **Optimization-An overview**

Meaning of Optimization-Origin of Optimization-Introduction to Linear programming problems (LPP) -Formulation of LPP- Graphical method, simplex method.

#### UNIT-II

#### Advanced topics in Linear programming

Special cases in simplex method, Duality in LPP, Differences between primal and dual, shadow prices, Dual simplex method, Revised simplex method.

#### UNIT-III

#### Transportation Model

Introduction to Transportation model-Formulation and solution of transportation models- Methods for calculating Initial basic feasible solution-Optimization of transportation model using MODI method.

#### Project Scheduling

Introduction to network analysis, Rules to draw network diagram, Fulkerson rule for numbering events, Critical path method.

#### UNIT-IV

#### Non linear programming problems

Optimization methods for single variable, multivariable functions, Maxima-Minima

**One Dimensional Minimization:** Uni-modal Function, Unrestricted search, Exhaustive search, Dichtomous search, Interval Halving method, Fibonacci and golden bisection Method, Newton and Quasi Newton method.

#### UNIT-V

**Non Linear - Unconstrained optimization:** classification, Univariate search, pattern Directions, Hook Jeeves, Powel method, steepest decent method.

#### Learning Resources:

- 1. SingiresuS.Rao, "Engineering optimization- Theory and Practice", 4<sup>th</sup>Edition, John Wiley and Sons, 2009.
- 2. NVS Raju, "Optimization methods for Engineers ", PHI Learning Pvt. Ltd., 2014.
- 3. Prem Kumar Gupta and Dr. DS Hira, "Operations Research ", S.Chand& Company Pvt. Ltd., 2014.
- 4. R. Paneerselvam, "Operations Research", PHI Learning Pvt Ltd., 2009.
- 5. Kalyanmoy Deb, Optimization for Engineering Design- algorithms and examples, PHI pvt ltd, 1st edition 2003, Delhi.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

- 1 No. of Internal Tests: 02 Max. Marks for each Internal Test: 30
- 2 No. of Assignments: 03 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05 Duration of Internal Test: 1 Hour 30 Minutes

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

#### **CRITICAL THINKING (Open Elective-II)**

| SYLLABUS FOR B.E IV Semester |         |                             |  |
|------------------------------|---------|-----------------------------|--|
| Instruction : 3 Hours        | SEE : 6 | 0 Course code : U210E430EH  |  |
| Credits : 3                  | CIE : 4 | D Duration of SEE : 3 Hours |  |

| COU | RSE OBJECTIVES                           | CO   | URSE OUTCOMES              |
|-----|------------------------------------------|------|----------------------------|
| The | course will enable the learners to:      | At 1 | the end of the course the  |
| 1.  | Identify the core skills associated with | lea  | rners will be able to: -   |
|     | critical thinking.                       | 1.   | Analyse and compare        |
| 2.  | Comprehend the various techniques        |      | techniques for comparing   |
|     | of critical thinking                     |      | alternate solutions        |
| 3.  | Evaluate data and draw insights from     | 2.   | Demonstrate the difference |
|     | it to make the right decisions           |      | between deductive and      |
| 4.  | Understand where to look for bias        |      | inductive reasoning and    |
|     | and                                      |      | construct logically sound  |
|     | assumptions in problem                   |      | arguments                  |
| 5.  | Understand structure, standards and      | 3.   | Check for accuracy of data |
|     | ethics of critical writing               |      | and use it as a tool for   |
|     |                                          |      | problem solving            |
|     |                                          | 4.   | Evaluate, identify and     |
|     |                                          |      | distinguish between        |
|     |                                          |      | relevant and irrelevant    |
|     |                                          |      | information to formulate a |
|     |                                          |      | thesis or hypothesis.      |
|     |                                          | 5.   | Employ evidence and        |
|     |                                          |      | information effectively    |

#### UNIT 1: COMPONENTS OF CRITICAL THINKING

- 1.1 Applying Reason
- 1.2 Open Mindedness
- 1.3 Analysis
- 1.4 Logic

#### UNIT 2: NON-LINEAR THINKING

- 2.1 Step out of your Comfort Zone
- 2.2 Don't Jump to Conclusions
- 2.3 Expect and Initiate Change
- 2.4 Being Ready to Adapt

#### UNIT 3: LOGICAL THINKING

- 3.1 Ask the Right Questions
- 3.2 Organize Data
- 3.3 Evaluate Information
- 3.4 Draw Conclusions

#### **UNIT 4: INFER MEANING FROM INFORMATIVE TEXTS**

- 4.1 Making Assumptions
- 4.2 Watch out for Bias
- 4.3 Ask Clarifying Questions
- 4.4 SWOT Analysis

#### UNIT 5: PROBLEM SOLVING

- 5.1 Identifying Inconsistencies
- 5.2 Trust your Instincts
- 5.3 Asking Ask?

| METHODOLOGY                        | ASSESSMENTS            |
|------------------------------------|------------------------|
| - Case Studies                     | - Online assignments   |
| - Demonstration                    | - Individual and Group |
| - Presentations                    |                        |
| - Expert lectures                  |                        |
| - Writing and Audio-visual lessons |                        |

#### LEARNING RESOURCES

learn.talentsprint.com

- Calling Bullshit: The Art of Skepticism in a Data-Driven World. by Carl Bergstrom & Jevin West. ...
- 2. Thinking, Fast and Slow. by Daniel Kahneman. ...
- 3. Factfulness: Ten Reasons We're Wrong About The World And Why Things Are Better Than You Think. ...
- 4. Box Thinking: The Surprising Truth About Success. ...

The break-up of CIE : Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test
- 2. No. of Assignments : 3 Max. Marks for each Assignment
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test

Duration of Internal Test: 90 Minutes

| : | 30 |
|---|----|
| : | 5  |
| : | 5  |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING(Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### **DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES**

#### Skill Development Course- III (Aptitude II)

SYLLABUS FOR B. E - IV SEMESTER

| L : T : P (Hrs/Week) : 1:0:0 | SEE Marks : 40 | Course Code: UI21BS430MA  |
|------------------------------|----------------|---------------------------|
| Credits: 1                   | CIE Marks : 30 | Duration of SEE : 2 Hours |

| COU | IRSE OBJECTIVES                         | COI  | JRSE OUTCOMES                |  |
|-----|-----------------------------------------|------|------------------------------|--|
| The | The course will enable the learners to: |      | At the end of the course the |  |
| 1.  | Students will be trained to enhance     | lear | rners will be able to: -     |  |
|     | their employability skills.             | 1.   | Solve questions in the       |  |
| 2.  | Students will be introduced to higher   |      | mentioned areas using        |  |
|     | order thinking and problem solving      |      | shortcuts and smart          |  |
|     | skills in the following areas -         |      | methods.                     |  |
|     | Arithmetic Ability, Numerical Ability   | 2.   | Understand the               |  |
|     | and General Reasoning.                  |      | fundamentals concept of      |  |
| 3.  | Students will be trained to work        |      | Aptitude skills.             |  |
|     | systematically with speed and           | 3.   | Perform calculations with    |  |
|     | accuracy while problem solving.         |      | speed and accuracy.          |  |
| 4.  | Students will be trained to apply       | 4.   | Solve complex problems       |  |
|     | concepts like percentages and           |      | using basic concepts.        |  |
|     | averages to solve complex problems.     | 5.   | Use shortcuts with ease for  |  |
| 5.  | Students will be trained to use         |      | effective problem solving.   |  |
|     | effective methods like elimination of   |      |                              |  |
|     | options and shortcuts to solve          |      |                              |  |
|     | problem accurately.                     |      |                              |  |

#### UNIT 1: QUANTITATIVE APTITUDE- ARITHMETIC ABILITY ADVANCED -1

- 1.1 Time speed and distance
- 1.2 Boats and Streams
- 1.3 Problems on trains

#### UNIT 2: REASONING ABILITY- LOGICAL REASONING

- 2.1 Seating Arrangements- Linear; Circular; Complex
- 2.2 Venn diagrams
- 2.3 Syllogism
- 2.4 Cubes & Cuboids
- 2.5 Dices

#### UNIT 3: REASONING ABILITY- NON VERBAL REASONING

- 3.1 Figure Series
- 3.2 Directions
- 3.3 Clocks
- 3.4 Calendars

#### UNIT 4: QUANTITATIVE APTITUDE- ARITHMETIC ABILITY ADVANCED -2

- 4.1 Mensuration Part -1
- 4.2 Mensuration Part -2
- 4.3 Logarithms

#### UNIT 5: QUANTITATIVE APTITUDE- ENGINEERING MATHEMATICS

- 5.1 Permutations and combinations
- 5.2 Probability

#### Prescribed textbook for theory:

- 1. Quantitative Aptitude S.CHAND by RS AGARWAL
- A Modern Approach to Verbal & Non-Verbal Reasoning S.CHAND by Dr. R S Aggarwal

#### Suggested Reading

- 1. Learn.talentsprint.com/References Courses
- 2. Quantitative Aptitude Disha Publications
- 3. LOGICAL Reasoning Disha Publications

The break-up of CIE: Internal Tests + Assignments + Quizzes



Duration of Internal Tests : 90 Minutes

## VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

Skill Development Course-IV (Technical Skills-I)

#### Industry Standard Coding Practices – 2023

#### SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P (Hrs./week):1:0:0 | SEE Marks : 60 | Course Code: UI21PE430CS  |
|-------------------------|----------------|---------------------------|
| Credits : 1             | CIE Marks : 40 | Duration of SEE : 2 Hours |

| COURSE OBJECTIVES                                                                                                                                                                                                                            | COURSE OUTCOMES<br>On completion of the course,<br>students will be able to                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Understand importance of<br/>problem solving approaches for<br/>programming complex data<br/>structure problems.</li> <li>Understand importance of<br/>optimized solutions for problems<br/>solving and its relevance to</li> </ol> | <ol> <li>Choose suitable non linear data<br/>structure to design a solution to a<br/>problem.</li> <li>Select the hashing technique to<br/>perform dictionary operations.</li> <li>Explain operations on Efficient Binary</li> </ol> |
| <ul><li>industry.</li><li>3. Implement mathematical and logical understanding</li></ul>                                                                                                                                                      | Search Trees and Multiway Search Trees.                                                                                                                                                                                              |
| <ul> <li>approaches to implement test<br/>driven development practices.</li> <li>4. Start participating in global<br/>coding competitions relevant to<br/>the syllabus.</li> </ul>                                                           |                                                                                                                                                                                                                                      |
| 5. Implement Time efficient codes<br>for complex problems using<br>algorithmic approaches                                                                                                                                                    |                                                                                                                                                                                                                                      |

#### Abstract Data-structures: Stacks & Queues

Problem solving using Stacks, Coding solutions for the implementation of stack/queue using an array, Coding solutions for the implementation of stack/queue using a linked list. Problem solving on expression conversion and evaluation, Problem solving implementing stacks &queues

#### Sorting Algorithms

Coding solutions for Search operation simple menting linear/binary search. Problem solving using Sorting algorithms: Bubble Sort, Selection Sort, Insertion Sort, Evaluation of sorting Algorithms. Problem solving using Quick Sort, Merge Sort, O(n log n) algorithms. Problem Solving using sorting techniques

#### Non-linear Data structures – Trees – I

Problem solving approaches using Non-linear data structures, Coding problems on the height of a binary tree, Size of a binary tree, Tree order traversals, Problem Solving on Binary Trees.

#### Non-Linear Data structures – Trees - II

Problems solving on key search on binary search trees, Time comparison and analysis on Binary Search Trees, Coding on a binary search tree problems, Search/probe sequence validation, Example problems

#### Algorithms– Greedy Methods - I

Greedy Strategy, Problem solving on greedy problems: coin change, fractional Knapsack, Scenario based problem solving implementing Greedy Methods, Practice problems

#### Algorithms- Greedy Methods - II

Job sequencing solutions, Activity selection problem, Scenario based problem solving implementing Greedy Methods, Practice Problems

The break-up of CIE: Internal Tests + Assignments + Quizzes

:

1 No. of Internal Tests

1 Max. Marks for each Internal Test

30

Duration of Internal Tests : 1 Hour 30 Minutes

#### VASAVI COLLEGE OF ENGINEERING

IBRAHIMBAGH, HYDERABAD – 500 031

#### **Department of Computer Science & Engineering**

#### DATABASE MANAGEMENT SYSTEMS LAB

SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P (Hrs./week):0:0:2 | SEE Marks:50 | Course Code: UI21PC421CS  |
|-------------------------|--------------|---------------------------|
| Credits : 1             | CIE Marks:30 | Duration of SEE : 3 Hours |

|   |                                                         | COURSE OUTCOMES                                                                       |
|---|---------------------------------------------------------|---------------------------------------------------------------------------------------|
|   | COURSE OBJECTIVES                                       | On completion of the course,                                                          |
|   |                                                         | students will be able to                                                              |
| 1 | Apply SQL commands on a database.                       | 1 Design and implement a database schema.                                             |
| 2 | Develop an application using forms, reports and PL/SQL. | 2 Apply DDL, DML, DCL and TCL commands on a database.                                 |
|   |                                                         | 3 Create database by applying normal forms.                                           |
|   |                                                         | 4 Implement PL/SQL programs for<br>creating stored procedures, cursors<br>& triggers. |
|   |                                                         | 5 Design and implement an application using forms and reports.                        |

#### Programming Exercise:

#### I. SQL

- 1. Creation of database (Exercising the commands like DDL, DML, DCL and TCL)
- 2. Creating tables using combination of constraints.
- 3. Usage of Stored Functions.
- 4. Exercising all types of Joins.
- 5. Creating tables in I Normal, II Normal, III Normal Form.
- 6. Exercising complex Queries.
- 7. Usage of file locking, Table locking facilities in Applications.

#### II. PL/SQL

- 1. Demonstration of Blocks, Cursors, functions and Packages.
- 2. Demonstrate Exception Handling.
- 3. Usage of Triggers to perform operation on Single and Multiple Tables.
- 4. PL/SQL Procedures for data validation.

#### III. FORMS

1. Creation of forms for colleges Information System, Library Information System and Recruitment Cell.

#### IV. REPORTS

- 1. Creation of Reports based on different queries.
- 2. Creation of full-fledged Database Application.

#### Learning Resources:

- 1. Ivan Bayross, SQL, PL/SQL, The Programming Language of Oracle,4th Edition, PBP Publications.
- 2. Nilesh Shah, Database Systems Using Oracle, 2nd Edition(2007), PHI.
- 3. Rick F Van der Lans, Introduction to SQL, 4thEdition(2007), Pearson Education.
- 4. Benjamin Rosenzweig Elena Silvestrova, Oracle PL/SQL by Example, 3rdEdition(2004), Person Education.
- 5. Albert Lulushi, Oracle Forms Developer's Handbook, 1st Edition(2006), Pearson Education.
- 6. https://www.lynda.com/Access-tutorials/Welcome/195854/373426-4.html

| No. of Internal Tests:                     | 01 | Max. Marks for Internal Test: | 12 |
|--------------------------------------------|----|-------------------------------|----|
| Marks for day-to-day laboratory class work |    |                               | 18 |
| Duration of Internal Test: 2 Hours         |    |                               |    |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

#### **Department of Computer Science & Engineering**

#### **OPERATING SYSTEMS LAB**

SYLLABUS FOR B.E. IV-SEMESTER

| L:T:P (Hrs./week):0:0:2 | SEE Marks:50 | Course Code: UI21PC431CS  |
|-------------------------|--------------|---------------------------|
| Credits : 1             | CIE Marks:30 | Duration of SEE : 3 Hours |

| COURSE OBJECTIVES                                                                                                                                  | <b>COURSE OUTCOMES</b><br><i>On completion of the course, students</i><br><i>will be able to</i>                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Apply system calls for<br>process management and<br>file management                                                                              | 1 Implement operations on Files<br>and Process by using system<br>calls                                                                                                                                                                                                                         |
| 2 Implement techniques<br>related to CPU Scheduling,<br>Main memory management,<br>Process synchronization and<br>deadlock avoidance<br>&detection | <ol> <li>Implement CPU Scheduling<br/>methods</li> <li>Implement Contiguous memory<br/>allocation techniques and Page<br/>Replacement techniques</li> <li>Design and implement<br/>solutions for Inter-Process</li> <li>Communication<br/>Implement deadlock handling<br/>techniques</li> </ol> |

#### Programming Exercise:

- 1. Implement system calls for
  - i) File system management
  - ii) Process management
- 2. Implementation of CPU scheduling algorithms (FCSF, SJF, Priority, RR, Multi level)
- 3. Implement contiguous Memory management techniques
  - i) Best Fit
  - ii) Worst Fit
  - iii) First Fit
- 4. Implementation of Page Replacement algorithms

- a) FIFO
- b) LRU
- c) OPTIMAL
- 5. Implement Inter-process communication using
  - i) Pipes
  - ii) Message Queues
  - iii) Shared Memory
- 6. Implementation of Process Synchronization for Bounded buffer, Readers-Writers and Dining philosophers problems
- 7. Implementation of Deadlock handling
  - i) Resource Allocation Graph
  - ii) Safety Algorithm
  - iii) Resource Request algorithm
  - iv) Wait for graph
- Implementation of Disk Scheduling algorithms a) FCFS b) SSTF c) SCAN
- Build a real operating system kernel by using an open source operating system (Linux) kernel to implement services such as Process Scheduling, Process synchronization, Virtual memory and File system

#### Learning Resources:

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, *Operating System Concepts*, 9<sup>th</sup> Edition (2016), Wiley India.
- Andrew S. Tanenbaum, *Modern Operating Systems*, 2<sup>nd</sup> Edition (2001), Pearson Education, Asia.
- Dhananjay, Dhamdhere.M, Operating System-concept based approach, 3<sup>rd</sup> edition (2009), Tata McGraw Hill, Asia
- 4. Robet Love: Linux Kernel Development, (2004) Pearson Education
- 5. Richard Stevens, Stephen Rago, *Advanced Programming in the UNIX Environment*, 3rd Edition(2013), Pearson Education
- 6. http://web.stanford.edu/~ouster/cgi-bin/cs140-spring19/index.php
- 7. https://nptel.ac.in/courses/106106144/

| No. of Internal Tests:                     | 01 | Max. Marks for Internal Test: | 12 |  |
|--------------------------------------------|----|-------------------------------|----|--|
| Marks for day-to-day laboratory class work |    |                               | 18 |  |
| Duration of Internal Test: 2 Hours         |    |                               |    |  |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD - 500 031

#### **Department of Computer Science & Engineering**

#### **DESIGN & ANALYSIS OF ALGORITHMS LAB**

SYLLABUS FOR B.F. IV-SEMESTER

| L:T:P (Hrs./week):0:0:2 | SEE Marks : 50 | Course Code: UI21PC441CS  |
|-------------------------|----------------|---------------------------|
| Credits : 1             | CIE Marks : 30 | Duration of SEE : 3 Hours |

|   | COURSE OBJECTIVES                                                                   | Or<br>stu | <b>COURSE OUTCOMES</b><br>In completion of the course,<br>sudents will be able to   |
|---|-------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|
| 1 | Implement solutions for the given problems using divide and conquer                 | 1         | Implement searching, sorting<br>and hashing using basic data<br>structures.         |
| 2 | Implement solutions for the given problems using greedy and dynamic programming     | 2         | Apply divide and conquer<br>strategy to implement algorithm<br>for a given problem. |
| 3 | Implement solutions for the given problems using backtracking and branch and bound. | 3         | Implement an algorithm for a given problem using Greedy design strategy             |
|   |                                                                                     | 4         | Apply dynamic programming to implement algorithms for a set of problems.            |
|   |                                                                                     | 5         | Implement algorithms for set of problems using backtracking and branch and bound.   |

#### Programming Exercise:

- 1. Implementation of Merge Sort, Quick Sort, Heap Sort, Binary Search and Hashing.
- 2. Implementation of Traversal on Graphs.
- Implementation of Traversal on Trees and DAG. 3.
- Implement Single source shortest path algorithm. 4.
- 5. Implement Minimum cost spanning tree algorithm.
- Implement fractional Knapsack algorithm. 6.
- 7. Implement Optimal merge patterns -Huffman encoding algorithm.
With effect from the Academic Year 2022-23

- 8. Implement Matrix–chain multiplication algorithm with dynamic programming.
- 9. Implement LCS algorithm and print Longest common subsequence.
- 10. Implement All-pairs shortest path algorithm.
- 11. Implement 0/1 Knapsack algorithm.
- 12. Implement multi-stage graph.
- 13. Implementation of N-queens problem with back tracking.
- 14. Implement Graph coloring problem with back tracking.
- 15. Implement TSP by branch and bound.
- 16. Implement 0/1 knapsack by branch and bound.

#### Learning Resources:

- 1. Ellis Horowitz, SartajSahani, SanguthevarRajasekaran," Fundamentals of computer Algorithms", Second edition (2008), Universities Press.
- 2. Thomas H. Cormen, Leiserson C.E, Rivest.R.L , Stein.C, Introduction to Algorithm, 2nd edition (2001), MIT press, USA.
- 3. Michael T. Goodrich, Roberto Tamassia, Algorithm Design, foundations, analysis, and internet examples, WIELEY student edition (2006).
- 4. Aho, Hopcroft, Ulman, The Design and Analysis of Computer Algorithms, (2000), Pearson Education.
- 5. Algorithm Design, 1<sup>st</sup> Edition, Jon Kleinberg and ÉvaTardos, Pearson.

| No. of Internal Tests:                     | 01 | Max. Marks for Internal Test: | 12 |  |
|--------------------------------------------|----|-------------------------------|----|--|
| Marks for day-to-day laboratory class work |    |                               |    |  |
| Duration of Internal Test: 2 Hours         |    |                               |    |  |

#### With effect from the Academic Year 2022-23

#### SCHEME OF INSTRUCTION AND EXAMINATION(R-21) FOR B.E BRIDGE COURSE IV SEMESTER (A.Y 2022-23) Common for CSE, CSE (AI&ML), IT

| B.E IV Semester |                                           |                |                    |          |                       |                  |     |        |
|-----------------|-------------------------------------------|----------------|--------------------|----------|-----------------------|------------------|-----|--------|
|                 |                                           |                | heme o<br>structio | of<br>on | Scheme of Examination |                  |     |        |
| Course Code     | Name of the Course                        | Hours per Week |                    |          | Duration<br>in Hrs    | Maximum<br>Marks |     | redits |
|                 |                                           |                | Т                  | Р        |                       | SEE              | CIE | С      |
|                 | THEORY                                    |                |                    |          |                       |                  |     |        |
| UB21HS410EH     | English Language Communication            | 2              | -                  | -        | 3                     | 50               | -   | -      |
|                 | PRACTICAL                                 |                |                    |          |                       |                  |     |        |
| UB21HS411EH     | English Language Communication Skills Lab | -              | -                  | 2        | 3                     | 50               | -   | -      |
|                 | TOTAL                                     | 2              | -                  | 2        | -                     | 100              | -   | -      |
|                 | GRAND TOTAL                               |                | 4                  |          |                       | 10               | 00  | -      |

#### With effect from the Academic Year 2022-23 VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

#### ENGLISH LANGUAGE COMMUNICATION

SYLLABUS FOR B.E. IV SEMESTER (Bridge Course)

| L :T:P(Hrs/week): 2 | SEE Marks :50 | Course Code: UB21HS410EH  |  |  |  |
|---------------------|---------------|---------------------------|--|--|--|
| Credits :-          | CIE Marks :-  | Duration of SEE : 3 Hours |  |  |  |

|           | COURSE OBJECTIVES                                                         | COURSE OUTCOMES                                                                                                                           |
|-----------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Th<br>Lea | e Course will enable the<br>arners to:                                    | At the end of the course the students will be able to :                                                                                   |
| 1.        | Converse effectively in various context.                                  | <ol> <li>Use language verbally and<br/>nonverbally in appropriate<br/>contexts</li> </ol>                                                 |
| 2.        | Listen for general and specific<br>comprehension and write<br>paragraphs. | <ol> <li>Listen for global comprehension<br/>and to infer meaning from spoken<br/>discourses. Write paragraphs<br/>coherently.</li> </ol> |
| 3.        | Understand the elements of a good paragraph                               | 3. Write paragraphs coherently.                                                                                                           |
| 4.        | Speak appropriately in daily conversations                                | <ol> <li>Use phrases, essential vocabulary<br/>and polite expressions in every day<br/>conversations.</li> </ol>                          |

## Unit-1 1.0: Communication& Functional English

**1.1** Role and Importance of Communication, Process of Communication, Nonverbal communication, barriers to Communication. Conversational phrases: greetings, introductions, apology, compliments, agreeing and disagreeing, polite forms in everyday conversations.

## Unit 2 2.0: Listening

2.1 Importance of listening, Active listening

## Unit 3. 3.0: Writing

**1.1** Paragraph writing, coherence and cohesion.

#### Unit 4 4.0: Grammar and Vocabulary

**4.1** Common Errors, one word substitutes, Phrasal-verbs, collocations.

#### Unit-5 5.0: Reading

5.1 **Prose text-** On shaking hands

#### Prescribed textbook for theory:

Technical communication - Principles and Practice (2nd Edition 2014) - Meenakshi Raman and Sangeeta Sharma- Oxford University Press.

## Suggested Reading

E.Suresh kumar, P. Sreehari and J. Savithri - Essential English
Reading comprehension - Nuttal.J.C - Orient Blackswan
Sunitha Mishra,C. Murali Krishna, Communication Skills for Engineers, Pearson, 2004.
M. Ashraf Rizvi. Effective Technical Communication. Tata Mcgraw Hill, 2005.
Allen and Waters., How English Works.
Willis Jane., English through English.

# DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

## ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

SYLLABUS FOR B.E. IV SEMESTER (Bridge Course) (Common to all branches)

| L                                          | :T:P(Hrs/week): 2                          | SEE N | larks :50                                               | Course Code: UB21HS411EH                                         |  |  |
|--------------------------------------------|--------------------------------------------|-------|---------------------------------------------------------|------------------------------------------------------------------|--|--|
| Cr                                         | redits :-                                  | CIE M | arks :-                                                 | Duration of SEE : 3 Hours                                        |  |  |
| COURSE OBJECTIVES                          |                                            |       | COURSE OUTCOMES                                         |                                                                  |  |  |
| The Course will enable the<br>Learners to: |                                            |       | At the end of the course the students will be able to : |                                                                  |  |  |
| 1.                                         | Converse in various situations.            |       | 1.                                                      | Research and sift information to make Presentations.             |  |  |
| 2.                                         | Make paper and power p<br>presentations.   | ooint | 2.                                                      | Listen for gist and make<br>inferences from various<br>speeches. |  |  |
| 3.                                         | Speak effectively using discourse markers. |       | 3.                                                      | Use connectives and make transitions effectively while speaking. |  |  |

|   | ELCS – Component - INTERACTIVE COMMUNICATION SKILLS LAB                                                                                                                       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <b>Group discussion:</b> Objectives of GD, Types of GDs; Initiating, Continuing, and concluding a GD.                                                                         |
| 2 | <b>Debate:</b> Understanding the differences between a debate and a group discussion, essentials of debate, concluding a debate.                                              |
| 3 | <b>Role Plays:</b> Types of Role plays (formal and informal), usage of discourse markers.                                                                                     |
| 4 | <b>Presentation Skills:</b> Making effective presentations, using non-verbal communication, coping with stage fright, use of Audio visual aids researching on various topics. |