VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

ACCREDITED BY NAAC WITH 'A++' GRADE
Ibrahimbagh, Hyderabad-31
Approved by A.I.C.T.E., New Delhi and
Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR B.E. (ECE) VII and VIII Semesters With effect from 2023-24 (For the batch admitted in 2020-21)

(R-20)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Phones: +91-40-23146040, 23146041

Fax: +91-40-23146090

Institute Vision

Striving for a symbiosis of technological excellence and human values

Institute Mission

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow

Department Vision

Striving for excellence in teaching, training and research in the areas of Electronics and Communication Engineering and fostering ethical values

Department Mission

To inculcate a spirit of scientific temper and analytical thinking and train the students in contemporary technologies in Electronics and Communication Engineering to meet the needs of the industry and society with ethical values

B.E	B.E (ECE) Program Educational Objectives (PEO's)								
PEO I	Graduates will be able to identify, analyze and solve engineering problems.								
PEO II	Graduates will be able to succeed in their careers, higher education, and research.								
PEO III	Graduates will be able to excel individually and in multidisciplinary teams to solve industry and societal problems.								
PEO IV	Graduates will be able to exhibit leadership qualities and lifelong learning skills with ethical values.								

	B.E. (ECE) PROGRAM OUTCOMES (PO's)								
Engine	Engineering Graduates will be able to:								
PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.								
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.								
PO3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.								
PO4	Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.								
PO5	Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.								
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.								
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.								
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.								
PO9	Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.								
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.								
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.								
PO12	Lifelong learning: Recognize the need, and for have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.								

B.E	B.E (ECE) PROGRAM SPECIFIC OUTCOMES (PSO's)								
PSO I	ECE students will be able to analyze and offer circuit and system level solutions for complex electronics engineering problems, keeping in mind the latest technological trends.								
PSO II	ECE students will be able to apply the acquired knowledge and skills in modeling and simulation of communication systems.								
PSO III	ECE students will be able to implement signal and image processing techniques for real time applications.								

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD - 500 031. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-20):: B.E. - ECE: SEVENTH SEMESTER (2023 - 24)

B.E (ECE) VII - SEMESTER											
		Schem	ne of Insti	ruction	Scheme of Examination						
Course Code	Name of the Course	Hot	ırs per W	eek	Duration	Maximu	m Marks	Credits			
		L	Т	P/D	in Hrs	SEE	CIE	Ö			
	TI	HEORY									
U20PC710EC	Microwave Engineering	3	-	-	3	60	40	3			
U20PC720EC	VLSI Design	3	-	-	3	60	40	3			
U20PE7XXEC	Professional Elective – II	3	-	-	3	60	40	3			
U20PE7XXEC	Professional Elective – III	3	-	-	3	60	40	3			
U20PE7XXEC	Professional Elective – IV	3	-	-	3	60	40	3			
	PRA	CTICALS	3								
U20PC711EC	Microwave Engineering Lab	-	-	2	3	50	30	1			
U20PC721EC	VLSI Design Lab	-	-	2	3	50	30	1			
U20PW719EC	Project Seminar	-	-	2	-	-	30	1			
_	NPTEL Certification Course :	_	_	_	_	_	_	2			
	8 or 12 weeks duration	_	_	_	_	_	_				
	TOTAL	15	-	6		400	290	20			
	GRAND TOTAL 21 690										
Left over hours	eft over hours will be allocated for : CC										

Left over hours will be allocated for : CC

Note: Every Student shall complete one NPTEL course certification of 8 weeks duration (equivalent to 2 credits weightage) by the end of VII-Semester.

	Professional Electives (R – 20) : Semester – VII									
Pro	Professional Elective – II									
1.	U20PE710EC	Advanced Embedded Systems								
2.	U20PE720EC	Optical Fiber Communication								
3.	U20PE730EC	Speech and Audio Signal Processing								
4.	U20PE740EC	Network Security								
Pro	fessional Elec	ctive – III								
5.	U20PE750EC	FPGA Architectures and Applications								
6.	U20PE760EC	Coding theory and Techniques								
7.	U20PE770EC	Digital Image and Video Processing								
8.	U20PE780EC	Network Management								
Pro	fessional Elec	ctive – IV								
9.	U20PE790EC	VLSI Physical Design								
10.	U20PE711EC	Satellite Communication								
11.	U20PE721EC	Biomedical Signal Processing								
12	U20PE731EC	Voice and Data Networks								

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Microwave Engineering

SYLLABUS FOR B.E. VII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PC710EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE ORIECTIVES	COURSE OUTCOMES
COURSE OBJECTIVES	COURSE OUTCOMES
Analyze the field components of waveguides	On completion of the course, students will be able to
2. Understand the characteristics of	1. Anlayze the E and H fields
Microwave sources and components	components of parallel and
	rectangular waveguides.
	2. Describe the characteristics and
	applications of circular waveguides
	and cavity resonators.
	3. Analyze the scattering parameters of
	microwave components.
	4. Demonstrate the characteristics of
	Microwave sources.
	5. Describe the characteristics of
	microwave solid-state devices.

CO-PO/PSO Manning

•••	co i o/i oo i apping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO1	3	3	2	2										2	
CO2	3	3	2	2		2						2		2	
CO3	3	3		2		2								2	
CO4	2	2				2	2					2		2	
CO5	2	3				2	2				,			2	,

UNIT-I:

Guided waves: Propagation of TE, TM and TEM waves between parallel planes. Velocity of propagation, wave impedance, attenuation in parallel plane guides.

UNIT-II:

Wave Guides: TE and TM waves in rectangular waveguides, Wave Impedance, Characteristic Impedance, Attenuation in wave guides. Introduction to Circular wave guides, Cavity resonators, resonant frequency, Applications of cavity resonators.

UNIT-III:

Microwave Circuits and Components: Concept of Microwave circuit, Normalized voltage and currents, Introduction to scattering parameters and their properties, Reciprocal and Non-reciprocal components: E and H Plane Tees, Magic Tee Directional coupler, Attenuators, Phase Shifters, Isolators and circulators S parameters for and their properties.

UNIT-IV:

Microwave Tubes: High frequency limitations of conventional tubes, Bunching and velocity modulation, mathematical theory of bunching, principles and operation of two cavity, multi cavity, Reflex Klystron. Principle and operation of magnetrons, TWT.

UNIT-V:

Microwave Solid State Devices: Principles of operation, characteristics and applications of Varactor, PIN diode, GUNN diode and IMPATT diode, Elements of strip lines of micro strip lines. Design analysis of microstrip lines.

Learning Resources:

- 1. Samuel Y. Liao, Microwave Devices and Circuits, 3rd ed, Pearson, 2003.
- 2. Edward C. Jordon, Keith G. Balmain, "Electromagnetic Waves and Radiating Systems", 2015, Pearson, 2nd Edition.
- 3. R.E. Collins, "Foundations of Microwave Engineering", II edition, Wiley, 2001.
- 4. K.C. Gupta "Microwaves", John Wiley & Sons, 2012
- 5. Annapurna Das, Sisir K. Das, "Microwave Engineering" Tata McGraw-Hill Education, 2000
- 6. https://swayam.gov.in/nd1_noc19_ee57
- 7. https://swayam.gov.in/nd1_noc19_ee68

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VLSI Design

SYLLABUS FOR B.E. VII - SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U20PC720EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1 To understand the MOS fabrication technologies, electrical properties	On completion of the course, students will be able to
and develop layout of MOS circuits,	1 Acquire fundamental knowledge on
subsystem, memory elements and	MOSFET characteristics and its
perform testing.	parameters
	2 Analyze the fabrication process and physical design of CMOS circuits.
	3 Identify the suitable basic digital building
	blocks in the design of digital systems.
	4 Analyze the various types of memory
	cells.
	5 Identify testing methods in VLSI Design.

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2		1								3		
CO2	2	2	1										1		
CO3	1	3		3									2		
CO4	1	3	3									2	3		
CO5	2	2		2	1							2	1		

UNIT-I:

Basic electrical properties of MOSFET: MOS Transistor threshold voltage, trans conductance, output conductance, Figure of merit, Body Effect, pull-up to pull-down ratio for NMOS inverter driven by another NMOS inverter/one or more pass transistors, NMOS transistor model, Sheet Resistance, Area Capacitance.

UNIT-II:

Introduction to CMOS fabrication process, Twin tub Process, latch up in CMOS circuits.

CMOS circuit physical design process: MOS Layers, Stick diagrams, Euler Path in stick diagram, Design rules, types of design rules, Layout diagrams of Basic CMOS Logic gates.

UNIT-III:

CMOS Subsystem design: Architectural issues, Carry select adder, carry save adder and Carry Skip adder, Multiplication: array multiplication, Wallace tree multiplication. Multiplexer and D Flip-Flop using Transmission gates.

UNIT-IV:

Design of Basic Memory Cells: Classifications of Memories, one and three transistor dynamic RAM cells, four transistor and six transistor Static RAM, Read only memory: Basic ROM architecture, NOR and NAND based ROM Memory Design. EPROM, EEPROM.

UNIT-V:

CMOS testing: role of testing, types of testing, functionality tests, manufacturing tests, stuck-at faults, short circuit and open circuit faults, controllability , observability, delay fault testing, level sensitive scan design, Boundary scan architecture.

Learning Resources:

- 1. Kamran Eshraghian, Douglas A. Pucknell, "Basic VLSI Design", PHI.
- 2. Introduction to VLSI circuits and Systems by John P. Uyemura, Wiley student edition.
- Neil H.Weste, kamraneshraghan, "Principles of CMOS VLSI design", Pearson education.
- 4. https://nptel.ac.in/courses/108107129/
- 5. https://nptel.ac.in/courses/117101058/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Microwave Engineering Lab

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U20PC711EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1	Understand the basic characteristics of Microwave sources	On completion of the course, students will be able to
2	Verify the relationship between guided wavelength and free space	1 Describe the characteristics of microwave sources
	wavelength	2 Estimate the guide wave length and
3	Understand the measurement of	free space wave length
	various parameters of microwave components	3 Measure the VSWR and impedance of unknown load
		4 Determination of the scattering matrix of microwave
		Components/Junctions
		5 Demonstrate characteristics of ferrite devices

CO-PO/PSO Mapping

•••	o i o/i so napping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		2		1	2							2	
CO2	3	3	2	2	3	2								2	
CO3	3	3		2										2	
CO4	3	3		2	2		2							2	
CO5	3			2										2	

Experiments:

- 1. Characteristics of Reflex Klystron oscillator
- 2. Characteristics of Gunn diode oscillator
- 3. Measurement of frequency and Guide wavelength
- 4. Measurement of VSWR of a given load
- 5. Measurement of impedance
- 6. Scattering matrix of a Directional coupler.
- 7. Scattering matrix of Waveguide Tees: E plane, H plane

- 8. Scattering matrix of Magic Tee.
- 9. Characteristics of Isolator and its scattering matrix
- 10. Characteristics of Circulator and its scattering matrix
- 11. Calibration of attenuator at a given frequency
- 12. Calibration of frequency meter at a given frequency

New / Additional experiments planned:

- 1. Design and analysis of Microstrip filter using ADS
- 2. Measurement of S-parameters using vector network analyser.

Mini Project(s):

Simulation and analysis of waveguide components

Learning Resources:

Advanced Design Software(ADS)

The break-up of CIE:

1. No. of Internal Tests : 1

2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Tests: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VLSI Design Lab

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U20PC721EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To perform VLSI design of CMOS	On completion of the course, students
circuits using EDA Tools.	will be able to
	1. Demonstrate the knowledge of digital
	circuit design flow.
	2. Analyse the process of simulation of
	combinational sequential circuits.
	3. Validate and demonstrate the results
	of digital circuits.

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		2		3								3		
CO2	1	2			2								1		
CO3	1	2	1		3								2		

- Characteristics of NMOS and PMOS transistors.
- Design and simulate CMOS inverter.
- 3. Design and simulate two input CMOS NAND/NOR gate.
- 4. Design and simulate CMOS Full adder
- 5. Design and simulate the D-Flip Flop.
- 6. Simulate the dynamic memory 1 Transistor and 3 Transistor cells.
- 7. Simulate the static memory 6 Transistor cell.
- 8. Layout of CMOS inverter
- 9. Perform DRC and LVS of CMOS inverter
- 10. Perform parasitic extraction of CMOS inverter
- 11. Perform Post layout level simulation of CMOS inverter
- 12. Perform CMOS circuit testing for stuck at 1 and stuck at 0 faults.

New / Additional experiments planned:

- 1. Design and simulate 4-bit carry select adder.
- 2. Simulate the static memory 4 transistor SRAM memory cell.

Note:

Minimum of twelve experiments are to be conducted.

The break-up of CIE: Internal Tests + Day to day Assignments

1. No. of Internal Tests : 1

2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Test: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Project Seminar

SYLLABUS FOR B.E. VII - SEMESTER

L:T:P (Hrs./week): 0:0:3	SEE Marks : -	Course Code: U20PW719EC
Credits: 1	CIE Marks: 30	Duration of SEE : -

COURSE OBJECTIVES	COURSE OUTCOMES
Prepare the student for a systematic	On completion of the course, students
and independent study of the state of	will be able to
the art topics in a broad area of his /	1. To select the complex engineering
her specialization.	problems beneficial to the society
	after thorough literature survey
	2. To identify the modern tools for
	solving the problems.
	3. To analyze and comprehend the
	experimental results
	4. To communicate effectively the
	experimental results with report and
	presentation following ethics
	5. To work in teams and adapt for the
	advanced technological changes

CO-PO/PSO Mapping

•••															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3				2									
CO2		2			3										
CO3		2		3											
CO4								3		3					
CO5									3			3			

Note: CO1 & CO2 must be mapped with one of the relevant PSOs based on the domain of the project with 3

CO3: can be mapped to appropriate PSO with level 2

Oral presentation is an important aspect of engineering education. The objective of the seminar is to prepare the student for a systematic and independent study of the state of the art topics in a broad area of his / her specialization.

Project seminar topics may be chosen by the student with advice and approval from the faculty members. Students are to be exposed to the following aspects of seminar presentation.

- Selection of Topic & Literature Survey (5M)
- Solution & Clarity in Implementation (5M)
- Modern Tool usage & Implementation (5M)
- Results and Analysis (5)
- Team Work / Report writing & Presentation with ethics (10M)

Each student is required to:

- 1. Submit a one-page synopsis in the beginning of the seminar talk for display on the notice board.
- 2. Give a 20 minutes presentation through LCD power point presentation followed by a 10 minutes discussion.
- 3. Submit a report on the seminar topic with list of references and slides used.

Seminars are to be scheduled from the 3^{rd} week of the semester to the last week of the semester and any change in schedule should be discouraged.

Students are required to submit a report on the project seminar.

- ➤ Batch size shall be 2 (or) 3 students per batch.
- ➤ Two reviews One during 5th week and another during 10th week and final evaluation shall be conducted during 15th to 16th week.
- > Students are required to give Presentations during the reviews.
- > Students are required to submit project seminar report.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Advanced Embedded Systems

(Professional Elective-II)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code : U20PE710EC				
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours				

	COURSE OBJECTIVES		COURSE OUTCOMES
1	Define and classify	On	completion of the course, students will be
	embedded system and to	abl	e to
	interpret design process and	1	Define embedded system & describe the
_	challenges.		embedded system product design life cycle
2	Summarize the RISC	_	and challenges.
	concepts and describe the	2	Analyse the ARM Core embedded design and
	ARM architecture, Interpret	_	its programming model.
	serial and parallel bus	3	Apply knowledge to design networked
_	communication protocols.		embedded systems using serial, parallel and
3	Describe system design and		wireless communication protocols.
	co-design issues along with	4	Justify the importance of hardware software
	various laboratory, IDE tools		co-design and models involved.
	and design case studies.	5	Acquire the knowledge of embedded IDEs to
			design and specify debugging techniques.

CO-PO/PSO Mapping

	-,		P												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2									1	3		
CO2	3	2	3	2	2				1			1	3	2	1
CO3	3	2	3	2	2				1			1	3	2	1
CO4	2	2	3	1	1				1			1	3	2	1
CO5	3	1	2									1	3		

UNIT - I:

Embedded System Design: Introduction, Trends, Definition, Classifications; Embedded Product Development Life Cycle. CPU selection—hardware, software, memories, and I/O. Challenges in designing Embedded System; Design Metric of Embedded System.

UNIT - II:

ARM Cortex-M based microcontroller architecture: ARM ISA, Interrupts and Processor Reset Sequence, Memory Address Map, ARM Registers, Nested VIC, AMBA Bus System and Bus Matrix, Memory and Peripherals, Debug System; Exceptions and Interrupts Architecture.

UNIT - III:

Embedded Networking: Traditional Networking Vs Embedded Networking; Networking through serial protocols: UART, I2C, SPI, CAN, IEEE1394 and USB; Porting of TCP/IP – Socket selection; HTTP client-server model; Design Considerations.

UNIT - IV:

Hardware Software Co-design: Comparison of Co-design Approaches; Formulation of the HW/SW scheduling, Optimization of Design Metric: Case study of Embedded Adaptive Cruise Control Design.

Embedded Software Architectures: Round Robin, RR with Interrupt driven and Functional Queue architectures.

UNIT - V:

Embedded Development tools: Host and Target machines, Instruction packing: Big-endian ISA Vs Little Endian ISA; Intel Vs Motorola Modes. Debugging Methods: Testing on Host—Instruction set Simulators, native tools—IDEs; cross-compilers; ICE, JTAG, laboratory tools: Multi meter, CRO, Logic Analyzer & protocol sniffers.

Learning Resource:

- 1 Mohammed Tahir and Kashif Javed "ARM® Microprocessor Systems Cortex®-M Architecture, Programming, and Interfacing" CRC Press, 2017
- 2 Tony Givargis Frank Vahid "Embedded System Design: A Unified Hardware/Software Introduction" Wiley Student Edition, 2006
- 3 MOOCs: https://nptel.ac.in/noc/individual_course.php?id=noc19-cs22

The break-up of CIE : Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Optical Fiber Communication

(Professional Elective-II)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE720EC				
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours				

CO-PO/PSO Mapping

CO-F	CO-PO/PSO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3											1	2	
CO2	2	2	2	2										3	
CO3	1	2											2	3	
CO4	2	3										2		2	
CO5	2	2										2		2	

UNIT - I:

Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Ray model, wave model.

UNIT - II:

Different types of optical fibers, Modal analysis of a step index fiber. Signal degradation on optical fiber due to dispersion and attenuation. Fabrication of fibers and measurement techniques like OTDR.

UNIT - III:

Optical sources - LEDs and Lasers, Photo-detectors - pin-diodes, APDs, detector responsivity, noise, optical receivers. Optical link design - BER calculation, quantum limit, power penalties.

UNIT - IV:

Optical switches - coupled mode analysis of directional couplers, electrooptic switches. Optical amplifiers - EDFA, Raman amplifier. WDM and DWDM systems. Principles of WDM networks

UNIT - V:

Nonlinear effects in fiber optic links. Concept of self-phase modulation, group velocity dispersion and solition based communication.

Learning Resources:

- 1 J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed. 2013 (Indian Edition).
- G. Agrawal, Fiber optic Communication Systems, John Wiley and sons, 3rd Ed, 2002.
- 3 K.C. Gupta, Opto Electronic Devices and Systems, PHI Learning, 2005.
- 4 https://nptel.ac.in/courses/117101054/
- 5 https://nptel.ac.in/courses/117104127/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Speech and Audio Signal Processing

(Professional Elective-II)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE730EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1 To understand the mechanism of	On completion of the course, students
speech production.	will be able to
2 To analyze various speech	1 Apply the knowledge of science to
synthesizers.	design an artificial model of speech
3 To study various types of coders and	production system.
decoders.	2 Analyse the types of speech signals
4 To analyze speaker identification and	& convert the signals to digital.
verification systems.	3 Synthesize the speech signal using a
	text as input.
	4 Design speech encoder and decoder.
	5 Also design an Automatic speech
	recognition system (ASR) by pattern
	matching method.

CO-F	CO-PO/PSO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2			2					3	2			3
CO2	2	3	2								2	2			3
CO3	2	3	3			2					2	2			3
CO4	3	3	3								3	2			3
CO5	2	3	3							2	2	1			3

UNIT - I:

Applications of Digital Speech Processing, Phonetic Representation of Speech, Models for Speech Production-Schematic model of the vocal tract system, Source filter model for a speech signal production. Speech Quantization- Scalar quantization—uniform quantizer, optimum quantizer, logarithmic quantizer, adaptive quantizer, differential quantizers; Vector quantization.

UNIT - II:

Short-Time Analysis of Speech-Short-Time Energy and Zero-Crossing Rate, Short-Time Autocorrelation Function (STACF), Short-Time Fourier

Transform (STFT), The Speech Spectrogram, Relation of STFT to STACF. Pitch-period estimation Homomorphic Speech Analysis.

UNIT - III:

Speech Synthesis Methods, Linear predictive synthesizer, phone use synthesis, Introduction to Text-to-Speech and Articulator speech synthesis.

UNIT - IV:

Sub-band coding, Transforms coding, channel decoder, Formant decoder, Cepstral decoder, linear predictive decoder, vector quantizer coder.

UNIT - V:

Automatic Speech Recognition (ASR), The Problem of Automatic Speech Recognition, Building a Speech Recognition System, The Decision Processes in ASR, Representative Recognition Performance, Challenges in ASR Technology.

Learning Resources:

- 1. Lawrence R. Rabiner and Ronald W. Schafer, "Introduction to Digital Speech Processing", now, 2007.
- 2. Owens F.J., "Signal Processing of Speech", Macmillan, 2000.
- 3. Daniel Jurefskey & James H. Martin, "Speech and Language Processing", Pearson Education, 2003.
- 4. https://nptel.ac.in/courses/117105145/

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Network Security

(Professional Elective-II)

SYLLABUS FOR B.E. VII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE740EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity. To understand the various key distribution and management schemes and to deploy encryption techniques to secure data in transit across data networks.	On completion of the course, students will be able to 1 Analyze the vulnerabilities in any computing system and able to design a security solution 2 Identify the security issues in the network and resolve it. 3 Evaluate security mechanisms using rigorous approaches 4 Analyze network security and web security requirements. 5 Illustrate the applications in
	networksecurity

CO-PO/PSO Mapping

•••	50 : 0/: 50 : iapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2												2	
CO2	3	2												2	
CO3	3	2												2	
CO4	2	2	2											2	
CO5	3	2												2	

UNIT - I:

Introduction: Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques. Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT - II:

Encryption: Triple DES, International Data Encryption algorithm, Characteristics of Advanced Symmetric block ciphers. Conventional Encryption Placement of Encryption function

UNIT - III:

Public Key Cryptography Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Number Theory in brief.

UNIT - IV:

Message Authentication and Hash Functions Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs. Digital signatures, Authentication Protocols, Digital signature standards. Authentication Applications Kerberos, Electronic Mail Security: Pretty Good Privacy, S/MIME

UNIT - V:

IP Security Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction. Intruders, Viruses and Worms: Intruders, Viruses and Related threats. Fire Walls: Fire wall Design Principles, Trusted systems

Learning Resources:

- 1. Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 3. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 4. https://nptel.ac.in/courses/106105031/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

FPGA Architectures and Applications

(Professional Elective-III)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE750EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To familiarize the students	On completion of the course, students will be able
with the architectural	to
aspects of FPGA's and	1. Differentiate between ROM, PAL, PLA, SPLD,
testing technologies of	CPLD, and FPGA.
FPG's.	2. Apply the working of building blocks of FPGA to
	compare area and power efficiency.
	3. Compare the features of Various FPGAs in
	terms of their Architecture, Configurable logic
	block.
	4. Gain knowledge on placement and routing
	algorithms adopted in FPGAs.
	5. Test a particular PLD using various techniques
	like design validation, Timing verification.

СО-РО	/PSO	Мар	ping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2										3		
CO2	2	2	1										1		
CO3	2	2	1	1	1								1		
CO4	3	2	1										1		
CO5	1	1	1	1	1								2		

UNIT - I: Introduction to PLD's and PGA'S

Memory- Read-only memory, read/write memory - SRAM and DRAM. Programmable Logic Devices-PLAs, PALs and their applications; Sequential PLDs and their applications; State- machine design with sequential PLDs; Programmable gate arrays (pgas), Introduction to field programmable gate arrays (FPGAs), design flow using FPGA, programming technologies.

UNIT - II: FPGA Architectural Aspects

Field Programmable Gate Arrays: Organization of FPGAs, Programmable Logic Block Architectures, Programmable Interconnect, Programmable I/O blocks in FPGAs, Dedicated Specialized Components of FPGAs,

Applications of FPGAs

Logic Block Architectures: Logic block functionality versus area-efficiency, Logic block area and routing model, Impact of logic block functionality on FPGA performance, Model for measuring delay.

UNIT - III: FPGA Architectures and Comparison

FPGAs: Field Programmable Gate Arrays – Logic blocks, routing architecture, Logic cells and features of commercially available FPGA's-XILINX XC4000, virtexII FPGA's, XILINX SPARTAN II, Alteras Act1, Act2, Act3 FPGA's, Actel FPGA's, AMD FPGA.

UNIT - IV: Placement and Routing Algorithms in FPGA Architectures

Placement: objectives, placement algorithms: Mincut-Based placement, iterative improvement placement, simulated annealing.

Routing: objectives, segmented channel routing, Maze routing, Routability estimation, Net delays, computing signal delay in RC tree networks.

UNIT - V:Testing methods in FPGA Architectures

Digital Front End and back End tools for FPGAs & ASICs, FPGA implementation steps. Verification: introduction, logic simulation, design validation, timing verification. Testing concepts: failures, mechanisms and faults, fault coverage, ATPG methods, programmability failures.

<u>Learning Resources</u>:

- S. Brown, R. Francis, J. Rose, Z.Vransic, "Field Programmable Gate array", BSP, 2007.
- 2. P.K. Chan & S. Mourad, "Digital Design Using Field Programmable Gate Array", Pearson Education 2009.
- 3. Spartan-3A/3AN FPGA Starter Kit Board User Guide, 2010
- 4. S. Trimberger, Edr., "Field Programmable Gate Array Technology", Kluwer Academic Publications, 1994.
- 5. https://nptel.ac.in/syllabus/117108040/prof.Kuruvilla Varghese IISC Banglore

The break-up of CIE: Internal T	Tests + Assignments	+ Quizzes
---------------------------------	---------------------	-----------

1. No. of Internal Tests : 2 | Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Coding Theory and Techniques

(Professional Elective-III)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE760EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To study the source coding and channel	On completion of the course, students
coding techniques digital data storage	will be able to
and transmission.	1 Apply the probabilistic method to
	construct different types of source codes.
	2 Identify different types of errors and
	to comprehend various linear block codes
	3 Construct convolution codes for
	error detection and correction.
	4 Generate LDPC codes using different
	methods of constructions
	5 Construct Galois Fields and to apply
	them to generate BCH and RS codes

CO-PO/PSO Manning

	-,		~FF												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2											2	
CO2	3	3	2											3	
CO3	3	2	2											3	
CO4	3	2												3	
CO5	3	2	2			_	_		_				,	3	,

UNIT - I:

Coding for Reliable Digital Transmission and Storage: Source coding: Entropy encoding algorithms: Arithmetic coding and Golomb coding, Dictionary codes: Lempel-Ziv codes, Run Length Encoding.

UNIT - II:

Linear Block codes: Introduction to Linear Block Codes, Hamming codes, Repetition codes, Reed-Muller codes, the (24,12) Golay code, Product codes, Interleaved codes.

UNIT - III:

Convolutional codes: Encoding, Structural properties, State diagram, Code tree diagram, soft decision and hard decision decoding, Viterbi algorithm.

UNIT - IV:

Low Density Parity Check codes: Introduction, Properties, Graphical Representation of LDPC Codes: Tanner graphs, Types of constructions, Regular and Irregular LDPC codes, methods of constructing LDPC codes: Galleger's method, Alzebraic method, Mackay construction, Encoding and problems.

UNIT - V:

BCH and RS codes: Groups, Fields, Binary arithmetic, Construction of Galois Fields GF(2^m), Basic properties of Galois Fields, Introduction to BCH and RS codes (Encoding only).

Learning Resource:

- K. Deergha Rao, 'Channel Coding Techniques for Wireless Communications," Second Edition, Springer 2019
- 2. Shu Lin and Daniel J. Costello, Jr. "Error Control Coding," 2/e, Pearson, 2011.
- 3. K Sam Shanmugum, "Digital and Analod Communication Systems," Wiley, 2010.
- 4. Simon Havkin, "Digital Communication," TMH, 2009.
- 5. https://nptel.ac.in/courses/117106031/

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Digital Image and Video Processing

(Professional Elective-III)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U20PE770EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Students will gain knowledge on digital	On completion of the course, students
image and video processing techniques.	will be able to
	1 Describe the basic concepts of
	Image and Video Processing
	2 Apply the equations to transform
	images into different domains.
	3 Apply spatial and transform domain
	techniques to process images.
	4 Analyse quality of processed images
	using appropriate metrics
	5 Design and implement various image
	and video processing techniques in a
	range of real-world applications.

CO-PO/PSO Manning

.	co i o/i so i-iapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2													2
CO2	2	3			2										3
CO3	2	3			2										3
CO4	2	3		2	2										3
CO5	2	3	3	3	2						,				3

UNIT - I:

Digital Image Fundamentals-Elements of visual perception, image sensing and acquisition, image sampling and quantization, basic relationships between pixels — neighbourhood, adjacency, connectivity, distance measures.

UNIT - II:

Fourier transform, FFT, Discrete cosine transform, Hadamard transform, Slant transform and their properties.

Wavelet Transforms: Discrete Wavelet Transforms.

UNIT - III:

Spatial enhancement techniques: Basic Intensity Transformation functions, Histogram equalization, Histogram specification, Spatial Filtering Techniques.

Frequency domain techniques: Low pass, High pass and Homomorphic Filtering.

Image Degradation model, Algebraic approach to restoration, inverse filtering, Least mean square filter.

Quality assessment of enhanced images.

UNIT - IV:

Image Compression-Redundancy-inter-pixel and psycho-visual, Huffman Coding, Arithmetic coding, Lossless compression – predictive, Lossy compression-predictive and Transform coding techniques (JPEG and JPEG2000).

Image Segmentation - Point, Line and Edge Detection, thresholding - global, region-based segmentation.

Quality assessment of compressed / restored and segmented images.

UNIT - V:

Video formation, perception, and representation, two-dimensional motion estimation.

Fingerprint image enhancement, Compression of Satellite images using JPEG, Medical image segmentation, Object tracking in videos.

Learning Resources:

- R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th Edition, Pearson, 2018.
- 2 Anil Kumar Jain, Fundamentals of Digital Image Processing, Prentice Hall of India. 2nd edition 2004.
- 3 Video Processing and Communications Yao Wang, Jorn stermann, and Ya-Qin Zhang Prentice Hall, 2002 (Published September 2001).
- 4 Murat Tekalp, Digital Video Processing" Prentice Hall, 2nd edition 2015.
- 5 https://nptel.ac.in/courses/117/105/117105135/
- 6 https://nptel.ac.in/courses/117/105/117105079/

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Network Management

(Professional Elective-III)
SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE780EC
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To familiarize the students with the	On completion of the course, students
network architectures and management	will be able to
issues.	1. Explain network management
	perspectives
	2. Apply various network management
	protocol
	3. Identify and describe TMN
	standards
	4. Analyze various management issues
	5. Demonstrate how to correctly
	maintain LAN

UNIT - I:

Overview of Data Communication and Network Management – Goals, Organization and Functions; Network Management – Architecture and Organization; Network Management Perpestives; Current Status and Future of Network Management. Network Topology, Network Node Components, Transmission Technology.

UNIT - II:

Network Management Standards, Network Management Models, Organizational Model, Information Model, Communication Model. **SNMPv1**—History of SNMP, Internet Organization and Standards, SNMP Model, Organizational Model, System Overview, Information Model. SNMP Communication Model, Functional Model.SNMPv2 and SNMv3.

UNIT - III:

TMN Conceptual Model, TMN Standards, TMN Architecture, TMN Management Service Architecture, TMN Integrated View, TMN Implementation.

UNIT - IV:

Configuration Management, Fault Management, Performance Management, Security Management, Service Level Management, Accounting Management, Report Management, Policy-Based Management.

UNIT - V:

Setting-UP LAN Access, SNMP configuration, Switched Port Analyzer, Web Browser / Web Server Communication. IP Network Management - Configuration, Management Information Base, Simple Network Management Protocol, IP-Based Service Implementation- Network Management Issues, OSS Architecture.

Learning Resources:

- Mani Subramanian "Network Management Principles and Practice", Addison-Wesley, 2000.
- 2. Salah Aiidarons, Thomas Plevayk, "Telecommunications Network Technologies and Implementations", Eastern Economy Edition IEEE press, New Delhi, 1998.
- 3. Lakshmi. G, Raman, "Fundamentals of Telecommunication Network Management", Eastern Economy Edition IEEE Press, New Delhi
- 4. J. Richard Burke, "Network Management: Concepts and Practice, A Hands-on Approach", Pearson Education, 2008.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VLSI Physical Design

(Professional Elective-IV)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE790EC
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To draw Layout and stick	On completion of the course, students will be able
diagrams of circuits and	to
acquire the knowledge on cell	
based designs.	VLSI design.
	2. Apply the basic concepts of physical design to
	layouts and stick diagrams.
	3. Analyze the process variations, fabrication
	errors and their effect on design rules
	4. Analyze hierarchical circuit Layouts using cell
	concepts.
	5. Illustrate the basic algorithms which are used
CO DO Manaina	in physical design automation.

CO-I	PO M	appıı	ηg												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2											3		
CO2	2	3	2										3		
CO3	3	2											3		
CO4	2	თ	2										3		
CO5	3	2											3		

UNIT - I:

VLSI Design cycles and new trends in Design cycles, physical design cycles and new trends in physical design cycles, Components of VLSI, Various layers of VLSI, Typical structures of BJTS, MOSFETS, Resistors, capacitors, inductors

UNIT - II:

Basic concepts of Physical Design - layout of basic structures – wells, FET, BJT, resistors, capacitors, contacts, vias and wires (Interconnects), physical design of logic gates – NOT, NAND and NOR. Mask overlays for different structures. Parasitics – latch up and its prevention

UNIT - III:

Device matching and common centroid techniques for analog circuits. Design rules – fabrication errors, alignment sequence, alignment inaccuracies and process variations, Scalable CMOS (SCMOS) design rules.

UNIT - IV:

Layout design, stick diagrams and Hierarchical stick diagrams.

Cell concepts – cell based layout design – Wein-berger image array — design hierarchies.

UNIT - V:

System level physical design- large scale physical design , interconnect delay modeling, cross talk, floor planning, routing and clock distribution. Factors, Complexity Issues and NP-hard Problems, Basic Algorithms : Basic terminology, graph search algorithms

Learning Resources:

- Algorithms for VLSI Physical Design automation, Naveed Sherwani.3rd edition Kluwer academic publishers
- 2. Algorithms for VLSI Design automation, SabithH. Gerez, John Wiley & sons, Inc.
- 3. John P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & sons, Inc.
- 4. Modern VLSI Design (System on Chip), Woyne Wolf, Pearson Education, 2002.
- 5. R. Jacob Baker; Harry W.Li., David E. Boyce, CMOS Circuit Design, Layout and Simulation, IEEE Press, Prentice Hall of India.
- 6. https://nptel.ac.in/courses/106105161

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Satellite Communication

(Professional Elective-IV)

SYLLABUS FOR B.E. VII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE711EC
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
of various satellites and their importance in global communication 2 To acquire the knowledge on satellite sub systems and various	 will be able to 1 Apply Kepler's law to find satellite orbital paramters. 2 Describe satellite subsystems like
factors affecting the function of communication satellite. 3 To study the need of multiple access techniques and various protocols being used in satellite communications	· · · · · · · · · · · · · · · · · · ·

CO-PO/PSO Mapping															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		1		1								2	
CO2	3	3		1		2								2	
CO3	3	2		2		2								2	
CO4	3	2		2		2								2	
COS	3	3		1		2								2	

UNIT - I

Evolution and growth of communication satellites, synchronous satellites, frequency allocation, orbits, orbital mechanism and kepler's laws, effects of orbital inclination, azimuth and elevation, range and angle, eclipse, placements of a satellite in geo-stationery orbit.

UNIT - II

Space segment, stabilization, communication sub systems, Telemetry, tracking and command, Attitude & orbital Control Systems, Power Systems, Earth segment, large and small Earth station antennas, Redundancy configuration, Thermal System.

UNIT - III

System noise temperature and G/T ratio, Basic RF link analysis, EIRP, C/N, Interference, attenuation due to rain, cross polarization, design of uplink and down link

UNIT - IV

Multiple access techniques, SCPC companding systems, TDMA frame structure, Frame efficiency, Super frame structure, frame acquisition and synchronization, types of demand assignments, SPADE.

UNIT - V

Special purpose communication satellites, INTELAST, Global Positioning System, Echo- Cancellation techniques, Protocols, Satellite applications, Introduction to NavIC system Indian activities in satellite communication.

Learning Resources:

- 1. Timothy Pratt and Charles W. Bostan, Satellite Communications, 2003.
- Dr. D.C Agarwal, Satellite Communications 7th Edition, Khanna Publishers, 1996
- 3. Tri-T-ha, Digital Satellite Communications, 2nd Edition, McGraw Hill, 1990.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

3

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Biomedical Signal Processing

(Professional Elective-IV)

SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE721EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES COURSE OUTCOMES introduce On completion of the course, students will be able 1 To the fundamentals of probability to theory and random processes 1 Apply the probability theory and random with biomedical signals processes techniques in analyzing biological applications. signals. 2 To equip students with the 2 Determine to best class of compression fundamental tools that are techniques to use for a particular bio medical used to describe, analyze and signal to compress. process biomedical signals. 3 Possess the basic mathematical, scientific and 3 To acquire the knowledge on computational skills necessary to analyze and fundamental principles in the process cardiological signals as per the analysis and design of filters, requirement. spectral 4 Ability to formulate and solve basic problems in power density estimation and non-stationary biomedical signal analysis. signal processing techniques 5 Possess the basic mathematical, scientific and cardiological computational skills necessary to analyze and with neurological signals. process neurological signals as per requirement. CO-PO/PSO Mapping PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 3 2 3 2 CO2 3 2 2 3 CO3 2 2 3 3 2

UNIT - I

CO4

CO5

Discrete and continuous Random variables: Probability distribution and density functions. Gaussian and Rayleigh density functions, Correlation between random variables.

2

Stationary random process, Ergodicity, Power spectral density and autocorrelation function of random processes. Noise power spectral density analysis, Noise bandwidth, noise figure of systems.

UNIT - II

Data Compression Techniques: Lossy and Lossless data reduction Algorithms. ECG data compression using Turning point, AZTEC, CORTES, Huffman coding, vector quantisation, DCT and the K L transform.

UNIT - III

Cardiological Signal Processing: Pre-processing. QRS Detection Methods. Rhythm analysis. Arrhythmia Detection Algorithms. Automated ECG Analysis. ECG Pattern Recognition. Heart rate variability analysis. Adaptive Noise Cancelling: Principles of Adaptive Noise Cancelling. Adaptive Noise Cancelling with the LMS Adaptation Algorithm. Noise Cancelling Method to Enhance ECG Monitoring. Fetal ECG Monitoring.

UNIT - IV

Signal Averaging, polishing – mean and trend removal, Prony's method, Prony's Method based on the Least Squares Estimate, Linear prediction. Yule – walker (Y –W) equations, Analysis of Evoked Potentials.

UNIT-V

Neurological Signal Processing: Modelling of EEG Signals. Detection of spikes and spindles Detection of Alpha, Beta and Gamma Waves. Auto Regressive (A.R.) modelling of seizure EEG. Sleep Stage analysis. Inverse Filtering. Least squares and polynomial modelling.

Learning Resources:

- Probability, Random Variables & Random Signal Principles Peyton Z. Peebles, 4th ed., 2009, TMH.
- Biomedical Signal Processing- Principles and Techniques D.C.Reddy, 2005, TMH.
- 3. Digital Bio signal Processing Weitkunat R, 1991, Elsevier.
- 4. Biomedical Signal Processing Akay M, IEEE Press.
- Biomedical Signal Processing –Vol. I Time & Frequency Analysis Cohen.A, 1986, CRC Press.
- 6. Biomedical digital Signal Processing: C-Language Experiments and Laboratory Experiments, Willis J.Tompkins, PHI.
- 7. https://nptel.ac.in/courses/108105101/ Biomedical Signal Processing by Prof.Sudipta Mukhopadhyay. IITKGP
- 8. http://www.ecdept.iitkgp.ac.in/index.php/home/faculty/smukho

The break-up of CIE : Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Voice and Data Networks

(Professional Elective-IV)
SYLLABUS FOR B.E. VII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE731EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
	On completion of the course, students will be able to 1 Design various types of networks
	layer protocols 4 Apply standards of 3G and 4G.
	5 Understand 5G technologies.

CO-PO/PSO Mapping

CO-P	O/PS	סויו טכ	appıı	ıy											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2												2	
CO2	3	3												2	
CO3	3	3	2											2	
CO4	2	3												2	
CO5	3	3												2	

UNIT - I

Network requirements, Network Performance parameters, Network Terminology, Voice and data networks, Issues in design of voice and data networks. Network architecture, Network software.

UNIT - II

Switching, Three Stage Space Division Switch, Blocking and Non-blocking switching, Introduction to Signaling System Number 7 (SS7), Circuit Switching and Packet Switching, Multiplexing.

UNIT - III

Data Networks and their Design, Link layer design- Link adaptation, Link Layer Protocols. Hybrid ARQ (HARQ). Classless Inter domain Routing (CIDR), IP address lookup, Routing in Internet.

UNIT - IV

Evolution from 3G to 4G: 3G W-CDMA(UMTS), 3G CDMA, 3G TD-SCDMA, 3G evaluation to 4G, OFDM, LTE.

UNIT-V

Evolution of LTE technology to beyond 4G, 5G road map, Allocation of new spectrum for 5G, Spectrum sharing, 5G architecture, Overview of cognitive radio technology in 5G wireless, Spectrum optimization using cognitive radio.

Learning Resources:

- L. Peterson and B. S. Davie, "Computer Networks: A Systems Approach", 5th Edition, Morgan Kaufman, 2011.
- 2. Theodore S. Rappaport, "Wireless Communications Principles and Practice" 2^{nd} edition, Pearson, 2010.
- 3. Fundamentals of 5G Mobile Networks Hardcover, by Jonathan Rodriguez, Wiley.
- 4. 4G, LTE-Advanced Pro and The Road to 5G by Erik Dahlman.
- D. Bertsekas and R. Gallager, "Data Networks", 2nd Edition, Prentice Hall, 1992.
- Kumar, D. Manjunath and J. Kuri, "Communication Networking: An analytical approach", 1st Edition, Morgan Kaufman, 2004.
- 7. https://nptel.ac.in/courses/106105082

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD – 500 031. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-20) :: B.E. – ECE : EIGHTH SEMESTER (2023 - 24)

	B.E (ECE) VII	I – SEMI	ESTER								
		Scheme	of Inst	ruction	Scheme of Examination			S			
Course Code	Name of the Course	Hour	s per W	/eek	Duration	Maxim	Credits				
		L	Т	P/D	in Hrs	SEE	CIE	O			
	THE	THEORY									
U20PE8XXEC	Professional Elective – V	3	-	-	3	60	40	3			
U20PE8XXEC	Professional Elective – VI	3	-	-	3	60					
	PRACT	TICALS				SEE CIE 60 40 60 40 2 50 50 170 130 1					
U20PW819EC	Project / Internship	1	-	12	Viva-Voce	50	50	6			
	TOTAL	6	-	12		170	130	12			
	GRAND TOTAL	18				3	300				

	Professional Electives (R – 20) : Semester – VIII										
Pro	Professional Elective – V										
1	U20PE810EC	Low Power VLSI Design									
2	U20PE820EC	Global Positioning System									
3	U20PE830EC	Image and Video processing using Machine Learning									
4	U20PE840EC	Optical Networks									
Pro	fessional Elect	ive – VI									
5	U20PE850EC	Real Time Systems									
6	U20PE860EC	Radar and Navigation Systems									
7	U20PE870EC	Adaptive Signal Processing									
8	U20PE880EC	Software Defined and Cognitive Radio networks									

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Project work / Internship

SYLLABUS FOR B.E. VIII - SEMESTER

L:T:P (Hrs./week): 0:0:12	SEE Marks: 50	Course Code: U20PW819EC
Credits: 6	CIE Marks: 50	Duration of SEE : Viva-Voce

COURSE OBJECTIVES	COURSE OUTCOMES
Prepare the student for a systematic	· · · · · · · · · · · · · · · · · · ·
and independent study of the state of	will be able to
the art topics in a broad area of his /	 To select the complex engineering
her specialization.	problems beneficial to the society
	and develop solutions with
	appropriate considerations
	2. To apply modern tools and analyze
	the results to provide valid
	conclusions.
	3. To communicate effectively the
	solutions with report and
	presentation following ethics
	4. To work in teams and adapt for the
	advanced technological changes
	5. To apply management principles to
	complete the project economically

CO-PO/PSO Mapping

CO 1	\circ	,	appii	פי											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3			2	2								
CO2				3	3										
CO3								3		3					
CO4									3			3			
CO5											3				

Note: CO1& CO2 must be mapped with one of the relevant PSOs based on the domain of the project with 3 CO4 can be mapped to appropriate PSO with level 2

Oral presentation is an important aspect of engineering education. The objective of the project is to prepare the student for a systematic and independent study of the state of the art topics in a broad area of his / her specialization.

Project topics may be chosen by the student with advice and approval from the faculty members. Students are to be exposed to the following aspects of project work carried out.

- Selection of topic & Literature survey (5M)
- Solution & Clarity in Implementation (5M)
- Modern tool usage in Implementation (10M)
- Results and Analysis (10M)
- Team Work, Report writing & Presentation with ethics (15M)
- Project Management (5M)

Each student is required to:

- 1. Submit a one-page synopsis in the beginning of project work for display on the notice board.
- 2. Give a 20 minutes presentation through LCD power point presentation followed by a 10 minutes discussion.
- 3. Submit a report on the project work with list of references and slides used.

Project reviews are to be scheduled from the 3rd week of the semester to the last week of the semester and any change in schedule should be discouraged.

- ➤ Batch size shall be 2 (or) 3 students per batch.
- Project allocation by department.
- ➤ Two reviews One during 5th week and another during 10th week and final evaluation shall be conducted during 15th to 16th week.
- > Students are required to give Presentations during the reviews.
- > Students are required to submit project report.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Low Power VLSI Design

(Professional Elective-V)

SYLLABUS FOR B.E. VIII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE810EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	To acquire knowledge of power dissipation in VLSI circuits.	On completion of the course, students will be able to
2.	Apply low power techniques in VLSI circuits.	 Understand the basics of VLSI technology. Apply the physics of power
		dissipation.
		3. Analyze the circuit techniques for dynamic power dissipation.
		4. Apply the circuit techniques for leakage reduction.
		5. Design low power arithmetic operators.

CO-PO/PSO Mapping

CO-P	O/PS	סויו טכ	appıı	ıy											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			2								2		
CO2	2	2	3										2		
CO3	2	2	2		2								2		
CO4		2	3		2								2		
CO5		2	2		2								2		

UNIT - I:

Physics of power dissipation in CMOSFET devices: introduction, Submicron MOSFET, Power dissipation in CMOS, short circuit dissipation, dynamic dissipation, load capacitance, Body Effect, Short Channel Effects, MOS Capacitances, Hot Carrier Effects.

UNIT - II:

CMOS Technology and Devices: Evolution of CMOS Technology, BiCMOS Technology, SOI CMOS Technology, Threshold Voltage, Narrow Channel Effects, Mobility & Drain Current, Subthreshold Current, Electron Temperature, Velocity Overshoot.

Circuits Techniques for Dynamic Power Reduction: Dynamic Power Consumption Components, Circuit Parallelization, Memory Parallelization, Voltage Scaling-Based Circuit Techniques: Multiple Voltages Techniques, Low Voltage Swing, Precomputation, Retiming, Gated Clocks, Circuit Technology-Dependent Power Reduction, Path Balancing.

UNIT - IV:

Circuit Techniques for Leakage Reduction: Leakage Components, Subthreshold Leakage Gate Leakage, Source/Substrate and Drain/Substrate P-N Junction Leakage, Circuit Techniques to Reduce Leakage in Logic, Dual Threshold CMOS, Multiple Supply Voltage, Runtime Standby Leakage Reduction Techniques, Leakage Control Using Transistor Stacks (Self-Reverse Bias), Sleep Transistor, Dynamic Vdd Scaling (DVS)

• Dynamic Vth Scaling (DVTS).

UNIT - V:

Low-Power Arithmetic Operators: Introduction, Addition, 1-Bit Addition Cells, Sequential Adder, Propagate and Generate Mechanisms, Carry Select Adder, Carry Skip Adder, Logarithmic Number System, Logarithmic Adders, Power/Delay Comparison.

Learning Resources:

- 1. Low power CMOS circuits technology, logic design and cad tools by Chtristian piguet.
- 2. Low power CMOS VLSI circuit design by Koushik Roy & Sharath prasad.
- 3. Low-Voltage CMOS VLSI Circuits , James B. Kuo
- 4. https://onlinecourses.nptel.ac.in/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Global Positioning System

(Professional Elective-V)

SYLLABUS FOR B.E. VIII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE820EC
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1	To study basics of mathematics and	On completion of the course, students
	science related to GNSS	will be able to
	constellations	1 Apply the knowledge of basic
2	To understand the different	mathematics and science to
	coordinates for representation user	understand the different GNSS
	position.	constellations
	To study the different errors of GPS	2 Use of different coordinate systems
4	To understand the GPS data formats	used in user position estimation
	for use of different applications	3 Identifying the various errors of
5	To acquire the knowledge of	GPS.
	augmentation systems.	4 Interpret the GPS data for different
		applications.
		5 Importance of augmentation
		systems in various diversified
		applications.

CO-PO/PSO Mapping

CO-F	со-го/гоо маррину														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2		2										2	
CO2	3	2		2										2	
CO3	3	2				2	2							2	
CO4	3					2	2					2		2	
COS	3					2	2			_	_			2	

UNIT - I:

GPS Fundamentals: GPS Applications , GPS Constellation, Principle of operation, GPS Orbits, Orbital mechanics and satellite position determination, Time references, Geometric Dilution of Precision: Geometrical dilution of Precision, Veritical dilution of precision, Position dilution of precision.

UNIT - II:

Coordinate Systems and errors: Geometry of ellipsoid, geodetic reference system. Geoid, Ellipsoid, Global and Regional datum, World

geodetic system- 84, Different coordinate systems, Various error sources in GPS: Satellite and receiver clock errors, Ephemeris error, Atmospheric errors, Receiver measurement noise and User Equivalent Range Error.

UNIT - III:

GPS measurements: GPS signal structure, C/A and P-codes, Code and carrier phase measurements, position estimation with pseudo range measurements, Spoofing and anti spoofing, GPS navigation and observation data formats.

UNIT - IV:

GPS Augmentation systems: Code-based and carrier based Differential GPS(DGPS) Techniques, DGPS errors, Wide area augmentation system-architecture, GAGAN, Local area augmentation system concept.

UNIT - V:

GPS Modernization and other satellite navigation systems: Future GPS satellites, New signals and their benefits, Hardware and Software improvements, GPS integration – GPS/Geo Information System, GPS/Inertial Navigation Systedm, GPS/pseudolite, GPS/cellular, GLONASS, Galileo System.

Learning Resources:

- 1 Pratap Misra and Per Enge, "Global Positioning System Signals, Measurement, and Performance," Ganga- Jamuna Press, 2/e, Massachusetts, 2010.
- 2 G.S.Rao, Global Navigation Satellite Systems, Tata Mc Graw-Hill, 2010.
- 3 Satheesh Gopi, "Global positioning system: Principles and Application", TMH, 2005.
- 4 B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, "GPS Theory and Practice," Springer Verlog, 2008.
- 5 Bradford W. Parkinson and James J. Spilker, "Global Positioning System: Theory and Application," Vol. II, American Institution of Aeronautices and Astronautics Inc., Washington, 1996.
- 6 https://nptel.ac.in/syllabus/105107062/

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Image and Video Processing Using Machine Learning

(Professional Elective-V)

SYLLABUS FOR B.E. VIII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE830EC
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To introduce students to the	On completion of the course, students will be able
basic concepts and	to
techniques of Machine	1 Describe the basic concepts of Machine Learning
	2 Apply Machine Learning techniques suitable for
with regression methods,	
classification methods,	,
clustering methods.	given problem.
	4 Analyse the performance of various models
	using appropriate metrics.
	5 Design and implement various machine learning
	algorithms in a range of real-world applications.

CO-PO/PSO Mapping

CO .	0,15	JO 1-10	чррп	פי											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2													2
CO2	2	3			2										3
CO3	2	3			2										3
CO4	2	2		3	2										3
CO5	2	2	3	2	3										3

UNIT - I:

Introduction to Machine learning, Core concepts, Data inconsistencies, Practical Machine learning applications, Types of learning problems, Machine learning architecture, Machine learning algorithms.

Linear Regression, Cost Function, Gradient Descent and Logistic Regression.

UNIT - II:

Working with Decision tress: Basics of Decision trees, uses, Advantages, Limitations, different algorithm types - ID3, C4.5, CART

Bayesian Networks: Graph theory, probability theory, Bayes theorem, working of Bayesian Networks.

Support vector Machines: Definition of SVM, uses of SVM, Basic classification principles, How Support Vector Machines Approach classification.

Clustering: Definition of clustering, clustering types-K-means, Agglomerative hierarchical, DBSCAN.

UNIT - IV:

Deep learning: Background, Deep learning Taxonomy, Hebbian learning, Perceptron Learning, Back propagation, Convolutional Neural networks, Recurrent Neural Networks, Autoencoders.

UNIT - V:

Applications of Machine learning: Image retrieval, Face recognition, Video classification. Image Segmentation using K-means clustering, Satellite Image Classification using Decision Trees. Image/Video Classification using CNN, Performance analysis of various algorithms.

Learning Resources:

- 1 Machine Learning, Tom M. Mitchell, 1st Edition, McGraw-Hill Education; 1st edition, 2017.
- 2 Introduction to Machine Learning, Ethem Alpaydin, third edition, PHI.
- 3 Machine Learning for Big Data: Hands on for developers and technical professionals wiley publications, 2018 by Jason Bell.
- 4 Practical Machine Learning. Sunila Gollapudi, Packt publishers, 2016.
- 5 https://nptel.ac.in/courses/106/105/106105152/
- 6 https://nptel.ac.in/courses/106106139/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Optical Networks

(Professional Elective-V)

SYLLABUS FOR B.E. VIII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE840EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
COURSE OBJECTIVES To introduce students to the concepts of Optical Network design.	COURSE OUTCOMES On completion of the course, students will be able to 1 Implement SONET for communication. 2 CO2: Contribute in the areas of optical network and WDM network design. 3 CO3: Implement simple optical network and understand further technology developments for future enhanced network. 4 CO4: Contribute in the area of network survivability.
	5 CO5: Design WDM Network

UNIT - I:

SONET/SDH: optical transport network, IP, routing and forwarding, multiprotocol label switching.

UNIT - II:

WDM network elements: optical line terminals and amplifiers, optical add/drop multiplexers, OADM architectures, reconfigurable OADM, optical cross connects.

UNIT - III:

Control and management: network management functions, optical layer services and interfacing, performance and fault management, configuration management, optical safety.

UNIT - IV:

Network Survivability: protection in SONET/SDH & client layer, optical layer protection Schemes.

UNIT - V:

WDM network design: LTD and RWA problems, dimensioning wavelength routing networks, statistical dimensioning models. Access networks: Optical time division multiplexing, synchronization, header processing, buffering, burst switching, test beds, Introduction to PON, GPON, AON.

Learning Resources:

- 1 Rajiv Ramaswami, Sivarajan, Sasaki, "Optical Networks: A Practical Perspective", MK, Elsevier, 3rd edition, 2010.
- 2 C. Siva Ram Murthy and Mohan Gurusamy, "WDM Optical Networks: Concepts Design, and Algorithms", PHI, EEE, 2001

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Real Time Systems

(Professional Elective-VI)

SYLLABUS FOR B.E. VIII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE850EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1 To Familiarize students	On completion of the course, students will be able
with the aspects of	to
developing a Real Time	
System and Policies for I/O	•
management, memory	2 Compare different scheduling algorithms and
management and fault	
tolerance in Real Time	, ,
Systems.	tasks when sharing resources avoiding dead
	lock.
	4 Compare different commercial RTOS and
	choose specific type for a particular application.
	5 To analyze evaluation techniques and reliability
CO-PO/PSO Manning	models for Hardware Redundancy

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1										1		
CO2	2	2	2												
CO3	2	2	2	1									1		
CO4	1	2	2	1											
CO5	1	1	3	1									2	2	2

UNIT - I : Real Time System Characteristics

Introduction to RTS, Types of RTS, Task Types, Jobs – Periodic, Sporadic, Aperiodic, Applications of RTS, Predictability, Reference Model, Types of schedulers, Cyclic and Priority based Schedulers and problem analysis.

UNIT - II : Real Time Schedulers

Cyclic, priority based schedulers – static/dynamic – RM, EDF, LST, Optimality of EDF, Non-optimality of EDF, Scheduling with precedence constraints, Multiprocessor scheduling – static and dynamic systems, Problems of Predictability in multi-processor systems, Preemptive and non-preemptive priority based scheduling in uniprocessor systems.

UNIT - III: Resource sharing and Deadlock avoidance

Resource Control Model, Priority Inversion, Uncontrolled Priority Inversion, Disadvantages of Priority inversion, Priority Inheritance Protocol, Deadlocks due to Priority Inheritance Protocol, Priority Ceiling Protocol, Deadlock Avoidance, Analysis of Priority Ceiling Protocol, Stack Sharing Priority Ceiling Protocol, Priority Ceiling Protocol in Dynamic Priority Systems, Multiple units of resources, Priority ceiling, Preemption ceiling and stack based preemption ceiling protocol.

UNIT - IV: Commercial RTOS

Unix and Windows as RTOS, Real-time POSIX, Different Types of commercial RTOS, features of VxWorks, μ COS and RTLINUX. Memory, I/O management policies and Interrupt handling in Different RTOS. Comparison and study of RTOS: Vxworks and μ COS

UNIT - V: Fault-Tolerance Techniques & RTOS Application Domains

What causes failures, Fault types, Fault detection, Hardware and software Redundancy.

Case studies: RTOS for Image Processing – Embedded RTOS for voice over IP – RTOS for fault Tolerant Applications – RTOS for Control Systems.

Learning Resources:

- 1 uC/OS-III: The Real-Time Kernel and the Freescale Kinetis ARM Cortex-M4 Hardcover, 2011, Micrium, ISBN-13: 978-0982337523.
- 2 Jane W S Liu, "Real Time Systems" 2018 edition, Pearson, India.
- 3 David E. Simon "An Embedded Software Primer" Addison-Wesley publisher, 2004, ISBN 020161569X.
- 4 https://nptel.ac.in/courses/106105036/

The break-up of CIE: Internal	Tests +	Assignments	+	Quizzes
-------------------------------	---------	-------------	---	---------

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Radar and Navigation Systems

(Professional Elective-VI)

SYLLABUS FOR B.E. VIII - SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE860EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

erstand the Radar	On completion of the course, students
and the parameters	will be able to
	1 Derive and discuss Radar range
orking of Various	equation and nature of detection
	2 Describe about CW Radar and MTI
different Navigation	radar
	3 Interpret different tracking radars
	4 Explain principles of navigation, in
	addition to approach and landing
	aids as related to navigation
	5 Describe about the navigation
	systems using the satellite
•	and the parameters orking of Various different Navigation

CO-PO/PSO Mapping

CO-F	со-го/гоо наррину														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		2										2	
CO2	3	3		2		2								2	
CO3	3	3		2		2								2	
CO4	3	2		2		2	2							2	
CO5	3	2		2		2	2					2		2	

UNIT - I:

Introduction to radar, radar block diagram and operation, radar frequencies, Applications of radar, Prediction of range performance, minimum detectable signal, receiver noise, SNR, Integration of radar pulses, radar cross-section of targets, PRF and range ambiguities, transmitter power, system losses.

UNIT - II:

Doppler effect, CW radar, FM CW radar, multiple frequency CW radar. MTI radar, blind speeds, delay line cancellers, staggered PRF, limitations to the performance of MTI radar.

Tracking radars: Sequential lobing, Conical scan, Monopulse: amplitude comparison and phase comparison methods, Radar antennas. Radar displays. Duplexer.

UNIT - IV:

Direction Finding - Four methods of Navigation, Loop Antenna as direction finding, An Aural Null Direction Finder, Adcock Direction Finders, Direction Finding at Very High Frequencies: The LF/MF Four course Radio Range, VHF Omni Directional Range(VOR), Errors in Direction Finding.

UNIT - V:

Hyperbolic Navigation Systems: Principle of Hyperbolic Navigation Systems: Loran and Decca and Omega System, GPS principle and operation, Position location determination and applications.

Learning Resource:

- Merrill I. Skolnik, "Introduction to Radar Systems", 2nd Edition Tata Mc Graw-Hill 2017.
- N.S.Nagaraja, "Elements of Electronic Navigation Systems", 2nd Edition, TMH, 2000.
- 3. Peyton Z. Peebles:, "Radar Principles", John Wiley, 2004 2. J.C Toomay, "Principles of Radar", 2nd Edition –PHI, 2004.
- 4. Radar Systems and Radio Aids to Navigation, Sen & Bhattacharya, Khanna publishers
- 5. NPTEL Links: https://nptel.ac.in/courses/101108056/3

The	break-up	of CIF .	Internal	Tests +	Assiann	ents +	Onizzes
1116	DI Cak-up	UI CIE .	IIILEIIIAI	16515 +	ASSIGITI	ients +	Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Adaptive Signal Processing

(Professional Elective-VI)
SYLLABUS FOR B.E. VIII – SEMESTER

L:T:P (Hrs./week) : 3:0:0 SEE Marks : 60 Course Code: **U20PE870EC**Credits : 3 CIE Marks : 40 Duration of SEE : 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
2	To introduce some practical aspects of signal processing, and in particular adaptive systems The basic principles of adaptation which cover various adaptive signal processing algorithms (e.g., the LMS algorithm,RLS algorithm) and its applications, such as adaptive noise cancellation, interference cancelling, system identification	On completion of the course, students will be able to 1 Design and apply optimal minimum mean square estimators and in particular linear estimators.

	-,		~FF												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2			2					3	2			3
CO2	2	3	2								2	2			3
CO3	2	3	3			2					2	2			3
CO4	3	3	3								3	2			3
CO5	2	3	3							2	2	1			3

UNIT - I:

Approaches to the development of adaptive filter theory. Introduction to filtering, smoothing and prediction. Wiener filter theory, introduction; Error performance surface; Normal equation; Principle of orthogonality; Minimum mean squared error;

UNIT - II:

Gradient algorithms; Learning curves; LMS gradient algorithm; LMS stochastic gradient algorithms; convergence of LMS algorithms.

Applications of adaptive filter to adaptive noise cancelling, Echo cancellation in telephone circuits and adaptive beam forming

UNIT - IV:

Kalman Filter theory; Introduction; recursive minimum mean square estimation for scalar random variables; statement of the Kalman filtering problem: the innovations process; Estimation of state using the innovations process; Filtering examples

UNIT - V:

Vector Kalman filter formulation. Examples. Applications of Kalman filter to target tracking.

Learning Resource:

- 1 Simon Haykins, "Adaptive signal processing", PHI, 1986. 3rd EDITION
- 2 Sophoclas, J. Orphanidies, "Optimum signal processing an introduction", McMillan, 1985.
- 3 Bernard Widrow, "Adaptive signal processing", PHI,1986
- 4 Bozic. SM., Digital and kalman Filtering
- 5 https://nptel.ac.in/syllabus/117105026/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Software Defined & Cognitive Radio Networks

(Professional Elective-VI)

SYLLABUS FOR B.E. VIII – SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: U20PE880EC		
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours		

	COURSE OBJECTIVES	COURSE OUTCOMES
1	To understand basic architecture of software defined radio	On completion of the course, students will be able to
2	To study signal processing devices and architectures	1 Gain knowledge on software defined radio and cognitive radio.
3	To describe spectrum sensing techniques of cognitive radio	Describe about signal processing devices and architecturesDiscuss on software and hardware
		architecture of Software Defined and Cognitive Radio.
		4 Analyze spectrum sensing methods
		5 Implement CR and SDR applications on
		to FPGA and ASICS.

UNIT - I:

Introduction to SDR: What is Software-Defined Radio, The Requirement for Software-Defined Radio, Legacy Systems, The Benefits of Multi-standard Terminals, Economies of Scale, Global Roaming, Service Upgrading, Adaptive Modulation and Coding, Operational Requirements, Key Requirements, Reconfiguration Mechanisms, Handset Model, New Base-Station and Network, Architectures, Separation of Digital and RF, Tower-Top Mounting, BTS Hoteling, Smart Antenna Systems, Smart Antenna System Architectures, Power Consumption Issues, Calibration Issues, Projects and Sources of Information on Software Defined Radio

UNIT - II:

Basic Architecture of a Software Defined Radio: Software Defined Radio Architectures, Ideal Software Defined Radio Architecture, Required Hardware Specifications, Digital Aspects of a Software Defined Radio, Digital Hardware, Alternative Digital Processing Options for BTS Applications, Alternative Digital Processing Options for Handset Applications, Current Technology Limitations, A/D Signal-to-Noise Ratio and Power Consumption, Derivation of Minimum Power Consumption, Power Consumption Examples, ADC Performance Trends, Impact of Superconducting Technologies on Future SDR Systems.

Signal Processing Devices and Architectures: General Purpose Processors, Digital Signal Processors, Field Programmable Gate Arrays, Specialized Processing Units, Tilera Tile Processor, Application-Specific Integrated Circuits, Hybrid Solutions, Choosing a DSP Solution. GPP-Based SDR, Non real time Radios, High-Throughput GPP-Based SDR, FPGA-Based SDR, Separate Configurations, Multi-Waveform Configuration, Partial Reconfiguration, Host Interface, Memory-Mapped Interface to Hardware, Packet Interface, Architecture for FPGA-Based SDR, Configuration, Data Flow, Advanced Bus Architectures, Parallelizing for Higher Throughput, Hybrid and Multi-FPGA Architectures, Hardware Acceleration, Software Considerations, Multiple HA and Resource Sharing, Multi-Channel SDR.

UNIT - IV:

Cognitive Radio: Techniques and signal processing History and background, Communication policy and Spectrum Management, Cognitive radio cycle, Cognitive radio architecture, SDR architecture for cognitive radio, Spectrum sensing Single node sensing: energy detection, cyclostationary and wavelet based sensing-problem formulation and performance analysis based on probability of detection Vs SNR. Cooperative sensing: different fusion rules, wideband spectrum sensing-problem formulation and performance analysis based on probability of detection Vs SNR.

UNIT - V:

Cognitive Radio: Hardware and applications: Spectrum allocation models. Spectrum handoff, Cognitive radio performance analysis. Hardware platforms for Cognitive radio (USRP, WARP), details of USRP board, Applications of Cognitive radio

<u>Learning Resource</u>:

- 1 "RF and Baseband Techniques for Software Defined Radio" Peter B. Kenington, ARTECH HOUSE, INC, 2005.
- 2 "Implementing Software Defined Radio", Eugene Grayver, Springer, New York Heidelberg Dordrecht London, ISBN 978-1-4419-9332-8 (eBook) 2013.
- 3 "Cognitive Radio Technology", by Bruce A. Fette, Elsevier, ISBN 10:0-7506-7952-2, 2006.
- 4 "Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems", Hüseyin Arslan, Springer, ISBN 978-1-4020-5541-6 (HB), 2007

The break-up of CIE: Internal Tests + Assignments + Quizzes

 No. of I 	Internal Tests	: 2	Max. Marks for each Internal Test :	30
------------------------------	----------------	-----	-------------------------------------	----

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Professional Electives (R-20)

(Students can opt for all professional electives from single stream or several streams)

Professional Elective Stream		Systems and VLSI Stream		ion Engineering ream	Signal Pro	cessing Stream	Networking Stream						
	VI - Semester												
Professional Elective – I	11120DE610EC 1 = 5 : 5 : 5 :		U20PE620EC	Mobile Cellular Communication	U20PE630EC	DSP Processors and Architectures	U20PE640EC	Wireless Sensor Networks					
	VII - Semester												
Professional Elective – II	U20PE710EC	Advanced Embedded Systems	U20PE720EC	Optical Fiber Communication	U20PE730EC	Speech and Audio Signal Processing	U20PE740EC	Network Security					
Professional Elective – III	U20PE750EC	FPGA Architectures and Applications	U20PE760EC	Coding theory and Techniques	U20PE770EC	Digital Image and Video Processing	U20PE780EC	Network Management					
Professional Elective – IV	TIDODE /QUECT		U20PE711EC	Satellite Communication	U20PE721EC	Biomedical Signal Processing	U20PE731EC	Voice and Data Networks					
			,	VIII – Semester									
Professional Elective – V	U20PE810EC	Low Power VLSI Design	U20PE820EC	Global Positioning System	U20PE830EC	Image and Video processing using Machine Learning	U20PE840EC	Optical Networks					
Professional Elective – VI	1 11/0)PE85()E(TReal Time Systems		U20PE860EC	Radar and Navigation Systems	U20PE870EC	Adaptive Signal Processing	U20PE880EC	Software Defined and Cognitive Radio networks					