VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

ACCREDITED BY NAAC WITH 'A++' GRADE
Ibrahimbagh, Hyderabad-31
Approved by A.I.C.T.E., New Delhi and
Affiliated to Osmania University, Hyderabad-07

Sponsored

by

VASAVI ACADEMY OF EDUCATION

Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR B.E. (ECE) I and II Semesters With effect from 2022-23 (For the batch admitted in 2022-23)

(R-22)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Phones: +91-40-23146040, 23146041

Fax: +91-40-23146090

Institute Vision

Striving for a symbiosis of technological excellence and human values

Institute Mission

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow

Department Vision

Striving for excellence in teaching, training and research in the areas of Electronics and Communication Engineering and fostering ethical values

Department Mission

To inculcate a spirit of scientific temper and analytical thinking and train the students in contemporary technologies in Electronics and Communication Engineering to meet the needs of the industry and society with ethical values

B.E (ECE) Program Educational Objectives (PEO's)												
PEO I	Graduates will be able to identify, analyze and solve engineering problems.											
PEO II	Graduates will be able to succeed in their careers, higher education, and research.											
PEO III	Graduates will be able to excel individually and in multidisciplinary teams to solve industry and societal problems.											
PEO IV	Graduates will be able to exhibit leadership qualities and lifelong learning skills with ethical values.											

Engine	B.E. (ECE) PROGRAM OUTCOMES (PO's) eering Graduates will be able to:
PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
P02	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
P03	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.
PO4	Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
P08	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Lifelong learning: Recognize the need, and for have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

B.E (I	B.E (ECE) PROGRAM SPECIFIC OUTCOMES (PSO's)											
PSO I	ECE students will be able to analyze and offer circuit and system level solutions for complex electronics engineering problems, keeping in mind the latest technological trends.											
PSO II	ECE students will be able to apply the acquired knowledge and skills in modeling and simulation of wireless communication systems.											
PSO III	ECE students will be able to implement signal and image processing techniques for real time applications.											

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD – 500 031. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-22) :: B.E. - ECE: FIRST SEMESTER (2022-23)

B.E (ECE) I – SEMESTER											
		Schem	e of Inst	ruction	Scheme of Examination						
Course Code	Name of the Course	Hou	rs per W	/eek	Duration	Maximu	m Marks	dits			
		L	Т	P/D	in Hrs	SEE	CIE	Credits			
	THEOR	Υ									
U22HS010EH	English Language and Communication	2	ı	-	3	60	40	2			
U22BS110MA	Calculus	3	ı	-	3	60	40	3			
U22BS110CH	Engineering Chemistry	3	-	-	3	60	40	3			
U22ES120CS	Programming for Problem Solving	3	-	-	3	60	40	3			
U22ES010CE	Basic Engineering Mechanics	3	-	-	3	60	40	3			
U22HS020EH	Human Values and Professional Ethics - I	1	-	-	2	40	30	1			
U22MC010CE	Environmental Science	2	-	-	3	60	40	-			
	PRACTIC	ALS									
U22HS111EH	English Language and Communication Skills Lab	-	-	2	3	50	30	1			
U22BS011CH	Chemistry Lab	-	-	2	3	50	30	1			
U22ES121CS	Programming for Problem Solving Lab	-	-	2	3	50	30	1			
U22ES011ME	Engineering Workshop	-	-	2	3	50	30	1			
	TOTAL	17	•	8	-	600	390	19			
	GRAND TOTAL		25		-	90	90	-			

Left over hours will be allocated for : Sports / Library / PDC / Mentor - Mentee Interaction / CC / RC / TC

Note: B.E. (Regular) Students shall complete one NPTEL Certificate Course equivalent to 2 Credits weightage during their I to VI Semesters.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD – 500 031. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EXAMINATION (R-22) :: B.E. – ECE : FIRST SEMESTER (2022 - 2023)

	B.E (ECE) I - SEMESTER													
COURSES OFFERED BY ECE TO CSE														
		Schem	e of Inst	ruction	Schei	me of Exa	mination							
Course Code Na	Name of the Course	Hou	rs per W	/eek	Duration	Maximum Marks		Credits						
		L	Т	P/D	in Hrs	SEE	CIE	Cre						
	THEC	DRY												
U22ES110EC	Introduction to Electronics Engineering	3	-	-	3	60	40	3						
	PRACT	ICALS												
U22ES111EC	Introduction to Electronics Engineering Lab	-	-	2	3	50	30	1						

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

English Language and Communication

SYLLABUS FOR B.E. I- SEMESTER (Common to all branches)

L:T:P (Hrs/Week): 2:0:0	SEE Marks: 60	Course Code: U22HS010EH
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the learners to:	At the end of the course the learners
1. Build greater confidence and	will be able to: -
proficiency in oral and written	1. Communicate effectively,
communication.	appropriately and ethically in both
2. Equip themselves with essential	'
language skills to analyze and	
articulate their points of view.	from various speeches and converse
3. Use English to communicate in	intelligibly in various contexts.
various social settings.	3. Construct grammatically correct
4. Develop the ability to engage in	sentences using adequate
reading for reflection and enquiry.	vocabulary to compose written and
5. Construct grammatically correct and	spoken discourses.
contextually appropriate correct	4. Read, evaluate and appreciate
sentences.	various text types.

CO-PO/PSO Mapping

00-1															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1										2	3				
CO2										1	3				
CO3										1	3				
CO4										1	3				

UNIT-I: 1.0 Effective communication and Interpersonal skills

- 1.1 Role and Importance of Communication functions, process, types, styles, channels and barriers of communication.
- 1.2 Politeness theory Brown & Levninson.
- 1.3 Knapp's Model of Interpersonal Communication
- 1.4 Persuasion techniques.

UNIT-II: 2.0 Listening and Speaking Skills

- 2.1 Importance of listening Types of listening Strategies to improve listening.
- 2.2 Speaking skills: Grice's Conversational Principles

UNIT-III: 3.0 Reading and writing skills

- 3.1 Reading strategies Analyzing graphics & Visual aids, SQ3R Survey, Question, Read, Recite, Review.
- 3.2 Features of Writing Principles of Writing paragraphs-Coherence, Cohesion & Unity; Use of appropriate linkers / connectives.
- 3.3 Request letters.

UNIT-IV: 4.0 Vocabulary Building and Grammar

- 4.1 **Vocabulary Building**: Synonyms, Antonyms, One-word substitutes; Collocations; Idioms.
- 4.2 Functional Grammar: Articles, Prepositions; Tense and Aspect; Subject – Verb agreement; Direct and Indirect Speech.

UNIT-V: 5.0 Reading for appreciation of literary texts

- 5.1 **Prose text:** our own Civilization CEM Joad.
- 5.2 **Poem**-What Life should be-Patricia A Fleming.

Prescribed textbook for theory:

Technical communication - Principles and Practice (2nd Edition 2014) - Meenakshi Raman and Sangeeta Sharma- Oxford University Press.

Learning Resources:

- 1 Paul V. Anderson- Technical Communication
- 2 E. Suresh Kumar, P. Sreehari and J. Savithri Essential English.
- 3 Reading comprehension Nuttal J.C. Orient Blackswan
- 4 Sunitha Mishra, C. Murali Krishna, Communication Skills for Engineers, Pearson, 2004.
- 5 M. Ashraf Rizvi. Effective Technical Communication. Tata Mcgraw Hill, 2005.
- 6 Allen and Waters., How English Works.
- 7 Willis Jane., English through English.
- 8 Brown, Penelope and Stephen C. Levinson. 1978. Universals in language usage: politeness phenomena: Cambridge University Press.

۱h	e break-up of CIE: Int	erna	1 1	Tests + Assignments + Quizzes	
1	No. of Internal Tests	. [)	Max. Marks for each Internal Test	<

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

COURSE OUTCOMES

At the end of the course students

1. Apply an appropriate test to check

the nature of the infinite series.

vector 5. **Apply** concepts of multiple integrals

to evaluate area and volume and

vector integration to transformation.

should be able to:

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF MATHEMATICS

Calculus

SYLLABUS FOR B.E. I – SEMESTER (Common to All Branches)

L:T(Hrs./week): 3:1:0	SEE Marks: 60	Course Code: U22BS110MA
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

curvature, radius of curvature,	2. Compute radius of curvature,
evolutes and to expand functions	evolute of a given curve and also to
using Taylor's series.	expand given function using Taylor's
3. Acquire knowledge of partial	series.
derivatives, and expand functions	3. Expand the given function in terms
using Taylor's series functions of two	of Taylor's series and find Maxima
real variables and, maxima- minima.	and minima of functions of several
4. Study the concepts of vector	variables also using Lagrange's
differentiation, Gradient, Divergence	method of multipliers.
and Curl.	4. Use gradient to evaluate directional
5. Learn how to evaluate double and	derivatives and conservative vector

CO-PO/PSO Mapping

integration

theorems

of integration and

COURSE OBJECTIVES

1. **Identify** convergence of infinite

The

triple integrals, using change of order

to

concepts

apply

transformation

The course will enable the students to:

series using various tests.

2. Understand

	o i ori oo mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2										1	1		
CO2	3	2										1	1		
CO3	3	2										1	1		
CO4	3	2										1	1		
CO5	3	2										1	1		

field.

UNIT-I: (08 classes) INFINITE SERIES

Definition of Sequences- Series – Convergence and Divergence- Series of positive terms-Geometric series- p-series test - Comparison tests - D'Alemberts Ratio Test – Cauchy's root test - Alternating Series – Leibnitz test – Absolute and Conditional convergence.

UNIT-II: (10 classes) DIFFERENTIAL CALCULUS

Taylor's Series – Maclaurin's Series- Curvature- Radius of Curvature – Centre of Curvature – Evolutes. (Cartesian and Parametric co-ordinates)

UNIT-III: (12 classes) MULTIVARIABLE CALCULUS

Limits- Continuity -Partial Derivatives-Higher Order Partial Derivatives-Total Derivates - Derivatives of Composite and implicit functions - Taylor's series of functions of two variables - Maxima and Minima of functions of two variables without and with constraints - Lagrange's Method of multipliers.

UNIT-IV: (08 classes)

VECTOR DIFFERENTIAL CALCULUS

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface- Directional Derivative – Divergence and Curl of a Vector field-Conservative vector field.

UNIT-V: (12 classes)

MULTIPLE INTEGRALS: Double and Triple integrals (Cartesian) - Change of order of integration (Cartesian Coordinates)- Jacobian's-Change of the Variables(Cartesian to polar Coordinates)- Line integrals- Green's Theorem

Learning Resources:

Text Books:

- 1. Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House.
- Higher Engineering Mathematics, B. S. Grewal 40^{th.} Edition, Khanna Publishers.

Reference Books:

- Advanced Engineering Mathematics 8th Edition by Erwin Kreyszig , John Wiley & Sons.
- 2. Differential Calculus by Shanti Narayan S. Chand & Co
- 3. Vector Calculus Schaum's outline series.

Online Resources:

- 1. http://mathworld.wolfram.com/topics
- http://www.nptel.ac.in/course.php

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF CHEMISTRY

Engineering Chemistry

SYLLABUS FOR B.E. I – SEMESTER (For ECE & EEE branches)

L:T(Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U22BS110CH
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

Credits: 3	KS : 4	ŧU I	Duran	וט וזכ	SEE : 3	Hours	•	
COURSE OBJECTIVES	•			COUF	SE O	UTCON	1ES	
The course will enable the st	tudent	s At	the en	d of th	ne cou	ırse, stu	udents	should
to:		be	able to) :				
1. Study types of condu	ctance	, 1.	Constr	ruct a	galvar	ic cell	and ca	lculate
variation of electrode p	otentia	I	its EM	F and p	oH whe	erever a	applicab	le.
and EMF and to acquair	nt with	1 2.	Descri	be the	cons	truction	n, funct	ioning
applications of Galvanic Cel	II.		and	applica	ations	of t	the se	elected
2. Classify and compare	variou	S	primar	y, sec	ondar	y batte	ries an	d fuel
types of batteries and fuel			cells.					
3. Get acquainted with d	t 3.							
types of polymers and	r	synthe	esis a	nd a	pplication	ons of	few	
applications.			polym					
4. Explain the concept							classific	
engineering materials like)					ications	
materials and liquid crystals						•	rystals.	
5. Know the principles of	√ 5.					conce	pts of	
analytical techniques.		few ar	nalytica	l techr	niques.			
CO-PO MAPPING FOR ENGINE	ERING	CHE	MISTR	Υ				
CO PO1 PO2 PO3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO-	CO-PO MAPPING FOR ENGINEERING CHEMISTRY											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	2										1
2	3	2					2					2
3	3	2					2					2
4	3	1					1					2
5	3	1										1

UNIT-I: ELECTROCHEMISTRY (10)

Introduction, conductance, types of conductance – specific, equivalent, molar conductance and their interrelationship – numericals. Principle and applications of conductometric titrations- strong acid νs strong base, week acid νs strong base and mixture of acids νs strong base.

Cells – electrolytic and electrochemical cells. IUPAC convention of cell notation, cell reaction, concept of electrode potential, electromotive force (EMF). Electrochemical series – applications, Nernst equation – derivation, applications and numericals. Types of electrodes – construction and working of calomel electrode (CE), quinhydrone electrode and glass electrode (GE).

Determination of pH using glass electrode and quinhydrone electrode. Principle and Applications of potentiometry – acid base and redox reaction $(Fe(II) \text{ Vs } KMnO_4)$.

UNIT-II: BATTERY TECHNOLOGY (9)

Introduction – definition of cell and battery – Types of cells (reversible and irreversible cells). Battery characteristics: free energy change, electromotive force of battery, power density, energy density – numericals, Memory effect, flat discharge rate.

Primary batteries: Construction and electrochemistry of Zn-C battery, Zn-Ag $_2$ O battery and lithium-V $_2$ O $_5$ battery.

Secondary batteries: Construction and working of lead-acid, Ni-Cd and lithium ion battery – advantages, limitations and applications.

Fuel cells: Concept, types of fuel cells and merits. Construction, working and applications of methanol-oxygen fuel cell, phosphoric acid fuel cell and Molten carbonate fuel cell.

UNIT-III : POLYMER CHEMISTRY (11)

Introduction, degree of polymerization, functionality of monomers and its effect on the structure of polymers. Classification of polymers – a) homo and co-polymers, b) homo chain and hetero chain polymers. c) plastics, elastomers, fibers and resins.

Types of Polymerizations – Addition and condensation polymerization.

Glass transition temperature (Tg), factors affecting Tg.

Molecular weight – number average and weight average molecular weight, numericals.

Plastics: Thermo plastics and thermosets – preparation, properties and applications of a) Aramid (Kevlar) b) Poly methyl methacrylate(PMMA)

Biodegradable polymers: Concept, preparation and uses of ploy lactic acid. **Conducting polymers:** Definition – classification, mechanism of conduction in (p-doped and n-doped) polyacetylene and applications.

Polymer composites: Introduction, advantages of composites over conventional materials, fiber reinforced composites Kevlar, Carbon and Glass FRCs and their applications.

UNIT-IV: ENGINEERING MATERIALS (9) Nanomaterials

Introduction – concept of nanomaterials – quantum confinement and surface volume ratio – catalytic and electrical properties.

Types of Nanomaterials: carbon nanotubes, quantum dots, nanowires, nanocrystals.

Synthesis of nanomaterials: Top down and bottom-up approaches – mechanical grinding by ball milling, sol gel method.

Carbon Nanotubes: Single walled carbon nanotubes (SWCNTs). Multi walled carbon nanotubes (MWCNTs), synthesis of CNTs – arc discharge and laser ablation methods.

Applications of Nanomaterials.

Liquid Crystals

Introduction, classification of liquid crystals – Thermotropic and Lyotropic liquid crystals – Chemical constitution & liquid crystalline behavior. Molecular ordering in liquid crystals – Nematic, Smectic and Cholestric liquid crystals – Applications.

UNIT-V: INSTRUMENTAL METHODS OF ANALYSIS (8)

Spectroscopy: Principle, block diagram, Applications of Atomic Absorption Spectroscopy (AAS).

Microscopic techniques: Introduction, Limitations of optical microscopy. Significance of de Broglie's equation, Principle and block diagram of Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM).

Thermal Analysis: Principle, block diagram of Thermogravimetric Analysis (TGA) and analysis of calcium oxalate. Principle, block diagram of Differential Scanning Calorimetry (DSC) and analysis of TG of a polymer.

Learning Resources:

Text Books:

- 1. P. C. Jain, M Jain Engineering Chemistry, Dhanapathi Rai and sons (16th edition), New Delhi.
- 2. Sashi Chawla, Text book of Engineering Chemistry, Dhanapathi Rai &sons, New Delhi.
- 3. O. G. PALANNA, Engineering Chemistry, TMH Edition.
- 4. Wiley Engineering chemistry, Wiley India pvt Ltd, II edition.
- 5. Chemistry in engineering and technology by J.C. Kuriacose and Rajaram.

Learning Resources:

- 1. University chemistry, by B. H. Mahan
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M.
- S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins
- 4. S. S. Dara, S Chand and sons, Engineering Chemistry, New Delhi.
- 5. Puri, Sharma and Pathania Principles of physical chemistry, Vishal Publishing Co.
- ${\it 6. NPTEL Polymer Chemistry Course, D. Dhara, IIT Kharagpur.}\\$
- 7. Polymer chemistry by Gowariker
- 8. Introduction to Nanoscience, by S m Lindsay, Oxford University press

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Programming for Problem Solving

SYLLABUS FOR B.E. I - SEMESTER

(Common to CSE, AI&ML, IT, ECE and EEE)

L:T:P(Hrs./week): 3:0:0	SEE Marks : 60	Course Code: U22ES120CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES 1. Acquire problem solving skills. 2. Develop flow charts. 3. Understand structured programming concepts. 4. Write programs in C Language. Course ourse, students will be able to 1. Design flowcharts and algorithms for solving a given problem using the fundamentals of programming. 2. Apply decision making, looping constructs and functions to develop programs for a given problem. 3. Store data using arrays and perform searching and sorting operations on the data. 4. Design programs on string handling and operations on arrays using dynamic memory management techniques.		
skills. 2. Develop flow charts. 3. Understand structured programming concepts. 4. Write programs in C Language. 1. Design flowcharts and algorithms for solving a given problem using the fundamentals of programming. 2. Apply decision making, looping constructs and functions to develop programs for a given problem. 3. Store data using arrays and perform searching and sorting operations on the data. 4. Design programs on string handling and operations on arrays using dynamic memory management	COURSE OBJECTIVES	COURSE OUTCOMES
5. Develop programs to store data and perform operations using structures and files.	Acquire problem solving skills. Develop flow charts. Understand structured programming concepts. Write programs in C Language.	On completion of the course, students will be able to 1. Design flowcharts and algorithms for solving a given problem using the fundamentals of programming. 2. Apply decision making, looping constructs and functions to develop programs for a given problem. 3. Store data using arrays and perform searching and sorting operations on the data. 4. Design programs on string handling and operations on arrays using dynamic memory management techniques. 5. Develop programs to store data and perform

CO-PO/PSO Mapping

	•		~~~												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	1									2		
CO2	3	2	2	2	1								3		
CO3	2	1	1	1									3	1	1
CO4	3	1	1	1									2	1	
CO5	3	2	2	2	1								3	1	1

UNIT-I

Introduction to Computers: Computer Systems, Computing Environments, Computer Languages, Creating and Running Programs, Software Development, Flowcharts. Number Systems (Binary, Octal, Decimal and Hexadecimal), Representation of Numbers (Fixed and Floating Point).

Introduction to C Language: Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Expressions, Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion, Statements, Bitwise Operators.

UNIT-II

Selection: Logical Data and Operators, if... else, switch Statements, Standard Functions

Repetition: Loops, while, for, do-while Statements, Loop Examples, break, continue, goto.

Functions: Designing Structured Programs, Functions Basics, User Defined Functions, Inter-Function Communication, Standard Functions, Scope, Storage Classes-Auto, Register, Static, Extern, Scope Rules and Type Qualifiers.

UNIT-III

Recursion: Recursive Functions, Preprocessor Commands.

Arrays: Concepts, Using Arrays in C, Inter-Function Communication, Array Applications, Two-Dimensional Arrays, Multidimensional Arrays, Linear Search and Binary Search, Selection Sort and Bubble Sort.

UNIT-IV

Pointers: Introduction, Pointers for Inter-Function Communication, Pointers to Pointers, Compatibility, LValue and RValue, Arrays and Pointers, Pointer Arithmetic and Arrays, Passing on Array to a Function, Memory Allocation Functions, Array of Pointers, Programming Applications, Pointers to void, Pointers to Functions, Command Line Arguments.

Strings: Concepts, C Strings, String Input/Output, Functions, Arrays of Strings, String Manipulation Functions.

UNIT-V

Type Definition (typedef), Enumerated Types.

Structure: Definition and Initialization of Structures, Accessing Structures, Nested Structures, Arrays of Structures, Structures and Functions, Pointers to Structures, Self Referential Structures, Unions.

Input and Output: Files, Streams, Standard Library Input / Output Functions, Character Input/Output Functions.

Learning Resources:

- 1. Forouzan B.A & Richard F. Gilberg, A Structured Programming Approach using C,3rd Edition(2013), Cengage Learning.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd, Edition (2006), Prentice-Hall.
- Rajaraman V, The Fundamentals of Computer, 4th Edition(2006), Prentice-Hall of India.
- 4. Steve Oualline, Practical CProgramming, 3rd Edition (2006), O'Reilly Press.
- 5. Jeri R. Hanly, Elliot B. Koffman, Problem Solving and Program Design in C, 5thEdition (2007), Pearson Education.
- 6. Balagurusamy E, Programming in ANSI C, 4th Edition(2008), TMG.
- 7. Gottfried, Programming with C, 3rd Edition(2010), TMH.
- 8. R G Dromey, How to Solve it byComputer,1st Edition(2006), Pearson Education.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

COURSE OUTCOMES

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF CIVIL ENGINEERING

Basic Engineering Mechanics

SYLLABUS FOR B.E. I SEMESTER

(Common to Civil, CSE, ECE, EEE & Mechanical Engineering)

L:T:P(Hrs./week): 3:0:0	SEE Marks:60	Course Code: U22ES010CE
Credits: 3	CIE Marks:40	Duration of SEE: 3 Hrs

Objectives of this course are to:	At the end of the course, students
1. Explain the resolution of a system of	
forces (coplanar, spatial, concurrent,	1. Determine resultant of forces
non-concurrent) and compute their	acting on a body.
resultant.	2. Analyse equilibrium of a body
2. Solve particle equilibrium problem	subjected to a system of forces.
using equation of equilibrium	3. Perform analysis of trusses using
3. Determine forces in the members of a	method of joints and method of
truss	sections.
4. Perform analysis of bodies lying on	4. Solve problem of bodies subjected
rough surfaces.	to friction.
5. Locate the centroid of a body and also	5. Find the location of centroid and
compute the area moment of inertia	calculate moment of inertia and
of standard and composite sections.	polar moment of inertia of a given
·	section.

CO-PO/PSO Mapping

COURSE OBJECTIVES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1				2		1	1	1					
CO2	3	1						1	1	1					
CO3	3	2						1	1	1					
CO4	3	1						1	1	1					
CO5	3	1				2		1	1	1					

UNIT-I: Force Systems: Rectangular components, moment, couple and resultant of two dimensional and three dimensional force systems.

UNIT-II: Equilibrium of Force Systems: Free body diagram, Equations of equilibrium, Equilibrium of planar and spatial system.

UNIT-III: Determinate Trusses: Analysis of plane trusses like Warren girder, Pratt truss, Fink truss etc using method of joints and method of sections.

UNIT-IV: Friction: Laws of friction. Application to simple systems, Connected systems and belt friction, Wedge friction.

UNIT-V: Centroid and Moment of Inertia: Centroids of lines, areas and volumes, Moment of inertia of areas, Composite areas, Polar moment of inertia, Radius of avration.

Learning Resources:

- Singer F.L "Engineering Mechanics", Harper & Collins, Singapore, 3rd Edition 1. 2011.
- 2. Timoshenko S.P and Young D.H "Engineering Mechanics", McGraw Hill International Edition, 2017
- Andrew Pytel., JaanKiusalaas, "Engineering Mechanics", Cengage Learning, 3. 2014.
- 4. Beer F.P & Johnston E.R Jr. "VectorMechanics for Engineers", TMH, 2019.
- 5. Hibbeler R.C, "Engineering Mechanics", Pearson Education, 2017.

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 6. Tayal A.K., "Engineering Mechanics - Statics & Dynamics", Umesh Publications, 2011.
- 7. Basudeb Bhattacharyya., "Engineering Mechanics", Oxford University Press,
- 8. Meriam. J. L. and Kraige L.G., "Engineering Mechanics", Volume-I Statics, John Wiley & Sons, 2017.
- 9. NPTEL Course (www.nptel.ac.in)
- 10. Virtual labs (www.vlab.co.in)

		-		
1.	No. of Internal Tests	: 2 Max. Marks for each Internal Tests	:	30
2.	No. of Assignments	: 3 Max. Marks for each Assignment	:[5
3.	No. of Quizzes	: 3 Max. Marks for each Quiz Test	:	5

DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

Human Values and Professional Ethics - I

(Syllabus: Common for All Branches B.E. I & II - SEMESTER)

L:T:P (Hrs./week): 1:0:0	SEE Marks: 40	Course Code: U22HS020EH
Credits: 1	CIE Marks: 30	Duration of SEE : 2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students	On completion of this course the student will be
to: -	able to:
1 Get a holistic perspective of value- based education.	1 Understand the significance of value inputs in a classroom and start applying them in their
2 Grasp the meaning of basic human aspirations vis-a-vis the professional aspirations.	life and profession 2 Distinguish between Personal and Professional life goals-constantly evolving
3 Understand professionalism in harmony with self and society.	into better human beings and professionals. 3 Work out the strategy to actualize a
4 Develop ethical human conduct and professional competence.	harmonious environment wherever they work.
5 Enrich their interactions with the world around, both professional and personal.	4 Distinguish between ethical and unethical practices, and start implementing ethical practices
	5 Apply ethics and values in their personal and professional interactions.

CO-PO/PSO Mapping

	U/ I	JO 141	uppii	.9											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								3							
CO2								3							
CO3								3							
CO4								3							
CO5								3							

UNIT-1 HARMONY WITH SELF AND FAMILY

Understanding and living in harmony at various levels-with self, family, society and nature and the Ethical and moral values: which include self-sufficiency, self-determination, self-advocacy, self-competence, self-direction, self-efficacy, self-regulation, self-reliance, and self-responsibility. This also includes Family values involving all the ideas of how you want to live your family life, and they are often passed down from previous generations.

- 1.1 Self-Values and Ethics
- 1.2 Family Values and Ethics
- 1.3 Flipped class room

UNIT-2 PROFESSIONAL VALUES AND BEHAVIOUR

At the level of individual: as socially and ecologically responsible engineers and technologists. Team Work: Developing Credibility and building trust by having open and truthful communication. This includes recognizing the value of time and respecting time of self and others.

- 2.1 Professional Ethics Individual
- 2.2 Professional Ethics Team
- 2.3 Flipped class room

UNIT 3 - SOCIAL VALUES

Values of service, social justice, dignity and worth of the person Importance of human relationships, integrity, and competence.

- 3.1 Social Values
- 3.2 Importance of relationship
- 3.3 Flipped class room

UNIT 4 - SPIRITUAL VALUES

Developing individual practice and has to do with having a sense of peace and purpose. Spiritual values, namely, benevolence, charity, dignity, forbearance, hope, humility, kindness, love, modesty, peace, perseverance, piety, repentance, righteous, sacredness, sincerity, steadfastness, striving, trusting, truthfulness, unity, and wisdom.

- 4.1 Spiritual Values
- 4.2 Mindful Vs Mindful
- 4.3 Flipped class room

MODE OF DELIVERY

- Questionnaires
- Quizzes
- Case-studies
- Observations and practice
- Home and classroom assignments
- Discussions
- Skits
- Short Movies/documentaries
- Team tasks and individual tasks
- Research based tasks
- Viva

Relevant Websites, CD's and Documentaries

https://plato.stanford.edu/

Learning Resources:

learn.talentsprint.com

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 1 | Max. Marks for each Internal Test : 20

2. No. of Assignments : 2 Max. Marks for each Assignment : 5

3. No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

DEPARTMENT OF CIVIL ENGINEERING

Environmental Science

SYLLABUS FOR B.E. I-SEMESTER (Common to Civil, EEE & ECE)

L:T:P (Hrs./week): 2:0:0	SEE Marks:60	Course Code: U22MC010CE
Credits:	CIE Marks:40	Duration of SEE: 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
In this subject the students will	Upon the completion of this course
1. Describe various types of natural	students will be able to
resources available on the earth	1. Describe the various types of natural
surface.	resources.
2. Explain the concepts of an	2. Differentiate between various biotic
ecosystem and the biotic and abiotic	and abiotic components of
components of various aquatic	ecosystem.
ecosystems.	3. Examine the values, threats of
3. Identify the values, threats of	biodiversity, the methods of
biodiversity, endangered and	conservation, endangered and
endemic species of India along with	endemic species of India.
the conservation of biodiversity.	4. Illustrate causes, effects, control
4. Explain the causes, effects and	measures of various types of
control measures of various types of	environmental pollutions.
environmental pollutions.	5. Explain the methods of water
5. Describe the methods for water	conservation, causes, effects of
conservation, the causes, effects of	climate change, global warming, acid
global warming, climate change, acid	rain and ozone layer depletion,
rain, ozone layer depletion,	population explosion.
population explosion.	
CO-PO/PSO Mapping	

•••	70 1 07 1 00 mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3					2	3						2		
CO2	2						3						2		
CO3	2						3	2					2	1	
CO4	2					2	3	2					2	1	
CO5	2					2	3	2					2	1	

UNIT-I: Environmental Studies: Definition, importance environmental studies. Natural resources: Water resources; floods, drought, conflicts over water, dams-benefits and problems. Food resources; Effects of modern agriculture, fertilizer-pesticide problems, water logging salinity. Energy resources: Renewable and non-renewable energy resources. Land Resources, soil erosion and desertification.

UNIT-II: Ecosystems: Structure and function of an ecosystem, producers, consumers and decomposers, food chains, food webs, ecological pyramids, aquatic ecosystems (ponds, oceans, estuaries).

UNIT-III: Biodiversity: Genetic, species and ecosystem diversity. Values of biodiversity, threats to biodiversity, endangered and endemic species of India, conservation of biodiversity.

UNIT-IV: Environmental Pollution: Causes, effects and control measures of air pollution, water pollution, soil pollution, noise pollution, thermal pollution and solid waste & e-waste management.

UNIT-V: Social Aspects and the Environment: Water conservation, Climate change, global warming, acid rain, ozone layer depletion. Environmental Impact Assesment, population explosion.

Learning Resources:

- Deswal S. and Deswal A., A Basic Course on Environmental studies, DhanpatRai& Co Pvt. Ltd. 2016
- 2. Benny Joseph, Environmental Studies, Tata McGraw-Hill, 2017
- 3. Suresh K. Dhameja, Environmental Studies, S.K. Kataria& Sons, 2010.
- 4. De A.K., Environmental Chemistry, New Age International, 2003.
- 5. Odum E.P., Fundamentals of Ecology, W.B. Sunders Co., USA, 2004.
- Rajagopalan R., Environmental Studies, Second Edition, Oxford University Press, 2015

The	e break-up of CIE : Int	err	nal T	ests + Assignments + Quizzes		
1.	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2.	No. of Assignments	:	2	Max. Marks for each Assignment	:	5
3.	No. of Quizzes	:	2	Max. Marks for each Quiz Test	:	5

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES.

English Language and Communication Skills Lab

SYLLABUS FOR B.E. I – SEMESTER (Common to all branches)

L:T:P (Hrs/Week) :0:0:2	SEE Marks: 50	Course Code: U22HS111EH
Credits: 1	CIE Marks: 30	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students to:	On completion of the course, students
1. Learn the speech sounds, parts of	will be able to:
speech and distinguish between	1. Speak well using 'generally
vowel and consonant sounds in the	acceptable English' in terms of
English language to reduce mother	pronunciation and use of diction.
tongue influence when speaking	2. Participate effectively in group
English.	discussions, public speaking, debates
2. Understand and follow the rules in	(formal and informal).
debates, group discussions,	3. Analyse, evaluate and infer meaning
interviews.	from different types of texts.
3. Develop reading skills and analyse	
various text types.	

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1				2	3					
CO2									2	3					
CO3									2	3					

1.0 PHONETICS LAB- TOPICS

- **1.1 Introduction to English Phonetics:** Classification of consonants and vowel sounds and related symbols.
- **1.2 Aspects of language learning and ear training activities-** Word stress and intonation.

Longman Dictionary of Contemporary English – 6th Edition, 2020.

2.0 INTERACTIVE COMMUNICATION SKILLS LAB-TOPICS

- **2.1 Group discussion:** Objectives of GD, Types of GDs; Initiating, Continuing, and concluding a GD.
- **2.2 Debate:** Understanding the difference between a debate and a group discussion, essentials of debates.
- 2.3 Public speaking: Dos and don'ts of public speaking. Listening and

analysing speeches of great personalities in history, TED talks, Documentaries and Movies.

3.0 READING SKILLS LAB - TOPICS

- 3.1 Sub-skills of reading- skimming, scanning, extensive and intensive reading.
- 3.2 Teaching different types of texts for comprehension-short stories and technical articles.
- 3.3 Newspaper reading and paraphrasing.

Prescribed textbook for laboratory:

Speak Well: Jayshree Mohanraj, Kandula Nirupa Rani and Indira Babbellapati - Orient Black Swan

Longman Dictionary of Contemporary English - 6th Edition, 2020. (The students will be given the PDF format)

Learning Resources:

- Balasubramanian: A textbook of English phonetics for Indian students, Macmillan, 2008.
- 2. Priyadarshini Patnaik: Group discussion and interviews, Cambridge University Press India private limited 2011.
- 3. Daniel Jones: Cambridge English Pronouncing Dictionary A Definitive guide to contemporary English Pronunciation.
- 4. Reading Cards (Eng400): Orient Black Swan. Reading Squabble Hadfield.

The break-up	of	CI	Ε:
--------------	----	----	----

No. of Internal Tests
 Max. Marks for Internal tests
 Marks for day-to-day laboratory class work
 12

DEPARTMENT OF CHEMISTRY

Chemistry Lab

SYLLABUS FOR B.E. I - SEMESTER

L:T:P(Hrs./week): 0:0:2	SEE Marks:50	Course Code: U22BS011CH
Credits: 1	CIE Marks:30	Duration of SEE: 03 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
The	course will enable the students to:	At the end of the course, students
1.	Describe the quantitative analytical	should be able to:
	techniques	1. Estimate the amount of metals in
2.	Learn the skills to handle the	the given solutions.
	instruments	2. Analyze the hardness, alkalinity and
3.	Apply the theoretical principles in	chloride content of a given water
	experiments	sample.
4.	Examine the accuracy	3. Determine the amount of a
		substance in a given solution by
		conductometry, potentiometry and
		pH metry.
		4. Use the principle of colorimetry in
		the estimation of Permanganate /
		Copper (II) in a given solution.

CO-	CO-PO MAPPING FOR CHEMISTRY LAB													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
1	3	2							2			1		
2	3	2							2			1		
3	3	2							2			1		
4	3	2							2			1		

List of the Experiments:

- Preparation of standard FAS or oxalic acid solution and standardization of KMnO₄ or NaOH solution.
- 2. Estimation of ferrous iron in the given solution by permanganometry.
- 3. Estimation of chromium (VI) in the given solution by standardized FAS.
- 4. Estimation of copper (II) in given solution by hypo.

- 5. Estimation of available chlorine in bleaching powder.
- 6. Estimation of total hardness of given water sample.
- 7. Estimation of alkalinity of a given sample.
- 8. Conductometric acid-base titrations -Determination of strength of given acids (HCI *Vs* NaOH and CH₃COOH *Vs* NaOH).
- Conductometric acid-base titrations- Determination of strength of acids in a given mixture of acids (HCI and CH₃COOH Vs NaOH)
- 10. Determination of strength of a given acid by Potentiometry.
- 11. Determination of concentration of a given FeSO₄ using redox titration by Potentiometry.
- 12. Determination of strength of a given acid by pH metry.
- 13. Determination of strength of permanganate or copper in brass solution by Colorimetry.
- 14. Synthesis of Phenol formaldehyde resin / PANI.
- 15. Chemistry of blue printing.

Text Books:

- 1. G H Jeffery, J Bassett, J Mendham, R C Denney, Vogel's text book of quantitative chemical analysis, Fifth Edition.
- 2. M S Kaurav, Engineering chemistry with laboratory experiments, PHI learning (P) ltd, New Delhi.
- 3. Sunita rattan, Experiments in applied chemistry, S K Kataria & Sons (2010).
- 4. A text book on experiments and calculation Engg. S.S. Dara.

The	e break-up of CIE :		
1.	No. of Internal Tests	:	1
2.	Max. Marks for Internal tests	:	12
3.	Marks for day-to-day laboratory class work	:	18

Duration of Internal Test: 3 Hours

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Programming for Problem Solving Lab

SYLLABUS FOR B.E. I - SEMESTER

(Common to CSE, AI&ML, IT, ECE and EEE)

L:T:P (Hrs./week): 0:0:2	SEE Marks : 50	Course Code: U22ES121CS
Credits: 1	CIE Marks : 30	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. Understand the fundamentals of	On completion of the course, students
programming in C Language	will be able to
2. Write, compile and debug programs	1. Choose appropriate data type for
in C.	implementing programs in C
3. Formulate solution to problems and	language.
implement in C.	2. Design and implement modular
4. Effectively choose programming	programs involving input output
components to solve computing	operations, decision making and
problems.	looping constructs.
	3. Implement search and sort
	operations on arrays.
	4. Apply the concept of pointers for
	implementing programs on dynamic
	memory management and string
	handling.
	5. Design and implement programs to
	store data in structures and files.

CO-PO/PSO Mapping

00-1															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1									1		
CO2	2	2	2	2									3		
CO3	3	2	2	2	1								3		1
CO4	3	2	2	2	1								2	2	
CO5	3	2	2	2	1								3	2	1

Programming Exercise:

- 1. Programs to illustrate operators
- 2. Programs to illustrate selection control statements
- 3. Programs to illustrate loop control statements
- 4. Programs to illustrate nested loop control statements.
- 5. Programs to illustrate functions and recursion

- 6. Programs to illustrate one dimensional arrays, searching and sorting.
- 7. Programs to illustrate two dimensional arrays
- 8. Programs on pointers: pointer to arrays, pointer to functions.
- 9. Functions for string manipulations.
- 10. Programs on structures and unions.
- 11. Finding the number of characters, words and lines of given text file.
- 12. File handling programs.

Learning Resources:

- 1. Forouzan B.A & Richard F. Gilberg, A Structured Programming Approach using C, 3rd Edition (2013), Cengage Learning.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2ndEdition (2006), Prentice-Hall.
- 3. Steve Oualline, Practical CProgramming,3rd Edition(2006),O'Reilly Press.
- 4. Balagurusamy E, Programming in ANSI C, 4th Edition(2008), TMG.

The break-up of CIE:

1. No. of Internal Tests : 1
2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Test: 2 Hours

DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Workshop

SYLLABUS FOR B.E. I – SEMESTER (for ECE)

L:T:P (Hrs./week): 0:0:2	SEE Marks : 50	Course Code: U22ES011ME
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the	At the end of the course, students will be
students to:	able to:
1. know basic workshop	1. create models in Carpentry, Fitting,
processes, adopt safety	Electrical & Electronics and Sheet metal
practices while working with	trades by using the relevant tools.
various tools	2. measure and instead the finished
2. identify, select and use various	components using suitable measuring
marking, measuring, holding,	instruments.
striking and cutting tools &	3. apply basic electrical and electronics
equipments.	engineering knowledge to make simple
	electrical circuits and check their
	functionality along with practice in
	soldering of electronic components.

CO-PO/PSO Mapping

	• • • •		~₽₽…												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2												
CO2	3	2	1												
CO3	3	1	2												

List of the Experiments:

FITTING:

- 1. Template fitting (square fit)
- 2. V-groove fit
- 3. Drilling and Tapping

ELECTRICAL & ELECTRONICS:

- 1. Two lamps in (a) series (b) parallel with 3 pin plug and switches
- 2. Staircase wiring and Tube light wiring
- 3. (a) Identification of electronic components
 - (b) Soldering practice

CARPENTRY:

- 1. Half-lap joint
- 2. Dove-tail joint
- 3. Bridle joint

SHEET METAL:

- 1. Rectangular box
- 2. Rectangular scoop with handle
- 3. Making a funnel with soldering

Additional Experiments

- 1. Fitting: Assembly of pulley on a shaft with key(demo)
- 2. Electrical & Electronics: LT Distribution with loads (Demo)
- 3. Carpentry: Wood turning operation (demo)
- 4. Sheet Metal: Making a T-Joint (Demo).

Learning Resources:

- Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of Workshop Technology" Vol-I 2008 & Vol-II 2010 Media Promoters & Publishers Pvt. Limited, Mumbai.
- 2. Kalpakjian S. and Steven S. Schmid, "Manufacturing Engineering and Technology" 4th Edition, Pearson Education India Edition, 2002.
- 3. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education 2008.
- 4. P. Kannaiah& K. L. Narayana "Workshop manual" 2nd Ed., Scitech publications (I) Pvt. Ltd., Hyderabad.
- 5. B.L. Juneja, "Workshop Practice", Cengage Learning India Pvt. Limited, 2014.
- 6. www.technologystudent.com

The	brea	k-up	of	CIE	:
-----	------	------	----	-----	---

No. of Internal Tests
 Max. Marks for internal tests
 Internal Tests

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Test: 2 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Introduction to Electronics Engineering

SYLLABUS FOR B.E. CSE I - SEMESTER

L:T:P (Hrs/week): 3:0:0	SEE Marks : 60	Course Code: U22ES110EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hrs

CC	OURSE OBJECTIVES		COURSE OUTCOMES
1. T	Γο understand the	On	completion of the course, students will be able
С	characteristics and	to	
C	operation of different	1.	Employ different electronic devices to build
е	electronic devices.		electronic circuits such as rectifiers, filters,
2. T	To study the working of		voltage regulators.
r	ectifiers, transistor	2.	Describe the functioning of electronic circuits
а	amplifiers, operational		such as amplifiers and oscillators.
а	amplifiers and	3.	Have the knowledge of certain electronic
C	oscillators.		devices such as SCR, UJT.
3. T	Γο study the working	4.	Convert real time electrical signals into
p	principle of different		corresponding signals using different types of
t	ypes of transducers.		transducers.
		5.	Measure waveform details from CRO.

CO-PO/PSO Mapping

	oo i ori oo mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1					1	1			3	1	
CO2	3	2	3	1					1	1			2	1	
CO3	3	2	2	1					2	1			2	1	
CO4	3	2	2	1					1	1			2	1	
CO ₅	3	2	1	1					1	1			2	1	

UNIT - I : Semiconductor Diodes

P-N Junction diode, Biasing, Diode resistance, Transition capacitance and Diffusion capacitance, Applications, Rectifiers: Half wave and Full wave Rectifiers (Bridge, center tapped), ripple factor and efficiency, comparison of rectifiers, Filters: Types of filters, Rectifiers with and without filters, Zener Diode: Characteristics, Zener diode as a voltage regulator, Block diagram of Regulated Power Supply.

UNIT - II: Transistors

Bipolar Junction Transistor (BJT), Construction, Types, Working principle, Configurations, Transistor parameters, Transistor as an amplifier, Problems, h-parameter equivalent circuits. Field Effect Transistor(FET),

Construction and working of FET, Metal Oxide Semiconductor FET (MOSFET), Types (depletion and enhancement), MOSFET characteristics, Comparison of BJTs with MOSFET

UNIT - III : Feedback Concepts

Basic concept of feedback, Types of feedback, Feedback topologies, General characteristics of Negative feedback amplifiers; Oscillators: Classification, LC Type and RC Type Oscillators and Crystal Oscillators (Qualitative treatment only)

UNIT - IV : Operational Amplifiers

Introduction, Characteristics of ideal Operational amplifier, Operational amplifier stages, Parameters, Open loop and closed loop configurations, Applications (Adder, Subtractor, Voltage follower, Integrator, Differentiator)

UNIT - V : Data Acquisition systems

Introduction, Classification of transducers, Capacitive transducer, Inductive transducer, LVDT, Electrical strain gauges, Temperature transducers (Thermocouple), Piezoelectric transducer, Photoelectric transducer; Industrial Devices: SCR, UJT - Construction, Working principle and Characteristics only; Display Systems: Constructional details of C.R.O and Applications.

Learning Resource:

- S.Shalivahan, N. Suresh Kumar, A Vallavea Raj Electronic Devices and Circuits Tata McGraw Hill, 2003.
- 2. Boylestad and Nashelsky, "Electronic Devices and Circuits", Eleventh Edition, Pearson.
- Jacob Milman & C., Halkias, Electronic devices Eighth Edition, Reprinted, Mc Graw Hill, 1985.
- 4. Ramakanth A. Gayakwad, Op-AMPS and Linear Integrated Circuits, 3rd edition, Prentice Hall of India,1985.
- 5. https://nptel.ac.in/courses/117103063/

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Introduction to Electronics Engineering Lab

SYLLABUS FOR B.E. CSE I - SEMESTER

L:T:P (Hrs/week): 0:0:2	SEE Marks: 50	Course Code: U22ES111EC
Credits: 1	CIE Marks: 30	Duration of SEE : 3 Hrs

	COURSE OBJECTIVES	COURSE OUTCOMES						
1.	Verify the characteristics of various electronic devices.	On completion of the course, students will be able to						
2.	Understand the functioning of voltage regulator and rectifiers.	Verify input/output characteristics of active devices and to compute their						
3.	Perform different arithmetic operations using operational amplier.	parameters. 2. Analyse the functioning of voltage						
4.	Understand the working of logic gates to implement adder and subtractor.	regulators, rectifiers and oscillators. 3. Perform operations such as addition, subtraction, comparison of voltage levels using operational amplifier.						
		4. Implement digital adders and subtractors using logic gates.						

CO-PO/PSO Mapping

•••	co i eri co mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1					1						
CO2	3	2	3	1					1						
CO3	3	2	3	1					1						
CO4	3	2	3	1					1						

List of Experiments:

- 1. Characteristics of Semiconductor diodes (Si and Zener)
- 2. CRO Applications
- 3. Full wave rectifier with and without filter
- 4. Zener Voltage Regulator
- 5. Characteristics of BJT (CB and CE)
- 6. Characteristics of FET
- 7. RC Phase shift oscillator
- 8. Hartley oscillator
- 9. Calpitt's Oscillator
- 10. Applications of Operational Amplifier: Adder, Subtractor, Comparator.

New / Additional experiments planned

- 1. Diode Clipping Circuits
- 2. Diode Clamping Circuits

Learning Resources:

- Paul B. Zbar, Albert P. Malvino , Michael A. Miller, Basic Electronics, A Text-Lab Manual, 7th Edition, TMH, 1994.
- 2. Paul B. Zbar, Industrial Electronics, A Text Lab Manual, 3rd Edition, TMH, 1983.
- 3. https://nptel.ac.in/courses/122106025/

The break-up of CIE:

1. No. of Internal Tests : 1

2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD – 500 031. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING OF INSTRUCTION AND EXAMINATION (D. 22). The FORE SECOND SEMESTER (2022).

SCHEME OF INSTRUCTION AND EXAMINATION (R-22):: B.E. - ECE: SECOND SEMESTER (2022-23)

B.E (ECE) II SEMESTER											
		Scheme	of Insti	ruction							
Course Code	Name of the Course	Hou	s per W	eek	Duration	Maximu	Credits				
		L	T	P/D	in Hrs	SEE	CIE	Cre			
	THEORY										
U22BS210MA	Differential Equations & Complex Analysis	3	-	-	3	60	40	3			
U22BS210PH	Quantum Mechanics and Materials Science	3	-	-	3	60	40	3			
U22ES210CS	Problem Solving through Object Oriented Programming	3	-	-	3	60	40	3			
U22ES030CE	Basic Engineering Drawing	1	-	2	3	60	40	2			
U22PC010EC	Basic Circuit Analysis	3	-	-	3	60	40	3			
U22ES010EE	Basic Electrical Engineering	2	-	-	3	60	40	2			
U22MC010ME	Introduction to Entrepreneurship	1	-	-	2	40	30	-			
	PRACTICALS										
U22BS211PH	Engineering Physics Lab	-	-	2	3	50	30	1			
U22ES211CS	Problem Solving through Object Oriented Programming Lab	-	-	2	3	50	30	1			
U22PC111EC	Basic Circuit Analysis Lab	-	-	2	3	50	30	1			
U22ES011EE	Basic Electrical Engineering Lab	-	-	2	3	50	30	1			
	TOTAL	16	-	10		600	390	20			
	GRAND TOTAL	26 990									

Left over hours will be allocated for : Sports / Library / PDC / Mentor – Mentee Interaction / CC / RC / TC

Note: B.E. (Regular) Students shall complete one NPTEL Certificate Course equivalent to 2 Credits weightage during their I to VI Semesters.

DEPARTMENT OF MATHEMATICS

Differential Equations and Complex Analysis

SYLLABUS FOR B.E. II – SEMESTER (Common to Civil, EEE, ECE, Mech)

L:T:P (Hrs./week): 3:0:0	SEE Marks :60	Course Code: U22BS210MA
Credits: 3	CIE Marks :40	Duration of SEE: 3 Hours

The course will enable the students to: 1. Solve first order differential equations using elementary techniques and learn its applications. 2.Use the various higher order homogeneous and non-homogeneous.

COURSE OBJECTIVES

- 2.Use the various higher order homogeneous and non-homogeneous linear differential equations with constant coefficients to solve it and apply on electrical circuits
- **3. Understand** the Analytic functions, conditions and harmonic functions.
- **4. Evaluate** a line integral of a function of a complex variable using Cauchy's integral formula, and how to evaluate Taylor's and Laurent Series.
- **5. Study** the concepts of matrices, Eigen values and Eigen vectors, Diagonalization.

COURSE OUTCOMES

On completion of the course, students will be able to

- Identify the suitable I.F and solve differential equations, model the real time electrical engineering problems viz., RC & LR Circuits into differential equations and solve.
 Apply various higher order Linear
- 2. Apply various higher order Linear Differential equations, to solve LC and LCR circuits.
- **3. Apply** the condition(s) for a complex variable function to be analytic and/or harmonic and to construct an Analytic function.
- **4. Evaluate** complex integrals by Cauchy's theorem and Cauchy's Integral formula and define singularities of a function and to expand a given function as a Taylor's / Laurent's series.
- **5.** Find the rank of a given matrix, diagonalizable a given matrix.

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2										1	1		
CO2	3	2										1	1		
CO3	3	2										1	1		
CO4	3	2										1	1		
CO5	3	2										1	1		

UNIT-I: (10 classes)

ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

Exact first order differential equations - Integrating factors- Clairaut's equation - Applications of First Order Differential Equations - Orthogonal trajectories (Cartesian families) – LR and RC Circuits.

UNIT-II: (12 Classes)

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Solutions of Homogeneous and Non Homogeneous linear equations with constant coefficients- Method of Variation of Parameters –Applications of linear differential equations to LCR circuits

UNIT-III: (08 classes)

COMPLEX VARIABLES (DIFFERENTIATION)

Limits and Continuity of function - Differentiability and Analyticity - Necessary & Sufficient Condition for a Function to be Analytic - Milne-Thompson's method -Harmonic Functions.

UNIT-IV: (10 classes) COMPLEX INTEGRATION

Complex Integration- Cauchy's Theorem - Extension of Cauchy's Theorem for multiply connected regions- Cauchy's Integral Formula - Power series - Taylor's Series - Laurent's Series (without proofs) - Poles and Residues.

UNIT-V: (12 classes)

MATRICES

Rank of a Matrix- Linearly independence and dependence of Vectors - Characteristic equation- -Eigen values and Eigenvectors - Cayley - Hamilton Theorem (without proof)- Diagonalization using Similarity Transformation.

Learning Resources:

Text Books:

- 1. Advanced Engineering Mathematics 3rd Edition, R.K.Jain & S.R.K.Iyengar, Narosa Publishing House.
- 2. Higher Engineering Mathematics 40th Edition Dr. B.S Grewal, Khanna Publishers.
- 3. A Text book of Engineering Mathematics, N.P.Bali & Manish Goyal, Laxmi Publications.

Reference Books:

- 1 Advanced Engineering Mathematics, by Wylie & Barrett, Tata Mc Graw Hill, New
- 2 Advanced Engineering Mathematics, 8th Edition by Erwin Kreyszig, John Wiley & Sons, Inc.
- 3 Complex Variables and applications, J.W.Brown and R.V.Churchill, 7th Edition, Tata Mc Graw Hill,2004.

Online Resources:

- 1 http://mathworld.wolfram.com/topics
- 2 http://www.nptel.ac.in/course.php

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF PHYSICS

Quantum Mechanics and Materials Science

SYLLABUS FOR B.E. II- SEMESTER (Common to ECE and EEE)

L:T:P(Hrs/week):3:0:0	SEE Marks:60	Course Code: U22BS210PH
Credits: 3	CIE Marks:40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Demonstrate the use of crystal	On completion of the course, students
	structure in device applications.	will be able to
2.	Appreciate the advantages of	1. Classify crystals based on their
	quantum mechanics over classical	structure and their appropriate uses
	mechanics.	2. Apply Schrodinger wave equations
3.	Arrive at the expressions for carrier	to quantum mechanical systems.
	concentration in semiconductors	3. Articulate the concepts of
4.	Comprehend lasing action and	semiconductor theory for various
	relate the use of lasers in optical	electronic devices
	fiber communication	4. Compare different types of lasers
5.	Choose appropriate dielectric,	and summarize merits and demerits
	magnetic and superconducting	of optical fiber communication
	materials for required applications	5. Select various dielectric, magnetic
		and superconducting materials for
		specific applications in engineering.

CO-PO Mapping

		. – P P .											
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1
CO1	3	3										1	1
CO2	2	2										1	1
CO3	3	2										1	1
CO4	3	1										1	1
CO5	2	1										2	1

UNIT-I: FUNDAMENTALS OF CRYSTAL STRUCTURE (12 hours)

Introduction to crystallography-Miller Indices, inter planar spacing $(d_{hkl}), Bragg's law, x- ray diffraction methods: rotating crystal method and Debye-Scherrer method, distinction between crystalline, polycrystalline, and amorphous materials, Diamond crystal Structure, Point Defects and their effects, expression for concentration of Schottky and Frankel defects and applications relevant to electronics and communication engineering.$

UNIT-II: QUANTUM MECHANICS (12 hours)

De Broglie Hypothesis, wave packet, group velocity and phase velocity, Davisson and Germer's experiment, G.P. Thomson experiment, wave function and its significance, Schrodinger time dependent and independent wave equations, quantum mechanical operators, Eigen values and Eigen functions of infinite square-well potential (particle in a box). Potential barrier-quantum tunnelling problem. Introduction to bra and ket vector notation, representation of Qubit, applications of quantum computing.

UNIT-III: SEMICONDUCTOR PHYSICS (12 hours)

Classical free electron Drude theory and its limitations, Somerfield theory, Fermi-Dirac Statistical distribution, Density of states, Kronig-Penney model, formation of energy bands, E-k diagram, types of semiconductors, fermi energy level, variation of Fermi energy level with temperature and doping concentration, expression for equilibrium carrier concentration in intrinsic and extrinsic semiconductors, conductivity of intrinsic and extrinsic semiconductors, law of mass action, Hall effect and its applications. Applications of semiconductor devices to computer architecture.

UNIT-IV: LASERS AND OPTICAL FIBRES (12 hours)

Lasers: induced absorption, spontaneous and stimulated emissions, Einstein's coefficients; characteristics of lasers, population inversion, meta-stable states, pumping mechanisms, components of laser, Properties of laser beam, types of lasers, construction and working of Ruby laser and semiconductor laser, advantages and optoelectronic applications of lasers.

Optical Fibers: principle of optical fiber, propagation of light in optical fiber, numerical aperture, acceptance angle, types of optical fibers, V-number, signal losses in optical fibers: Attenuation-absorption, scattering, bending, alignment losses, Signal distortion: intermodal and intra model dispersions, block diagram of optical communication system, advantages and application of optical fibers including broad band communications.

UNIT-V: **MATERIALS SCIENCE** (12 hours)

Dielectric Materials: Polar and non-polar dielectrics, types of dielectric polarizations, Expressions for electronic polarizability and ionic polarizability, Frequency and temperature dependence of dielectric polarizations, electronic applications of dielectric materials.

Magnetic Materials: Origin of magnetism, Ferromagnetic materials, antiferromagnetic materials and ferri-magnetic (ferrites) materials, Weiss

molecular field theory of ferromagnetism, magnetic domains, hysteresis curve, soft and hard magnetic materials and their applications including electro-magnetic shielding.

Superconductivity: Introduction to superconductivity, General properties of superconductors, Meissner effect, Type I and Type II superconductors-fundamentals of BCS Theory - Josephson's Junctions-Josephson's effects—SQUIDS- Applications of superconductors in communications.

Learning Resources:

- Charles Kittel, Introduction to Solid State Physics, 7th Edition, John Wiley & Sons, 2008
- S O Pillai, Solid State Physics, 8th edition, New Age International Publishers, 2018
- 3. M.N. Avadhanulu and P.G. Kshirsagar and TVS Arun Murthy, A Textbook Engineering Physics, 11th Edition, S. Chand, 2018.
- 4. Senior, Optical Fiber Communications: Principles and Practice, 3rd edition, Pearson, 2010
- 5. NPTEL MOOCS, Introduction to Solid State Physics, Satyajit Banerjee

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Problem Solving through Object Oriented Programming

SYLLABUS FOR B.E. II - SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U22ES210CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. Understand basic notions of object oriented programming.	On completion of the course, students will be able to
Acquire object-oriented problem solving skills.	Explain Object Oriented Programming concepts using C++.
3. Write programs in C++.	 Design programs using functions, input/output operations, decision making and looping constructs. Create classes using object oriented design principles. Design programs using inheritance, polymorphism and exception handling.
	5. Describe basic data structures using OOP concepts

CO-PO/PSO Mapping

00-1	70-1 071 30 Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2			1									2		
CO2	3			2									3		
CO3	3	3	2	2									3		
CO4	3	3	3	2									3		
CO ₅	2	3	3	1									2		

UNIT-I

Introduction to C++: Programming paradigms, Object Oriented Programming Concepts, Advantages and Applications of OOPs.

Variables and Assignments, Input and Output, Data Types, Expressions, Simple Flow Control and Control Structures.

Defining Classes: Structures, Classes, Abstract Data Types.

UNIT-II

Functions: Call by Value, Call by Reference, Parameters using Procedural Abstraction, Testing and Debugging Functions.

I/O Streams as an introduction to Classes and Objects.

Arrays: Introduction to Arrays, Arrays in Functions, Programming with Arrays and Multidimensional Arrays.

UNIT-III

Strings, Pointers and Dynamic Arrays, Recursion, Constructors, Destructors, Copy Constructors.

Static Polymorphism: Function and Operator Overloading, Friend Functions.

UNIT-IV

Inheritance: The Notion of Inheritance, Derived Classes, Overriding, Virtual Base Class.

Runtime Polymorphism, Virtual Functions.

Function Templates and Class Templates.

UNIT-V

Exception Handling: Exception Handling Basics, Programming Techniques for Exception Handling

Pointers and Linked Lists: Nodes and Linked Lists, Implementation of Stacks and Queues using Arrays and Linked Lists, Operations on Linked Lists- Inserting a Node, Deleting a Node, Searching for a Node.

Learning Resources:

- 1. Walter Savitch, "Problem solving with C++", 6th Edition, Pearson Education, 2009.
- 2. Behrouz A.Forouzan, Richard F. Gilberg, "Computer Science, A Structured Approach using C++", 2nd Edition, Cengage Learning, 2010.
- 3. E. Balaguruswamy, "Object-Oriented Programming with C++", 6th Edition, Tata Mc-Graw Hill, 2013.
- 4. S.B. Lippman. J Lajoie, "C++ Primer" 3rd Edition, AW Publishing Company, 2007.
- 5. Paul Dietel, Harvey Dietel, "C How to Program", 6th Edition, PHI, 2010.
- 6. Bjarne Stroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley, 2013.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

COURSE OUTCOMES

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF CIVIL ENGINEERING

Basic Engineering Drawing

SYLLABUS FOR B.E. II-SEMESTER (Common to EEE & ECE)

L:T:P (Hrs./week): 1:0:2	SEE Marks: 60	Course Code: U22ES030CE				
Credits: 2	CIE Marks: 40	Duration of SEE: 3Hrs				

Objectives of this course are to:	At the end of the course,
1. Impart skills in using drawing	students will be able to:
instruments to convey exact and complete information of the object.	Understand the fundamentals of drawing.
2. Construct conic sections and regular polygons.	2. Draw the orthographic projections of points and straight lines.
3. Construct the orthographic projections of points, lines, planes and solids.	3. Draw the orthographic projections of planes inclined to both reference planes.
4. Draw sections and development of regular solids.	4. Draw the orthographic projections of solids inclined to both reference
5. Visualize and construct isometric	planes.
projections from orthographic	5. Draw the isometric projections of
projections of regular solids.	lines, planes and solids.
CO DO/DSO Manning	

CO-PO/PSO Mapping

COURSE OBJECTIVES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2								1			2		1
CO2	2	1			3					1			2		1
CO3	2	1								1			2		1
CO4	3	2								1			2		1
CO5	2	2			3					1			2		1

UNIT-I: Introduction to Engineering Drawing: Necessity of Engineering Drawing for engineers, Use of Drawing Instruments, Types of Lines, Lettering practice, Dimensioning and its methods, Conic sections by eccentricity method, Regular polygons given the length of side.

UNIT-II: Orthographic Projections: Principles of orthographic projections, conventions, projections of points placed in different quadrants.

Projections of straight lines inclined to one and two reference planes placed in first quadrant only. Traces (By conventional methods only).

UNIT-III: Projections of Planes: Projections of perpendicular planes, oblique planes and their traces.

UNIT-IV: Projections of Regular Solids: Projections of prism, cylinder, pyramid and cone in simple positions and axis inclined to one plane. Concept of development of solids.

UNIT-V: Isometric Projections: Principles of isometric projections – Isometric scale, Isometric axes, Isometric planes, Isometric view. Isometric views of lines, planes, regular solids, and combination of two solids.

Learning Resource:

- 1. Bhatt N.D. "Elementary Engineering Drawing", Charotar Publishers, 2014.
- 2. Thomas E French, Charles J Vierck, Robert J. Foster, "Engineering Drawing and Graphic Technology", McGraw Hill Education, 1993.
- 3. Gill P.S. "Engineering Drawing: Geometrical Drawing", SK Kataria & sons, 2012.
- 4. Venugopal.K "Engineering Drawing and Graphics Plus Autocad", New Age International (P) Ltd., New Delhi, 2011.
- 5. Siddiquee A.N "Engineering Drawing with a Primer on Autocad", Prentice hall of India Ltd., New Delhi, 2004.
- 6. Basanth Agrawal, Agrawal C.M "Engineering Drawing" Second Edition, Tata McGraw Hill, 2013
- 7. BVR Gupta, M Raja Roy, "Engineering Drawing with AutoCad", IK Int Pvt Ltd, 2009.
- 8. NPTEL Course (www.nptel.ac.in)
- 9. Virtual labs (www.vlab.co.in)

The	hreak-un	of CIF :	Internal Test	ts + Assignments	: + Ouizzes
TIIC	DI Cak-up	OI CIL .	THICHIAI ICS	is i Assignincinis	o Luizzos

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Basic Circuit Analysis

SYLLABUS FOR B.E. II - SEMESTER

L:T:P(Hrs/week): 3:0:0	SEE Marks:60	Course Code: U22PC010EC
Credits: 3	CIE Marks:40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
	 On completion of the course, students will be able to Calculate circuit parameters of any given circuit. Solve the given circuits using network theorems. Determine two port network parameters from given network Analyze given circuit in time domain using Transient and steady state analysis. Design and analyze a given circuit
	in frequency domain.

CO-PO/PSO Manning

UU-1	0/1	30 IVI	αρριι	'9											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	2									3		
CO2	2	3	3	2									3		
CO3	2	3	3	2									3		
CO4	2	3	3	2									3		
CO5	2	3	3	2									3		

UNIT - I : Basic concepts of Electric Circuits:

Classification of Basic circuit elements, Dependent and independent voltage and current sources, Energy and power, Ohm's law, Kirchhoff's laws, network reduction techniques, nodal and super nodal analysis, mesh and super mesh analysis.

UNIT - II: Network Theorems to DC and AC circuits:

Thevenin's and Norton's theorem, maximum power transfer theorem, Super position theorem, Reciprocity theorem, Tellegen's theorem, Milliman's theorem, compensation and substitution Theorem.

UNIT - III : Two port networks:

z,y,h,g, ABCD parameters. Equivalence of two port networks, conversion

between network parameters. Inter connection of two ports.

UNIT – IV: Time domain analysis of circuits:

Response of circuits for Unit step and sinusoidal input: Transient and Steady state response of circuits: Zero input response (ZIR), Zero state response (ZSR), and complete response. Transient and steady state analysis of RL, RC and RLC circuits for unit step, sinusoidal inputs.

UNIT - V : Frequency domain analysis:

Passive Filters: classification of filters, RC and RL response to Step, Pulse, Square, Exponential and Ramp inputs. Integrating and differentiating circuits.

Resonance: Analysis of Series and Parallel resonance, Q-factor, Selectivity and bandwidth.

Learning Resources:

- William H. Hayt, Jr., Jack E. Kemmerly and Steven M. Durbin, Engineering Circuit Analysis, 5th edition, McGraw Hill, 2010.
- 2. Van Valkenberg M.E., Network Analysis, PHI, New Delhi, 3rd edition 2002.
- Chakrabarti, Ciruit Theory Dhanapati Rai & Co(Pvt.)Ltd., Educational & Technical Publishers.
- 4. Charles A. Desoer and Ernest S Kuh, Basic Circuit Theory, McGraw Hill, 2009.
- Raymond A. DeCarlo and Penmin Lin, Linear Circuit Analysis, 2nd edition, Oxford Univ. Press, 2003.
- 6. Lawrence P. Huelsman, Basic Circuit Theory, 3rd edition, 2009.

The	The break-up of CIE: Internal Tests + Assignments + Quizzes						
1.	No. of Internal Tests	: 2	Max. Marks for each Internal Test	: 30			
2.	No. of Assignments	: 3	Max. Marks for each Assignment	: 5			
3.	No. of Quizzes	: 3	Max. Marks for each Quiz Test	: 5			

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Basic Electrical Engineering

SYLLABUS FOR B.E. II – SEMESTER (Common to CSE and ECE Branches)

L:T:P(Hrs/week): 2:0:0	SEE Marks:60	Course Code: U22ES010EE
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To provide an	On completion of the course, students will be able
understanding of basics in Electrical circuits 2. To explain the working	 Analyze Electrical Dc circuits using different analyzing methods and theorems.
principles of Electrical Machines.	Analyze Electrical single phase and three phase AC circuits
maoriires.	Comprehend the working principles of DC machines
	 Comprehend the working of single phase transformer and various Electrical switchgear, electrical energy consumption and power factor improvement
	5. Comprehend the working principles of AC machines

CO-PO/PSO Mapping

•••	• • • •		~₽₽…												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1									1			
CO2	3	2	1									1			
CO3	3	2	1									1			
CO4	3	2	1									1			
CO5	3	2	1									1			

UNIT-I: D.C. Circuits:

Electrical circuit elements (R, L and C), independent voltage and current sources, Kirchhoff current and voltage laws, Source transformation, Mesh Analysis, Nodal analysis, Superposition theorem, Thevinin's and Norton's Theorem, Maximum power transfer theorem, Tellegen's theorem.

UNIT-II: A.C. Circuits:

Representation of sinusoidal waveform - peak and rms values, form factor, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac series combinations of R-L-C circuits, Three-phase balanced circuits, voltage and current relations

in star and delta connections, analysis of three phase balanced star and delta connected loads.

UNIT-III: DC Machines:

Construction, Working principle of DC Generator and DC motor , EMF equation, Types of DC Generators & motors, Torque in a DC motor, Torque – speed characteristic of DC Shunt motor, Speed control of DC shunt motor.

UNIT-IV: Single Phase Transformers and Electrical Installation:

Principle of operation, Ideal and practical transformer on No-load and Load, Equivalent circuit, losses in transformers, efficiency.

Components of LT Switchgear: Switch fuse unit (SFU), MCB, Earthing, elementary calculations for Energy consumption, power factor improvement.

UNIT-V: Induction Motors and Stepper Motors:

Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, torque derivation, losses and efficiency, torque-slip characteristics.

General construction, working and applications of Stepper motor and BLDC motor.

Learning Resources:

- D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill. 2010.
- 2. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
- 3. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
- 4. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 5. V.K Mehta, Rohit Mehta, "Principles of Electrical Engineering and Electronics", S Chand & Company Ltd, 2006.
- 6. J.B. Guptha, A course in electrical installation estimating and costing, reprint 2013, published by S.K. Kataria & Sons.
- 7. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

The break-	up of CIE	: Internal	Tests +	Assignments	+ Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF MECHANICAL ENGINEERING

Introduction to Entrepreneurship

SYLLABUS FOR B.E. II - SEMESTER

L:T:P(Hrs/week): 1:0:0	SEE Marks:40	Course Code: U22MC010ME
Credits : -	CIE Marks:30	Duration of SEE: 2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES				
The objective of the course is to	On completion of the course, students				
1. inspire students develop an	will be able to				
entrepreneurial mind-set, educate	1. get awareness about				
about the resources and schemes	entrepreneurship and potentially				
available to start enterprises in	become an entrepreneur.				
India.	2. discern the characteristics required				
	to be a successful entrepreneur				
	3. know the importance of effective				
	communication.				
	4. demonstrate effective sales skills				

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1									3	2	3	2			
CO2		2							2	2	1			2	
CO3											3				
CO4			2					1		2	1	1			2

UNIT-I:

Sources of new ideas, techniques for generating ideas.

Team formation, how entrepreneurship has changed the country and world, entrepreneurial myths, E-cells and their significance, success story of entrepreneurs, eg: Practo, global entrepreneurs, entrepreneurial journeys, challenges, and successes, characteristics of a Successful Entrepreneur, entrepreneurial styles, introduction to business model.

Unit-II:

Importance of effective communication for entrepreneurs, communication barriers, miscommunication, incorrect assumptions about people, importance of listening, design thinking-a problem solving process, sales skills, understanding the customer-centric approach, personal selling techniques, show and tell, elevator pitch, managing risks and learning from failures, women entrepreneurs.

Learning Resources:

- 1. Bruce R. Barringer and R. Duane Ireland, "Entrepreneurship: successfully launching new ventures", 3rd edition, Pearson Prentice Hall, 2009.
- 2. P. Denning and R. Dunham, "The Innovator's Way", MIT Press: Cambridge, Massachusetts, 2010.
- 3. Arya Kumar, "Entrepreneurship", Pearson Education, Delhi, 2012.
- 4. Michael H. Morris, D.F.Kuratko, J G Covin, "Corporate Entrepreneurship and Innovation", Cengage learning, New Delhi, 2010.
- 5. Peter F. Drucker, "Innovation and Entrepreneurship", Routledge Classics, 2015.
- 6. Eric Ries, "The Lean Start-up", Currency, 1st edition, 2011.

The break-up of CIE: Internal Tests + Assignments + Quizzes

Web Resources:

7. http://www.learnwise.org

	•	<u> </u>		
1.	No. of Internal Tests	: 1 Max. Marks for each Internal Tests	:	20
2.	No. of Assignments	: 1 Max. Marks for each Assignment	:	5
3.	No. of Quizzes	: 1 Max. Marks for each Quiz Test	:	5

Duration of Internal Tests: 1 Hour

DEPARTMENT OF PHYSICS

Engineering Physics Lab

SYLLABUS FOR B.E. II - SEMESTER (Common to ECE and EEE)

L:T:P(Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U22BS211PH
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

	COURSE OBJECTIVES		COURSE OUTCOMES
1.	to study and discuss the	1.	Conduct experiment independently
	characteristics of a given device		and in team to record the
2.	to identify probable errors and take		measurements
	in the readings and known possible	2.	Outline the precautions required to
	precautions		be taken for each experiment
3.	to compare the experimental and	3.	Compare the experimental results
	theoretical values and draw possible		with standard values and estimate
	conclusions.		errors
4.	To interpret the results from the	4.	Draw graphs and interpret the
	graphs drawn using experimental		results with respect to graphical
	values.		and theoretical values
5.	To write the record independently	5.	Write the summary of the
	with appropriate results.		experiment and draw appropriate
			conclusions

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1
CO1	2								2			2	1
CO2	3											1	1
CO3	2	2										1	1
CO4	3											1	1
CO5	2							1				2	1

List of the Experiments:

- 1. Determination of wavelength of He-Ne lasers.
- Comparative study I-V characteristics of P-N Junction diode and Zener Diode
- 3. Calculation of numerical aperture, acceptance angle and power loss due to bending of an optical fibre.
- 4. Determination of energy gap of a given semiconductor by four probe method
- 5. Study of I-V characteristics of solar cell and to calculate fill factor and

- efficiency
- 6. Determination of Hall's coefficient using Hall's effect
- 7. Determination of e/m of an electron by Thomson's method
- 8. Study of resonance in LCR series circuits and to find resonant frequency & Q- factor
- 9. Study of resonance in LCR parallel circuits and to find resonant frequency & Q- factor
- 10. Estimation of Thermistor constants
- 11. Determination of Seebeck coefficient
- 12. Helmholtz coil –calculation of magnetic field along the axis of a solenoid
- 13. B-H curve-estimation of Hysteresis loss of a ferromagnetic sample

*Each student should perform at least 10 (Ten) experiments.

The break-up of CIE:

1. No. of Internal Tests : 1

2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Tests: 3 Hours

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Problem Solving through Object Oriented Programming Lab

SYLLABUS FOR B.E. II - SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U22ES211CS
Credits: 1	CIE Marks: 30	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES							
1. Write, compile and	On completion of the course, students will be able							
debug programs in	to							
C++.	1. Write and debug programs in C++ language							
2. Formulate problems	11 1 31 .							
and implement in C++.	decision and looping constructs to develop C++							
3. Acquire skills to solve	programs							
computing problems.	Implement OOP functionalities such as class, overloading, dynamic memory allocation							
	4. Develop programs using inheritance,							
	polymorphism, file I/O, templates and exception							
	handling techniques.							
	5. Implement operations on basic data structures							

CO-PO/PSO Mapping

CO-F	'U/P	SO IVI	appıı	ıg											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	3									3		
CO2	2	2	2	2									2		
CO3	3	3	2	3									3		
CO4	3	2	2	2	1								3		
CO ₅	3	2	1	2	1								2		

Programming Exercise:

- 1. Programs on matrix and complex numbers using classes.
- 2. Programs using constructors, destructors and copy constructors.
- 3. Programs on dynamic memory allocation for arrays.
- 4. Programs on static data members and string manipulations.
- 5. Programs on friend class.
- 6. Programs on function overloading and operator overloading.
- 7. Programs on inheritance.
- 8. Programs on virtual functions, dynamic polymorphism.
- 9. Programs on function templates, class templates and exception handling.

- 10. Programs on bubble sort, selection sort and insertion sort.
- 11. Program on operations in a singly linked list.
- 12. Program on implementation of stacks and queues using arrays and linked list.

Learning Resources:

- 1. Walter Savitch, "Problem solving with C++",6th Edition, Pearson Education, 2009.
- Behrouz A.Forouzan, Richard F. Gilberg, "Computer Science, A Structured Approach using C++", 2nd Edition, Cengage Learning, 2010.
- 3. E. Balaguruswamy, "Object-Oriented Programming with C++", 6th Edition, Tata Mc-Graw Hill, 2013.
- 4. S.B.Lippman. J Lajoie , "C++ Primer" 3rd Edition, AW Publishing Company, 2007.
- 5. Paul Dietel, Harvey Dietel, "C How to Program", 6th Edition, PHI, 2010.
- 6. Bjarne Stroustrup, "The C++ Programming Language", 4th Edition, Addison- Wesley, 2013.

The break-up of CIE:

1. No. of Internal Tests : 1

2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Test: 2 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Basic Circuit Analysis Lab

SYLLABUS FOR B.E. II - SEMESTER

L:T:P(Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U22PC111EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES						
To apply the concepts of circuit theory	On completion of the course, students						
for a given complex circuit and verify its	will be able to						
response using discrete components and MULTISIM.	 Analyze the given circuits using network theorems. 						
	2. Study the performance of circuits in frequency domain.						
	3. Determine different two port network parameters for a given network.						
	4. Simulate and find the response of a given circuit using MULTISIM.						

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	2	2								3		
CO2	2	3	3	2	2								3		
CO3	2	3	3	2	2								3		
CO4	2	3	3	2	2								3		

List of Experiments:

- 1. Verification of Kirchhoff's Laws, Nodal and Mesh analysis
- 2. Verification of Thevenin's theorems and maximum power transfer theorem
- 3. Verification of superposition theorem
- 4. Verification of Tellegen's theorem
- 5. Design & verification of Series Resonance
- 6. Design & verification of Parallel Resonance
- 7. Measurement of two-port network parameters

Part -B (using MULTISIM)

- 1. Verification of Nodal and Mesh Analysis in the presence of dependent sources.
- 2. Verification of Thevenin's & maximum power transfer theorem in the presence of dependent sources.
- 3. Verification of Norton's theorems in the presence of dependent sources.
- 4. Verification of superposition & Tellegen's theorem in the presence of dependent sources.
- 5. Transient response of RL and RC circuits.
- Measurement of two-port network parameters in the presence of dependent sources and ac sources

New / Additional Experiments

- 1. Design of Integrator using RC circuits.
- 2. Design of Differentiator using RC circuits.

The break-up of CIE:

1. No. of Internal Tests : 1

2. Max. Marks for Internal Test : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Test: 3 Hours

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Basic Electrical Engineering Lab

SYLLABUS FOR B.E II – SEMESTER (CSE and ECE Branches)

L:T:P(Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U22ES011EE
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES							
To provide the practical knowledge on	On completion of the course, students							
operation of DC, AC machines and	will be able to							
circuits.	1. Handle basic electrical equipment							
	and apprehend safety precautions.							
	2. Test the performance of various AC							
	and DC machines.							
	3. Apply and Verify various Network							
	theorems.							
	4. Comprehend Measurement of							
	Electrical Energy consumption.							
	5. Comprehend the importance of							
	Power Factor improvement.							

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1		1					3			1			
CO2	3	1		1					3			1			
CO3	3	1		1					3			1			
CO4	3	1		1					3			1			
CO5	3	1		1					3			1			

List of Experiments:

- Basic safety precautions. Introduction and use of measuring instruments – voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
- 2. Verification of Kirchoff's Voltage Law & Kirchoff's Current Law.
- 3. Verification of Superposition theorem and maximum power transfer theorems.
- 4. Verification of Thevenin's and Tellegen's theorems.
- 5. Sinusoidal steady state response of R-L and R-C circuits, Measurement

With effect from the academic year 2022-23

of phase angle.

6. Measurement of cumulative three-phase power in balanced three-

phase circuits.

7. Demonstration of cut-out sections of machines: dc machine

(commutator-brush arrangement), induction machine (squirrel cage

rotor), synchronous machine (field winging - slip ring arrangement)

and single-phase induction machine.

8. Torque Speed Characteristic of dc shunt motor.

9. Speed control of dc shunt motor.

Loading of a transformer: measurement of primary and secondary

voltages and currents and power.

11. Torque-Slip Characteristic of a three phase induction motor.

12. Measurement of electrical energy consumption.

13. Improvement of Power factor in R-L-C Circuits.

From the above experiments, each student should perform at least 10

(Ten) experiments.

The break-up of CIE:

No. of Internal Tests 1.

2. Max. Marks for Internal Test

12

3. Marks for assessment of each experiment 18

Duration of Internal Test: 3 Hours