VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

IBRAHIMBAGH, HYDERABAD-500 031 ACCREDITED BY NAAC WITH A++ GRADE

Approved by A.I.C.T.E., New Delhi and Affiliated to Osmania University, Hyderabad-07

Sponsored by

VASAVI ACADEMY OF EDUCATION Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR B.E. (IT) III and IV Semesters with effect from 2023-2024 (For the batch admitted in 2022-23) (R-22)

DEPARTMENT OF INFORMATION TECHNOLOGY +91-40-23146050, 23146051 Fax: +91-40-23146090 Website: <u>www.vce.ac.in</u>

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH A++ GRADE IBRAHIMBAGH, HYDERABAD-500 031

<u>Vision</u>

Striving for a symbiosis of technological excellence and human values.

<u>Mission</u>

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow.

Quality Policy

Education without quality is like a flower without fragrance. It is our earnest resolve to strive towards imparting high standards of teaching, training and developing human resources.

DEPARTMENT OF INFORMATION TECHNOLOGY

<u>Vision</u>

To be a center of excellence in the emerging areas of Information Technology.

Mission

- Provide a comprehensive learning experience on the latest technologies and applications.
- Equip the stakeholders with latest technical knowledge and leadership skills with collaboration to become competent professionals.
- Motivate innovation and contribute to the societal issues with human values and professional ethics.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH A++ GRADE IBRAHIMBAGH, HYDERABAD-500 031

DEPARTMENT OF INFORMATION TECHNOLOGY

Programme Educational Objectives (PEOs) for IT Program

A Graduate of Information Technology will be able to:

- **PEO1**: Pursue higher studies in multidisciplinary areas with research orientation.
- **PEO2**: Develop core IT competencies aligned with emerging industry trends to become global leaders with ethical values.
- **PEO3**: Engage in continuous learning and address the societal problems with sustainable solutions.

Program Specific Outcomes (PSOs) for IT Program

Our students, upon graduation from the program, will be able to

- **PSO1**: Identify and develop software solutions using programming languages, tools and AI/ML concepts.
- PSO2: Design, develop and maintain secure stand-alone, embedded and networked systems.
- **PSO3**: Analyze the architectures of autonomous or semi-autonomous intelligent systems and apply to real-time scenarios.

Program Outcomes (POs) for IT Program

At the end of the program, the graduates will demonstrate

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROMOTION RULES

1. Attendance and Sessional marks requirements:

1	B.E(4yrs)	Attendance:				
	-	Minimum aggregate attendance required to eligible to attend semester end exams is 75%				
		and 65% with Medical Condonation respectively.				
		Sessional Marks:				
		Minimum aggregate of sessional marks required to become eligible for appearing semester				
		end examinations is 40%				

II. Promotion rules for B.E(4YDC) course

S No	Semester/Class Conditions to be fulfilled			
1	I-SEM TO II- SEM	Regular course of study of I-SEM and 40% aggregate CIE marks in I-SEM		
C		a. Regular course of study of II SEM and		
	IL-SEM TO III SEM	b. 40% aggregate CIE marks in II-SEM		
۷		 Must have secured at least 50% of total credits prescribed for I and II SEMs together 		
2	III SEM to IV SEM	a. Regular course of study of III-SEM and		
3		b. 40% aggregate CIE marks in III-SEM		
		a. Regular course of study of IV SEM		
		b. 40% aggregate CIE marks in IV-SEM		
4	IV-SEM to V-SEM	c. Passed in all the courses of I and II SEMs		
		 Must have secured at lest 50% of total credits prescribed for III and IV SEMs put together 		
5	V-SEM to VI-SEM	a) Regular course of study V-SEM		
		b) 40% aggregate CIE marks in V-SEM		
		a. Regular course of study of VI SEM		
	VI-SEM to VII-SEM	b. 40% aggregate CIE marks in VI-SEM		
6		c. Passed in all the courses of III and IV SEMs		
		d. Must have secured at least 50% of total credits prescribed for V and VI $$		
		SEMs put together		
7	VII-SEM to VIII-SEM	a. Regular course of study of VII SEM		
,		b. 40% aggregate CIE marks in VII SEM		
8	Eligibility to appear VIII- SEM exams	 Regular course of study of VIII SEM and 40% aggregate CIE marks in VIII-SEM 		

III. Promotion rules for B.E(3 YDC) course (Lateral Entry)

S No	Semester/Class	Conditions to be fulfilled
1		a. Regular course of study of III-SEM and
I	III-SEIVI LO IV-SEIVI	a. 40% aggregate CIE marks in III-SEM
		e. Regular course of study of IV SEM
2	IV-SEM to V-SEM	f. 40% aggregate CIE marks in IV-SEM
		g. Must have secured at lest 50% of total credits prescribed for III and IV SEMs put together
3	V-SEM to VI-SEM	c) Regular course of study V-SEM
		d) 40% aggregate CTE marks in V-SEIVI
		e. Regular course of study of VI SEM
	VI-SEM to VII-SEM	f. 40% aggregate CIE marks in VI-SEM
4		g. Passed in all the courses of III and IV SEMs
		 Must have secured at least 50% of total credits prescribed for V and VI SEMs put together
Б	VII SEM to VIII SEM	c. Regular course of study of VII SEM
5		d. 40% aggregate CIE marks in VII SEM
6	Eligibility to appear VIII- SEM exams	 Regular course of study of VIII SEM and 40% aggregate CIE marks in VIII-SEM

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) <u>SCHEME OF INSTRUCTION AND EXAMINATION (R-22)</u> B.E. – INFORMATION TECHNOLOGY : THIRD SEMESTER (2023 - 2024)

B.E (IT) III-Semester								
		S Ir	chem nstruc	e of tion	Scheme of Examination			
Course Code	Course Name	Hours per week			Duration	Maxi Ma	mum irks	Credits
		L	Т	P/D		SEE	CIE	
U22BS330MA	Discrete Mathematics	3	-	-	3	60	40	3
U22ES310IT	Digital Electronics & Logic Design	3	-	-	3	60	40	3
U22PC310IT	Data Structures	3	-	-	3	60	40	3
U22PC320IT	Object Oriented Programming	3	-	-	3	60	40	3
U22OE3XXXX	Open Elective – I	2	-	-	3	60	40	2
U22HS320EH	Skill Development Course – I (Communication Skills in English–I)	1	-	-	2	40	30	1
U22PE310IT	Skill Development Course – II (Technical Skills – I)	1	-	-	2	40	30	1
	PRACTICALS							
U22PC311IT	Data Structures Lab	-	-	3	3	50	30	1.5
U22PC321IT	Object Oriented Programming Lab	-	-	3	3	50	30	1.5
U22PC331IT	Network Engineering Lab	-	-	2	3	50	30	1
U22PW319IT	U22PW319IT Mini Project – I				3	50	30	1
	Co-Curricular Activities-I	-	-	-	-	-	-	-
	Extra-Curricular Activities-I	-	-	-	-	-	-	-
	Library / Sports / Mentor Interaction	-	-	-	-	-	-	-
 Student should acquire one NPTEL Certification Course equivalent to 2 credits (8 weeks) by the end of VI Semester. Students opting for Honours should complete one NPTEL Course of 2 credits (8 Weeks) by the end of IV Semester. 								
	Total 16 - 10 - 580 380							
	Grand Total 26 960 21							

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade

Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

DISCRETE MATHEMATICS

for B.E., III- Sem., (CBCS)

(For IT only)

L:T:P (Hrs./week): 3:0:0	SEE Marks :60	Course Code :: U22BS330MA
Credits : 3	CIE Marks :40	Duration of SEE : 3 Hours

	COURSE OBJECTIVES		COURSE OUTCOMES
		At	the end of the course students will be able to:
1.	Understand the Propositions and their equivalences, predicates and quantifiers and learn various proof strategies.	1.	Use the logical notation to define and reason about fundamental mathematical concepts and <i>synthesize</i> induction hypothesis and simple <i>Induction</i> proofs.
2.	Study the concepts of number theory such Modular Arithmetic, Congruences and basic cryptography etc.,	2. 3.	Prove the elementary properties of modular arithmetic and basic cryptography and apply in computer science Calculate the number of possible outcomes of elementary
3.	Understand the basics of counting, combinatory, and various methods of solving Recurrence relations.		combinatorial processes such as permutations and combinations Model and analyse computational processes using analytic and Combinatorial methods.
4.	Understand the Relations, Equivalence relations, Posets and Hasse diagrams.	4.	Prove the whether a given relation is an equivalence relation/poset and will be able to draw a Hasse diagram.
5.	Analyze the concepts of Graphs.	5.	Apply the graph theory models of data structures and to solve problems of connectivity

UNIT – I

Logic: Logic- Logical connectives- Propositional equivalences- Predicates and quantifiers.

Mathematical Reasoning, **Induction**: Proof Strategy- Methods of Proofs- Mathematical Induction- Second Principle of Mathematical Induction.

UNIT – II

Number Theory: The Integers and Division- Division Algorithm- Fundamental Theorem of Arithmetic –Modular Arithmetic-Integers and Algorithms- Euclidean Algorithm. Applications of Number Theory-Linear Congruences- The Chinese Remainder Theorem (without Proof)- Fermat's Little Theorem- Public key cryptography- RSA Encryption and Decryption.

UNIT – III

Counting: Basics of counting- Pigeonhole principle –Permutations & Combinations- Pascal's Identity- Vandermonde's Identity.

Advanced Counting Techniques: Recurrence relations: Solving Recurrence Relations- Linear Homogeneous and Non-Homogeneous Recurrence relations.

UNIT – IV

Relations: Relations – Properties - Representing relations - Equivalence Relations - Partial Orderings- Poset- Hasse diagrams – Maximal & Minimal Elements.

UNIT –V

Graph Theory: Introduction- Graph terminology-Types of graphs-Basic theorems- Representing Graphs and Graph Isomorphism - Connectivity- Euler and Hamiltonian paths - Planar graphs- Euler's Formula.

Learning Resources:

- 1. Kenneth H.Rosen Discrete Mathematics and its application 5th edition, Mc Graw Hill, 2003.
- 2. Joel. Mott. Abraham Kandel, T.P.Baker, Discrete Mathematics for Computer Scientist & Mathematicans, Prentiee Hail N.J., 2ndedn, 1986.
- 3. Discrete and Combinatorial Mathematics by Ralph P. Grimaldi , Pearson International
- 4. J.P.Trembly, R.Manohar, Discrete Mathematical Structure with Application to Computer Science, Mc Graw-Hill 1997.
- 5. R.K. Bisht, H.S.Dhami Discrete Mathematics, Oxford University Press, 2015.
- 6. http://mathworld.wolfram.com/topics
- 7. http://www.nptel.ac.in/course.php

The break-up of CIE : Internal Tests + Assignments + Quizzes

		1 100	ginno		G UILE00		
1	No. of Internal Tests	:	2	Max.	Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max.	Marks for each Assignment	:	5
3	No. of Quizzes	:	3	Max.	Marks for each Quiz Test	:	5
	Duration of Internal Tests	:	90 N	/linutes			

Course Coordinator [Faculty Name]

DIGITAL ELECTRONICS AND LOGIC DESIGN

STELADUS FUR III-SEMESTER						
L:T:P (Hrs./week): 3:0:0	SEE Marks :60	Course Code : U22ES310IT				
Credits : 3	CIE Marks :40	Duration of SEE : 3 Hours				

COURSE OBJECTIVES	COURSE OUTCOMES
The Objectives of the course:	On completion of the course, students will be able to:
 Introduce the concepts of combinational and sequential circuit design. 	 Simplify Boolean Functions using algebraic and K-map techniques to specific number of literals. Design combinational circuits using fundamental logic gates and programmable logic devices for a given problem.
 Introduce VHDL Programming Language to implement digital circuits. 	 Draw the circuits of different types of flipflops and explain their operation using Truth tables and excitation tables. Analyze any given synchronous or asynchronous sequential circuit and design synchronous or asynchronous sequential circuits for a given specification of the problem. Implement combinational and sequential circuits using VHDL programming language.

UNIT – I:

Introduction to Boolean algebra and number system, Logic Gates, Optimized implementation of logic functions – Karnaugh Map, Strategies for minimization of product-of-sum and sum-of-product functions. Multiple output circuits. NAND and NOR logic networks, Cost functions, Introduction to CAD tools and VHDL

UNIT – II:

Combinational circuit building blocks – Multiplexers. Decoders. Encoders. Code converters, Arithmetic comparison circuits. General structures of a PLA, gate level diagram, schematic diagram, PAL. Structure of CPLDs and FPGAs, 2-input and 3-input lookup tables(LUT). Design of Arithmetic-circuits using CAD tools. VHDL for Combinational circuits **UNIT – III:**

Basic Latch, Gated SR Latch, gated D Latch, T Flip-flop, JK Flip-flop, excitation tables. Master-Slave edge triggered flip-flops. Set up and hold time of a flip-flop. Registers, Counter. Using registers and counters with CAD tools. Design examples using VHDL.

UNIT - IV:

Synchronous Sequential Circuits – Analysis of Synchronous sequential Circuits Basic design steps. State-Assignment problem Moore and Mealy state models. State minimization, Design of FSM with CAD Tools. Implementation using VHDL.

UNIT – V:

Introduction to Asynchronous sequential circuits, Analysis of Asynchronous sequential circuits. Hazards: static and dynamic hazards. Significance of Hazards. Clock skew, ASM Charts, Digital Hardware Design Flow.

Learning Resources :

- 1. M. Moris Mano, Charles R. Kime, Logic and Computer Design Fundamentals, 2nd edition, Pearson Education Asia, 2001.
- 2. Stephen Brown , Zvonko Vranesic Fundamentals of Digital Logic with VHDL design, McGraw Hill 2000.
- 3. Virendrakumar Digital ElectronicsTheory& Experiments, New Age International Publishers, 2002
- 4. John F. Walkerly, Digital Design : Principles and Practices, Pearson India, 4th Edition.
- 5. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, Digital Systems: Principles and Applications, Pearson India, 10th Edition.
- 6. https://nptel.ac.in/courses/117106086/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max. Marks for each Assignment		5
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5
D	tion of Internal Tests		~~			

Duration of Internal Tests : 90 Minutes

DATA STRUCTURES

SYLLABUS FOR III-SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks :60	Course Code : U22PC310IT
Credits : 3	CIE Marks :40	Duration of SEE : 3 Hours

Course Objectives	Course Outcomes			
The Objectives of the course:	On completion of the course, students will be able to:			
 Demonstrate linear and non-linear data structures and their applications. Illustrate searching and sorting techniques. 	 Understand asymptotic notations, operations on arrays and stacks, and evaluate arithmetic expressions. Analyze search, insert and delete operations on queues and linked list. Compare complexities of insertion, deletion and search operations on trees, binary search trees and balanced binary search trees. Understand the operations on multiway search trees and apply graph search algorithms to find minimal cost Spanning trees. Evaluate the complexities of sorting, searching and hashing techniques. 			

UNIT-I:

Basic Concepts: Elementary Data Organizations, Data Abstraction. Data Structures Introduction and Operations: insertion, deletion, traversal. Performance analysis - time complexity and space complexity, Asymptotic Notations- Big O, Omega and Theta notations.

Arrays: Arrays – ADT, Polymonials, Sparse matrices, Strings-ADT, Pattern Matching

Stacks: Stack Abstract Data Type, Representation of a Stack using Arrays –Implementation of Stack Operations - Stack Applications: Infix to postfix Transformation - Evaluating Arithmetic Expressions.

UNIT-II:

Queues: Queue Abstract Data Type- Representation of a Queue using array - Implementation of Queue Operations - Applications of Queues - Circular Queues.

Linked List: Introduction – Singly Linked list -Operations on a singly linked list -Dynamically Linked Stacks and Queues Doubly linked list-Operations on a doubly linked list, Circular Linked list, Polynomial manipulation - Operations, Sparse Matrices.

UNIT-III:

Trees: Introduction, Binary Trees, Binary Tree Traversals, Priority Queues, Heaps.

Binary Search trees (BST) : Definition, Searching a BST, Insertion into a BST, Deletion from a BST.

Efficient Binary Search Trees: AVL Trees, Red-Black Trees, Splay Trees.

UNIT-IV:

Multiway Search Trees: m-way search trees-Definition and Properties, Searching an m-way search tree, B-Trees-Definition and properties, Number of Elements in a B-Tree, Insertion into a B-Tree and Deletion from a B-Tree.

Trie Data Structure : Introduction, Basic Operations

Graphs: The Graph ADT, Elementary graph operations - Depth First Search (DFS), Breadth First Search (BFS), Minimal Cost Spanning Trees- Kruskal's Algorithm, Prim's Algorithm.

UNIT-V:

Sorting and complexity analysis: Insertion Sort, Heap Sort, Topological Sort

Searching: Linear Search, Binary Search Techniques and their complexity analysis.

Hashing : Introduction, Static Hashing – Hash tables, Hash functions, Overflow handling.

Learning Resources:

- 1. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures in C, 2/e, Universities Press, 2008
- 2. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition (2002), Pearson
- 3. Richard F, Gilberg, B.A. Forouzan, "Data Structures, A Pseudocode Approach with C", Cengage, 2nd Edition
- 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stem 'Introduction to Algorithms' 2002.
- 5. Tanenbaum A. M , Langsam Y. Augenstein M. J, Data Structures using C, Second Edition (2008), Pearson
- 6. Data Structures through C in depth, S K Srivastava, Deepali Srivastava, BPB publications, 2nd Edition
- 7. http://nptel.ac.in/courses/106106127/
- 8. http://nptel.ac.in/courses/106103069/

9. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/</u>

i ne i	break-up of CIE: Internal Tests	+ Assigi	nme	nts + Quizzes	
1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:
2	No. of Assignments	:	3	Max. Marks for each Assignment	:
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:

Duration of Internal Tests : 90 Minutes

30 5 5

OBJECT ORIENTED PROGRAMMING

SYLLABUS FOR B.E. III-SEMESTER

Credits : 3 CIE Marks : 40 Duration of SEE : 3 Hours	L:T:P (Hrs./week): 3:0:0	SEE Marks : 60	Course Code : U22PC320IT
	Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

COURSE OBJECTIVE	COURSE OUTCOMES			
The Objectives of the course:	On completion of the course, students will be able to:			
 Provide an overview of object-oriented programming concepts. Explore java libraries to build applications. 	 Illustrate object-oriented programming features using Java. Perform exception handling and multithreading. Perform I/O operations, String manipulation using java libraries. Implement data structures using collections framework. Design and develop CILL using java libraries. 			

UNIT-I

Object Oriented Programming Fundamentals :

Object, Class, Abstraction, Encapsulation, Inheritance, Polymorphism.

Java Programming Fundamentals: Overview of Java , Java-keywords, Data types, Variables, Arrays, Command Line Arguments, Operators, Control statements, Structure of a Java class, Classes, Methods, Abstract Classes, Nested Classes. Interfaces : Defining interfaces, extending interfaces, implementing interfaces. Packages: Creation, importing a package and user defined package.

UNIT-II

Exception Handling: Introduction, types of exceptions, syntax of exception handling code, multiple catch statements, using finally statement, user-defined exceptions.

Multithreaded Programming: Introduction to threads, creating threads, extending the Thread class, implementing the Runnable interface, life cycle of a thread, priority of a thread, synchronization, and Inter-thread Communication.

UNIT-III

Exploring java.io : Java I/O classes and interfaces, Files, Character and Byte Streams Serialization.
 Exploring java.lang: Object, Wrapper classes, String, StringBuffer, System.
 Exploring java.util: Scanner, StringTokenizer, Date, Calendar.

UNIT-IV

Introduction to Generics: Defining Generics, Generics and Subtyping, Wildcards, Generic Methods.

Introduction to Collections: Collection Framework, Benefits of Collections Framework, Collection Framework Interfaces : Collection , Set, List, Queue, Deque, Sorted Set, Map, Sorted Map. Collection Framework Implementations : HashSet, TreeSet, ArrayList, LinkedList, PriorityQueue, ArrayDeque, HashMap, TreeMap. Traversing Collections.Collection Framework Algorithms : Sorting, Searching.

UNIT-V

GUI Programming : Introduction to Abstract Window Toolkit(AWT), Swing and Applets : AWT Class Hierarchy, Swing Class Hierarchy, Swing Components, Containers, Layout Managers, Event Handling : The Delegation Event Model, Model View Controller Architecture, Modifying Look and Feel, Working with Graphics and Applets.

Learning Resources:

- 1. Herbert Schildt, The Complete Reference Java, 7th Edition, Tata McGraw Hill, 2006.
- 2. James M Slack, Programming and Problem solving with JAVA, Thomson Learning, 2002.
- 3. C Thomas Wu, An Introduction to Object Oriented Programming with Java 5th edition, McGraw Hill Publishing, 2010.
- 4. Y. Daniel Liang , An Introduction to JAVA Programming, Tata McGraw Hill, 2009.
- 5. Kathy Sierra, Head First Java, 2/e, Shroff Publishers, 2012.
- 6. https://nptel.ac.in/courses/106105191/
- 7. https://docs.oracle.com/javase/tutorial/

The break-up of CIE : Internal Tests + Assignments + Quizzes

1	No. of Internal Tests		:	2	Max. Marks for each Internal Tests	:	:	30
2	No. of Assignments		:	3	Max. Marks for each Assignment	:	:	5
3	No. of Quizzes		:	3	Max. Marks for each Quiz Test	:	:	5
Durat	ion of Internal Tests	:	90	Minutes				

Course Coordinator [Faculty Name]

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

SKILL DEVELOPMENT COURSE-I -COMMUNICATION SKILLS IN ENGLISH-I

(Common to all branches)

SYLLABUS FOR B.E. -III SEMESTERL:T:P (Hrs./week): 2:0:0SEE: 40Course code: U22HS320EHCredits : 1CIE: 30Duration of SEE: 2 Hours

	COURSE OBJECTIVES		COURSE OUTCOMES	
Th	e course will enable the learners to:	At the end of the course the learners will be able to: -		
1.	Get students proficient in both receptive and productive	1.	Introduce themselves effectively and converse in a formal	
	skills especially virtuall		environment especially in the online space	
2.	Enable students to understand the importance and method	2.	Write emails with appropriate structure and content	
	of exchanging information in a formal space- both written	3.	Use appropriate structure based on the content	
	and spoken		employing appropriate transitions in written and spoken	
3.	Introduce students to an ideal structure for a presentation		communication	
	and discussion- individually and in groups	4.	Paraphrase content and write an effective summary	
4.	Develop and improve reading skills needed for college work		· · ·	
	and reproduce the content based on the situational need.			

Unit 1

Delightful Descriptions

- 1.1 Introductions on an Online Forum
- 1.2 Making Observations and Giving Opinion
- 1.3 Recalling and Describing

Unit 2

Formal Conversation Skills

- 2.1 Ask for Information
- 2.2 Give Information
- 2.3 Give Feedback
- 2.4 Seek Permission

Unit 3

Technical Expositions and Discussions

- 3.1 Classification
- 3.2 Sequence
- 3.3 Compare and Contrast
- 3.4 Cause and Effect
- 3.5 Problem and solution

Unit 4

Rational Recap

- 4.1 Paraphrasing Written
- 4.2 Summarizing Written
- 4.3 Paraphrasing Spoken
- 4.4 Summarizing Spoken

METHODOLOGY

- Case Studies
- Demonstration
- Presentations
- Expert lectures
- Writing and Audio-visual lessons

Learning Resources:

learn.talentsprint.com

The break-up of CIE: Internal Tests			+ Assignments + Quizzes			
1	No. of Internal tests	:	2	Max. Marks	:	20
2	No. of assignments	:	2	Max. Marks	:	5
3	No. of Quizzes	:	2	Max. Marks	:	5
Du	ation of Internal Tests	: 90	Minutes			

Course Coordinator [Faculty Name]

ASSESSMENTS

- Online assignments
- Individual and Group

SKILL DEVELOPMENT COURSE-I -TECHNICAL SKILLS-I

SYLLABUS FOR B.E. III-SEMESTER

L:T:P (Hrs./week): 1:0:0	SEE Marks	: 40	Course Code : U22PE310IT
Credits : 2	CIE Marks	: 30	Duration of SEE : 2 Hours

	COURSE OBJECTIVE		COURSE OUTCOMES
	The course will enable the students to	On	completion of the course, students will be able to
\$	Understand the significance of Competitive Coding	*	Solve scenario based problems on linked lists, Recursive
*	Prepare the students for the contests relative to the concepts learnt		Algorithms, Search & Sort Algorithms, Divide & Conquer Strategies and use memory manipulation functions.
*	Build confidence in coding using Linear Data structures	*	Learn linear data structures usage in various applications with scenariobased problem solving through coding
*	Learn essential algorithms for Competitive Coding		

Phase I

#1: Code Complexity Analysis & Linear List data

Problem solving through Coding, Compare and contrast coding and competitive coding, Various approaches for problem solving, techniques for competitive coding, Orientation on Competitive coding on coding platforms like Codechef/ Codeforces/ Leetcode/ Hackerrank etc

Precise coding techniques implementing the evaluation of the language supported expressions, code complexity analysis, Linear/ Logarithmic/ Super linear/ Polynomial/ Exponential/ Recursion Algorithm analysis, Problem Solving using Linear list data, Subscripts, 2D Array Subscript, RMO & CMO Representation, Matrix Problems. Company Specific Examples & Competitive Programming Practice Problems.

Contextual implementation using Competitive Coding using global coding platforms: Code chef/ Leet code / Codeforces / Hackerrank etc

#2: Memory Manipulation Methods and Problem Solving on String data

Pointer Variable, Pointer Arithmetic, Memory Layout, Runtime memoryallocation, Problem Solving on String Data, String handling methods, Examples, Practice Problems

#3: Problem Solving using Linked List data

Implementing a Structure member pointer reference, Coding solutions for Linked list manipulation, Solutions for order statistic problems on linked lists: Comparison/ Cycle Detection/ Merge Point Detection/ Merging the lists, Codingsolution for the circular linked data and Double linked data, coding problems, Examples, Practice problems

#4: Problem Solving using Abstract data structures: Stacks

Problem solving using Stacks, Coding solutions for the implementation of stack using an array, Coding solutions for the implementation of stack using a linked list. Problem solving on expression conversion and evaluation, Examples, Practice problems

#5: Problem Solving through Queues & Search-Sort Algorithms

Problem solving using Queues, Coding solutions for the implementation of queue using an array/ linked list, Divide & Conquer Strategies: Linear Vs Binary Search Analysis, Bubble sort and Selection Sort Analysis, Examples, Practice problems

#6: Problem Solving through Divide & Conquer Strategies

Divide & Conquer Strategies: Quick sort Analysis, Merge Sort Analysis, Min/Power functions, Examples, Practice problems.

DATA STRUCTURES LAB

SYLLABUS FOR B.E. III-SEMESTER

L:T:P(Hrs./week):0:0:3	SEE Marks : 50	Course Code : U22PC311IT
Credits : 1.5	CIE Marks : 30	Duration of SEE : 3 Hours

Course Objectives	Course Outcomes		
The Objectives of the course:	On completion of the course, students will be able to:		
 Demonstrate stacks, queues, linked lists and its applications. 	1. Implement operations on stacks, queues and linked lists and evaluate expressions.		
2. Provide hands-on experience to perform searching, sorting problems insertion and deletion operations on non-linear data structures.	 Execute insert, search and delete operations on trees. Implement priority queues, heaps and sorting. Implement graph traversal algorithms. Implement multi way search trees. 		

- Menu driven program that implements Stacks using arrays for the following operations a)create b)push c)pop d) peek
- 2. Implementation of Infix to Postfix Conversion and evaluation of postfix expression.
- 3. Menu driven program that implements Queues using arrays for the following operations a)create b)insert c)delete d) display
- 4. Menu driven program that implements Circular Queues for the following operations a)create b)Insert c)delete d) display
- 5. Implementation of Singly Linked List, Stack using Singly Linked List, Queue using Singly Linked List.
- 6. Implementation of polynomial operations using Linked List.
- 7. Implementation of Doubly Linked List, Circular linked list.
- 8. Implementation of Operations on Binary Tree (Insert, Delete, Level Order, Search)
- 9. Implementation of Recursive and Iterative Traversals on Binary Trees.
- 10. Implementation of Operations on Priority Queues and Heaps.
- 11. Implementation of Operations on Binary Search Tree.
- 12. Implementation of operations on AVL Tree.
- 13. Implementation of Breadth First search Traversal on Graphs.
- 14. Implementation of Depth First search Traversal on Graphs.
- 15. Implementation of Insertion Sort, Heap Sort.
- 16. Implementation of B-Trees

Learning Resources

- 1. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, Fundamentals of Data Structures in C, 2/e, Universities Press, 2008
- 2. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition (2002), Pearson
- 3. Richard F, Gilberg, B.A. Forouzan, "Data Structures, A Pseudocode Approach with C", Cengage, 2nd Edition
- 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stem 'Introduction to Algorithms' 3rd Edition.
- 5. Tanenbaum A. M , Langsam Y. Augenstein M. J, Data Structures using C, Second Edition (2008), Pearson
- 6. Data Structures through C in depth,S K Srivastava,Deepali Srivastava,BPB publications,2nd Edition

Online Resources:

- 1. http://nptel.ac.in/courses/106106127/
- 2. http://nptel.ac.in/courses/106103069/
- 3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/

No. of Internal Tests:	02
Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work	18
Duration of Internal Test: 3 Hours	

OBJECT ORIENTED PROGRAMMING LAB

SYLLABUS FOR B.E. III-SEMESTER							
L:T:P(Hrs./week):0:0:3	SEE Marks : 50	Course Code : U22PC321IT					
Credits : 1.5	CIE Marks : 30	Duration of SEE : 3 Hours					

COURSE OBJECTIVE	COURSE OUTCOMES	
The Objectives of the course:	On completion of the course, students will be able to:	
1. Illustrate the key features of Object-	1. Implement object-oriented programming features using Java.	
Oriented Programming, threads and files.	2. Implement exception handling and multithreading.	
2. Demonstrate command line as well as	3. Execute I/O and String manipulation operations using java libraries.	
graphical user interface applications.	 Implement data structures using collections framework. 	
	5. Develop GUI using java libraries.	

JAVA API (java.lang package)

- 1. A program to illustrate the concept of arrays in Java.
- 2. A program to demonstrate the use of command line arguments.
- 3. A program to illustrate the concept of inheritance.
- 4. A program to illustrate the concept of dynamic polymorphism.
- 5. A program to illustrate the concept of abstract class.
- 6. A program to demonstrate various access specifiers and their scope using packages.
- 7. A program to demonstrate how multiple inheritance is achieved using interfaces.
- 8. A program to demonstrate exception handling by using throw, finally & multiple catch statements.
- 9. A program to illustrate the concept of user-defined exception.
- 10. A program to create multiple threads using Thread class and Runnable interface.
- 11. A program to illustrate the concept of thread synchronization.

JAVA API (java.io package)

- 12.a) A program to illustrate the use of FileInputStream and
 - FileOutputStream
 - b) A program to illustrate the use of BufferedInputStream and BufferedOutputStream.
 - c) A program to illustrate the use of ObjectInputStream and ObjectOutputStream.

JAVA API (java.util package)

- 13.a) A program to demonstrate the use of Scanner class to read user
 - input.
 - b) A program to demonstrate the use of StringTokenizer.
 - c) A program to demonstrate the use of Date and Calendar.
- 14. A program to demonstrate the use of Collection framework classes and algorithms.

JAVA API (java.awt , java.awt.event and , javax.swing package)

15. a) An application involving GUI with different controls using AWT.

- b) An application involving GUI with different controls using Swing.
- c) An application using Applet.

Learning Resources:

- 1. Herbert Schildt, The Complete Reference Java, 7th Edition, Tata McGraw Hill, 2006.
- 2. James M Slack, Programming and Problem solving with JAVA, Thomson Learning, 2002.
- 3. C Thomas Wu, An Introduction to Object Oriented Programming with Java 5th edition, McGraw Hill Publishing, 2010.
- 4. Y. Daniel Liang , An Introduction to JAVA Programming, Tata McGraw Hill, 2009.
- 5. Kathy Sierra, Head First Java, 2/e, Shroff Publishers, 2012.
- 6. https://nptel.ac.in/courses/106105191/
- 7. https://docs.oracle.com/javase/tutorial/

No. of Internal Tests:	02
Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work	18
Duration of Internal Test: 3 Hours	

NETWORK ENGINEERING LAB

SYLLABUS FOR B.E. III-SEMESTER

Credits 1 CIE Marks 30 Duration of SEE 3 Hours	L:T:P(Hrs./week):0:0:2	SEE Marks : 50	Course Code : U22PC331IT	
	Credits : 1	CIE Marks : 30	Duration of SEE : 3 Hours	

COURSE OBJECT	COURSE OBJECTIVE COURSE OUTCOMES		COURSE OUTCOMES
The Objectives of the course:			completion of the course, students will be able to:
1. Introduce the fundamer	ntal concepts in	1.	Identify and Configure LAN switching technologies
Networking, OSI and TCP/IP	protocol suite.	2.	Implement IP addressing and subnetting.
2. Demonstrate Switching, Ro	uting and Wireless	3.	Design and configure routers, switches and wireless devices.
networking concepts using Pa	acket Tracer tool.	4.	Build configuration for DHCP server and client.
		5.	Identify and provide security to LAN Ports.

List of Experiments:

- 1. **Basic Networking Commands-**The networking commands like ipconfig, netstat, ping, system info, lookup, traceroute, hostname, Arp are discussed.
- 2. **Configure Initial Switch Settings** Connect a switch to a PC via a console cable, specify the switch's name using IOS commands, then set up passwords to safeguard the switch using Packet Tracer Simulator. Save the switch's configuration to its NVRAM (Using IOS commands).
- **3.** Connect a Wired and Wireless LAN- Connect all devices in the supplied activity using guided media in accordance with the directions on the instructions page by using the packet tracer simulator and verify end-to-end connectivity
- 4. Subnet an IPv4 Network- Create an IPv4 Network Subnetting Scheme, configure the devices, test the network and troubleshoot it.
- 5. Sub-netting Scenario- Design an IP addressing scheme using FLSM (Fixed Length Subnet Mask) and assign IP addresses to network devices as per instructions given in instructions page in packet tracer activity and check connectivity.
- 6. Design and Implement a VLSM addressing Scheme- Given a network address and host requirements, create a VLSM (Variable Length Subnet Mask) addressing scheme by setting up addressing on network hosts, switches, and routers. Verify IP connectivity and troubleshoot connectivity issues as required.
- 7. **Configure IPv6 Addressing Scheme-** To Set Up Topology by configuring basic Router and Switch Settings and IPv6 Addresses manually and to verify end-to-end Connectivity
- 8. **Build a small network.** Create a new IPv4 addressing scheme that will accommodate 4 subnets using the 192.168.0.0/24 network. 25 hosts are required by the IT department.(The Web server, ISP cluster, and Central router have been completely configured). 50 hosts are required for the sales division. 100 hosts are needed in the subnet for the remaining employees. To support 25 hosts, a Guest subnet will be implemented in the future. On R1, you must also complete the fundamental interface and security setups. On switches S1, S2, and S3, you will configure the Switch Virtual interface and the fundamental security settings.
- 9. **Configure SSH-** Replace Telnet protocol with SSH using CISCO IOS Commands on networking devices to encrypt communication between client and server and to verify connectivity.
- 10. **Implement VLANs and Trunking-** To configure and implement Virtual LANs by assigning ports and create static and dynamic trunks.
- 11. **Configure Router-on-a-Stick Inter-VLAN Routing:** To add VLANs to a switch and configure sub interfaces on the router in order to test the connectivity with Inter VLAN Routing.
- 12. **Configure DHCPv4-** To configure a router as a DHCP server, PCs as DHCP clients and other routers as DHCP relay agents as per the instructions given in packet tracer activity, verify DHCP and test the connectivity.
- 13. **Implement Port Security-**In the given Topology Implement Port Security on Switches and verify.
- 14. **Configure a Wireless Network-** To connect wired and wireless devices to a wireless router, configure and add access point to extend wireless coverage.

Learning Resources:

<u>https://www.netacad.com/courses/networking/ccna-introduction-networks</u> <u>https://www.netacad.com/courses/networking/ccna-switching-routing-wireless-essentials</u>

No. of Internal Tests:02Max. Marks for Internal Test:12Marks for day-to-day laboratory class work18Duration of Internal Test:2 Hours

MINI PROJECT-I

SYLLABUS FOR B.E. III-SEMESTER

L:T:P(Hrs./week):0:0:2	SEE Marks : 50	Course Code : U22PW319IT
Credits : 1	CIE Marks : 30	Duration of SEE : 3 Hrs

Course Objectives	Course Outcomes			
The Objectives of the course:	On completion of the course, students will be able to:			
Develop and implement a project using	1. Apply theoretical knowledge to design solutions for real life problems.			
any of the programming	2. Demonstrate the ability to locate and use technical information from multiple			
languages/simulation tools/electronic	SOURCES.			
components.	3. Develop team spirit and demonstrate an understanding of professional ethics.			
	4. Demonstrate the ability to communicate effectively in speech and in writing.			
	5. Develop the capability for lifelong learning through advanced technology.			

- 1. During the implementation of the projects, Personnel Software Process (PSP) has to be followed.
- 2. Two reviews will be conducted.
- 3. Report of the project work has to be submitted for evaluation.

Continuous Internal Evaluation (CIE) – 30 marks : To be evaluated by the Internal Examiner

Assesment-1 : [5 Marks]

To be conducted on week-2 : Review of problem selection and Abstract.

Assesment-2: [10 Marks]

To be conducted on week-7: Review of project design and initial phase of implementation.

Assesment-3: [15 Marks]

To be conducted on week-15 : Review of final implementation, presentation and report.

Semester End Examination(SEE) – 50 marks: To be evaluated by the External Examiner

Evaluation is done based on the following deliverables:

PowerPoint Presentation	[10 Marks]
Demonstration of the application	[20 Marks]
Project report	[10 Marks]
Viva Voce	[10 Marks]

External Examiner should be appointed from other premier Institutes OR from the industry.

III – Semester Open Electives (Open Elective - I) Academic Year : 2023-24

S. No.	Dept.	Streams	Course Code	Name of the Course	Credits
1	Civil	General Pool	U22OE310CE	Green Buildings	2
2	ECE	Communication Engineering Stream	U22OE340EC	Introduction to Signals and Systems	2
3	EEE	General Pool	U22OE310EE	Non Conventional Energy Sources	2
4		Unmanned Aerial Vehicles	U22OE310ME	Introduction to Unmanned Aerial Vehicles	2
5	Mechanical	Robotics	U22OE320ME	Introduction to Industrial Robotics	2
6		General Pool	U22OE330ME	Introduction to Automobile Engineering	2
7	Chemistry	Polymeric Materials	U22OE310CH	Materials for Engineers	2
8	H&SS	General Pool	U22OE310EH	Learning To Learn	2
9	Mathematics	General Pool	U220E310MA	Linear Algebra	2
10		General Pool	U22OE310PH	Smart Materials And Applications	2
9	Physics	Semiconductor Physics and Device Applications	U23OE320PH	Essentials Of Semiconductor Physics	2
10		Materials Science For Engineers	U22OE330PH	Fundamentals Of Materials Science	2

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF CIVIL ENGINEERING

GREEN BUILDINGS (Open Elective-I)

SYLLABUS FOR B.E. III-SEMESTER

L : T : P (Hrs./week):2:0:0	SEE Marks:60	Course Code: U22OE310CE
Credits: 2	CIE Marks:40	Duration of SEE: 3 Hrs

COURSE OBJECTIVES			COURSE OUTCOMES
Obj	ectives of this course are to:	Up	on the completion of this course the students will be expected to:
1.	Learn the principles of planning and orientation of buildings.	1.	Explain the principles of building planning, its bylaws and provide facilities for rainwater harvesting.
2.	Environmental implications of natural and building materials along with green cover	2.	Analyse the aspects of energy, water and waste management in buildings.
3.	Acquire knowledge on various aspects of green buildings	3. 4.	Understand the concepts of green building technologies. Understand rating systems of GRIHA IGBC and LEED.

UNIT-I: Planning of buildings: Principles of planning, Relevant building bylaws, site selection for buildings, orientation of buildings, Provision of rain water harvesting

UNIT-II: Building-Energy-Implications: Environmental implications of buildings energy, carbon emissions, water use, waste disposal; Building materials: sources, methods of production and environmental Implications. Green building materials and recycling, Green cover and built environment

UNIT-III: Green Building Technologies: Introduction- Necessity - Concept of Green building. Principles of green building – Site selection criteria for Green Buildings – effective cooling and heating systems – effective electrical systems-Passive solar architecture - effective water conservation systems

UNIT-IV: Certification Systems: Certification systems- Green Rating for Integrated Habitat Assessment (GRIHA), Indian Green Building Council (IGBC) and Leadership in Energy and Environmental Design (LEED), case studies

Learning Resources:

- 1. Kumara Swamy N.Kameswara Rao A., Building Planning And Drawing, Charotar, Publications, 2013.
- 2. Shahane, V. S, "Planning and Designing Building", Poona, Allies Book Stall, 2004.
- 3. Michael Bauer, Peter Mösle and Michael Schwarz "Green Building Guidebook for Sustainable Architecture" Springer, 2010.
- 4. Tom Woolley, Sam Kimmins, Paul Harrison and Rob Harrison "Green Building Handbook" Volume I, Spon Press, 2001.
- 5. Mili Majumdar, "Energy-efficient buildings in India" Tata Energy Research Institute, 2002.
- 6. TERI "Sustainable Building Design Manual- Volume I & II" Tata Energy Research Institute, 2009.

The break-up of CIE: Internal Tests + Assignments + Quizzes

	•					
1	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2	No. of Assignments	:	2	Max. Marks for each Assignment	:	5
3	No. of Quizzes	:	2	Max. Marks for each Quiz Test	:	5
D	ation of Internet Tests	00 14:000				

Duration of Internal Tests : 90 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Introduction to Signals and Systems (Communication Engineering Stream: Open Elective - I)

SYLLABUS FOR B.E. III – SEMESTER (other branches)

L:T:P (Hrs./week) : 2:0:0	SEE Marks : 60	Course Code: U22OE340EC
Credits : 2	CIE Marks : 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. Define and classify continuous and	On completion of the course, students will be able to
discrete time signals and systems.	1. Analyze basic signals and systems in continuous time domain.
2. Determine frequency domain	2. Apply the properties of Fourier transformation techniques to analyze
characteristics of continuous and	continuous time domain signals and systems in frequency domain.
discrete time signals.	3. Apply Laplace Transform, analyze the LTI systems.
	4. Analyze basic signals and systems in discrete time domain
	CO-PO-PSO Mapping

PO2 PO3 PSO₂ PSO3 P01 PO4 PO₅ PO6 PO7 PO8 P09 PO10 PO11 PO12 **PSO1** CO1 3 3 2 3 3 CO2 3 3 2 3 3 3 3 2 3 3 CO3 CO4 3 2 3 3 1 CO5 2 3 3 3

UNIT - I

Continuous time signals: types of signals, representation of signals, basic elementary signals, operations on signals. **Continuous time systems:** classification of systems - static and dynamic, linear and non linear, time invariant and time variant.

Lab Activity: Generation of elementary signals in MATLAB.

UNIT - II

Continuous time Fourier Series: Introduction, existence, properties, magnitude and phase spectrums **Continuous time Fourier transforms:** Introduction, existence, properties, magnitude and phase spectrums. **Lab Activity:** Verification of properties of Fourier Transform in MATLAB.

UNIT – III

Laplace transforms: Introduction, existence, Laplace transform of basic elementary signals, properties, inverse Laplace transforms, Analysis of LTI systems using Laplace Transform.

Lab activity: Obtaining system response using Laplace transforms in MATLAB

UNIT - IV

3.

Discrete time signals: types of signals, representation of signals, basic elementary signals, operations on signals. **Discrete time systems:** classification of systems - static and dynamic, linear and non linear, time invariant and time variant.

Lab activity: Generation of elementary signals in MATLAB.

Learning Resources:

- 1. P. Ramakrishna Rao, Signals and Systems, Mc Graw Hill, 2008.
- 2. Alan V. Oppenheim, Alan S. Wilsky and S. Hamid Nawab, Signals and Systems, 2nd ed., PHI, 2009.
- 3. Nagoor kani , Signals and Systems McGraw Hill, 2013

4. <u>https://onlinecourses.nptel.ac.in/noc19_ee07/preview</u>

- (Principle of Signals and Systems by Prof. Aditya K Jagannatham
- 5. https://www.edx.org/course/signals-and-systems-part-1-1
- 6. https://www.edx.org/course/signals-systems-part-2-iitbombayx-ee210-2x-3

The break-up of CIE : Internal Tests + Assignments + Quizzes

1.	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30
2.	No. of Assignments	:	2	Max. Marks for each Assignment	:	5

No. of Assignments	•	2		•	J
No. of Quizzes	:	2	Max. Marks for each Quiz Test	:	5

Duration of Internal Tests: 90 Minutes

Course Coordinator [Faculty Name]

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Non Conventional Energy Sources

Open Elective-I

SYLLABUS FOR B.E. III SEMESTER							
L: T: P (Hrs/Week):2:0:0	SEE Marks: 60	Course Code: U22OE310EE					
Credits:2	CIE Marks: 40	Duration of SEE: 3Hours					

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students to:	On completion of the course, students will be able to
To provide a survey of the most important renewable energy resources and the technologies for harnessing these resources within the framework of a broad range of simple to state- of -the-art energy systems.	 Demonstrate the generation of electricity from various Non-Conventional sources of energy and solar power generation Illustrate the generation of energy from wind and generation of energy from waste Demonstrate the generation of energy by biomass and fuel cells Illustrate the ocean and geo thermal energy generation

UNIT-I: Introduction and Solar Energy:

Introduction: Need for Non-conventional energy sources, Types of Non-Conventional energy sources. Renewable energy across the Global and in India. Renewable energy for rural applications, Renewable energy for urban, industrial and commercial applications

Solar Energy: Solar cell fundamentals: Semiconductors, Photovoltaic effect, Solar PV cell, module, panel, array, Solar cell operating characteristics: Voltage-current characteristic, energy losses, maximising the performance. Applications of solar energy, Solar energy program in India, Case study

UNIT-II: Wind Energy and Waste to Energy:

Wind Energy: Nature of wind, Basic components of Wind Energy Conversion System(WECS), Power extraction from the wind, Applications of wind energy. Wind energy program in India, Case Study **Waste to Energy:** Key issues, Waste recovery management, Case study

UNIT-III: Biomass Energy and Fuel Cells:

BiomassEnergy: Definition, Bio fuels, Biomass resources, Biomass conversion technologies: Incineration- Thermo chemical conversion- Bio- chemical conversion. Advantages and disadvantages of biomass energy, Case study **Fuel Cells:** Definition-Classification of fuel cells, Principle of operation, Hydrogen-oxygen fuel cell, Alkaline fuel cell, Proton exchange membrane fuel cell, Molten carbonate fuel cell, Solid oxide electrolyte cells, Comparison of fuel cells-Advantages and Disadvantages of fuel cells-Applications of Fuel cells. Case study

UNIT-IV: Ocean Energy and Geothermal Energy:

Ocean Energy: Ocean thermal electric conversion (OTEC) methods: Open cycle and Closed cycle- Principles of tidal power generation. Advantages and limitations of tidal power generation, Case study

Geothermal Energy: Geothermal resources- Vapour dominated geothermal plant- Liquid dominated geothermal plant- Applications of Geothermal Energy, Case study

Learning Resources:

- 1. B H KHAN, Non-Conventional Energy Resources, McGraw Hill, 2nd Edition, 2009.
- 2. G. S. Sawhney, Non-Conventional Energy Resources, PHI Learning Pvt Ltd, 2012
- 3. ShobhNath Singh, Non-Conventional Energy Resources, Pearson, 2016
- 4. G.D. Rai, Non-Conventional Energy Sources ,Khanna Publishers, New Delhi, 2011.
- 5. Ashok Desai V, Non-Conventional Energy, Wiley Eastern Ltd, 1990.
- 6. Mittal K.M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, 1997.
- 7. Ramesh R, Kurnar K.U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 1997.

The break-up of CIE : Internal Tests+Assignments+Quizzes

1.	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2.	No. of Assignments	:	3	Max. Marks for each Assignment	:	5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests :90 Minutes

Course Coordinator [Faculty Name]

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 Department of Mechanical Engineering

Introduction to Unmanned Aerial Vehicles

(Open Elective-I) (Stream: Unmanned Aerial Vehicles) SYLLABUS FOR B.E.III-SEMESTER

L:T:P(Hrs/week):2:0:0	SEE Marks:60	Course Code: U22OE310ME
Credits :02	CIE Marks:40	Duration of SEE:03Hours

	COURSE OUTCOMES					
COURSE OBJECTIVE	On completion of the course, students will be able to					
The objective of this Course is to	1. Explain the types and characteristics of UAVs and their applications.					
understand the features of UAV, elements, navigation and guidance	2. Illustrate the concepts of aerodynamics of flight vehicle.					
	3. Identify and explain the components, sensors and payload of UAVs, their					
of UAV and to design and silmulate	navigation and guidance.					
UAV	4. Design and perform structural, aerodynamic analysis of UAV components					

	CO-Po and CO-PSO mapping														
CO		PO mapping PSO mapping													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				3	3	3				3	3	2	3
CO2	3	3				3	3	2				3	3	2	3
CO3	3	2				3	3	2				3	3	2	3
CO4	3	2				3	3	2				3	3	2	3

Unit-I: Introduction to UAV

UAV: Definition, History; Difference between aircraft and UAV; DGCA Classification of UAVs; Types and Characteristics of Drones: Fixed, Multi-rotor, and Flapping Wing; Applications: Defense, Civil, Environmental monitoring.

Unit-II: Basics of Flight

Different types of flight vehicles; Components and functions of an airplane; Forces acting on Airplane; Physical properties and structure of the atmosphere; Aerodynamics – aerofoil nomenclature, aerofoil characteristics, Angle of attack, Mach number, Lift and Drag, Propulsion and airplane structures.

Unit-III: UAV Elements, Navigation and Guidance

Components: Arms, motors, propellers, electronic speed controller (ESC), flight controller; Propulsion; Data Link; Sensors and Payloads: GPS, IMU, Light Detection and Ranging (LiDAR), Imaging cameras, Classification of payload based on applications; Hyper-spectral sensors; Laser Detection and Range (LADAR); Synthetic Aperture Radar (SAR); Thermal cameras; ultra-sonic detectors; Case study on payloads. Introduction to navigation systems and types of guidance; Mission Planning and Control.

Unit-IV: Design & Simulation of UAV

Introduction to CAD; Design of UAV components; Structural Analysis using CAE; Aerodynamic Analysis using CFD; Manufacturing of the components of UAVs: 3D printing; Case studies;

Learning Resources:

- 1. Andey Lennon, "Basics of R/C Model Aircraft Design" Model Airplane News Publication
- 2. John Baichtal, Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs.
- 3. <u>K Valavanis</u>, <u>George J Vachtsevanos</u>, Handbook of Unmanned Aerial Vehicles, New York, Springer, Boston, Massachusetts : Credo Reference, 2014. 2016.
- 4. DGCA RPAS Guidance Manual, Revision 3 2020

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1	No. of Internal Tests:	02	Max. Marks for each Internal Test:	30
2	No. of Assignments:	02	Max. Marks for each Assignment:	05
3	No. of Quizzes:	02	Max. Marks for each Quiz Test:	05

Duration of Internal Test: **1 Hour 30 Minutes**

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 Department of Mechanical Engineering

Introduction to Industrial Robotics

(Open Elective-I) (Stream: Robotics)

SYLLABUS FOR B.E.III-SEMESTER

L:T:P(Hrs/week):2:0:0	SEE Marks:60	Course Code: U210E320ME
Credits :02	CIE Marks:40	Duration of SEE: 03Hours

COURSE OBJECTIVE	COURSE OUTCOMES
The objective of the course is to	On completion of the course, students will be able to
study industrial robot components, configuration, sensors, drives, applications and programming through experiential learning.	 explain configuration of industrial robots and summarize various applications. interpret various elements of the industrial robots Develop methodology to represent position and orientation of industrial robot links in spatial coordinate system. classify various sensors used in industrial robots and interface between the human user and an industrial robot using various programming languages.

	CO-Po and CO-PSO mapping														
CO		PO mapping PSO mapping													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			1	2	2					2	3	1	2
CO2	3	2			1	2	2					2	3	1	2
CO3	3	2			1	2	2					2	3	1	2
CO4	3	2			1	2	2					2	3	1	2

UNIT-I ROBOT BASICS

Robot-Basic concepts, Need, Law, History, Anatomy, specifications.

Robot configurations-cartesian, cylindrical, polar, articulated and SCARA. Parallel robots

ROBOT APPLICATIONS

Application in industry – material handling, loading & unloading, processing, welding & painting, assembly and inspection

UNIT-II

ROBOT ELEMENTS

End effectors-Classification, Types of Mechanical actuation, Gripper design, Robot joints types, Robot drive system types: Electrical, pneumatic and hydraulic. Position and velocity feedback devices

UNIT-III

ROBOT COORDINATE SYSTEMS

Coordinate frames, Rotation matrix, Euler angles, Roll pitch and yaw angle representation, Composite rotations, Homogeneous Transformation matrix.

UNIT-IV

ROBOT SENSORS

Sensors in robots – Touch sensors-Tactile sensors – Proximity and range sensors. Force sensors

Robot programming

On line programming, teach pendant control, Lead through, Walk through, off line programming, Task programming.

Learning Resources:

- 1. Mikell P. Groover, Mitchell Weiss, Roger N Nagel and Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata Mc Graw-Hill Publishing Company Limited , 2008.
- 2. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata Mc Graw Hill Publishing Company Limited, 2010.

- 3. Klafter R.D, Chmielewski T.A, and Negin. M, "Robotic Engineering: An Integrated Approach", Prentice Hall of India Pvt. Ltd., 1994.
- 4. K.S. Fu, R.C. Gonzalez and C.S.G. Lee , "Robotics control, sensing, vision and intelligence", Tata Mc Graw-Hill Publishing Company Limited, 2008
- 5. R.K. Mittal and I. J. Nagrath"Robotics and Control", Tata Mc Graw-Hill Publishing Company Limited, 2003.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1No. of Internal Tests:02Max.Marks for each Internal Test:302No. of Assignments:02Max. Marks for each Assignment:053No. of Quizzes:02Max. Marks for each Quiz Test:05

Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 Department of Mechanical Engineering

Introduction to Automobile Engineering

(Open Elective-I)

(General Pool) SYLLABUS FOR B.E.III-SEMESTER

L:T:P(Hrs/week):2:0:0	SEE Marks:60	Course Code: U22OE330ME
Credits :02	CIE Marks:40	Duration of SEE:03Hours

Course objectives	Course Outcomes
The objectives of this course are to:	On completion of the course, the student will be able to:
1. familiarize the student with the different types of	1. identify types of Automobiles and engine components and
automobiles and engine components along with its	describe its working.
working.	2. describe the engine fuel Supply system in petrol and Diesel
2. impart adequate knowledge in fuel supply, cooling,	engines, cooling system, and lubrication systems.
lubrication and ignition of IC engines.	3. describe the steering mechanism, suspension systems
3. understand the steering geometry, steering mechanism	4. describe the working principle and operation of clutch, gear
and types of suspension systems.	mechanism, brakes and identify the types of wheels, tyres
4. gain the knowledge about working of clutch, gear box	
mechanism, and brakes and make the student	
conversant with types of wheels, tyres	

	CO-Po and CO-PSO mapping														
CO	PO mapping PSO mapping												ping		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1		1	2	2					3	3	2	3
CO2	3	2	2		2	2	2					3	3	2	3
CO3	3	2	2		1	2	2					3	3	2	3
CO4	3	1	2		2	2	2					3	3	2	3

UNIT-I

Introduction: Types of automobiles, Lay out of transmission system, Engine components: cylinder block, cylinder head, crankcase, crank shaft and cam shaft. Types and working of IC Engines: SI and CI engines, two stroke and four stroke engines.

UNIT-II

Fuel system: Fuel supply system for SI engines and CI engines. Simple carburettor, Introduction to Multipoint fuel injection system (**MPFI**) of petrol engines, Introduction to **CRDI** system for diesel engines.

Cooling system: air cooling, water cooling: Thermo syphon, pump circulation system.

Lubrication system: Petroil System, splash system, pressure lubrication: Wet sump and Dry Sump.

Ignition system: Battery Ignition System, Magneto Ignition System and Electronic Ignition System.

UNIT-III

Suspension system: Rigid axle, Independent suspension system: Double wish bone type, Macpherson strut system. **Steering system**: wheel alignment, Ackermann steering mechanism, steering geometry: camber, caster, toe-in, toeout, steering linkage for vehicle with rigid axle front suspension, steering linkage for vehicle with independent front suspension.

UNIT –IV

Power Train: Single plate clutch, Multi plate clutch. Manual Gear Box: sliding mesh gear box, constant mesh gear box, synchromesh gear box. Working principle of differential.

Brakes: Types: Drum and Disc brakes, Hydraulic Braking system, ABS system.

Wheels and Tyres: Types of Wheels: wire wheels, disc wheels, alloy wheels. Types of tyres: Tube type, tubeless type.

Learning Resources:

- 1. Crouse & Anglin, "Automobile Engineering", 10th Edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2007.
- Kirpal Singh, "Automobile Engineering", Vol.1& II, 13th Edition, Standard Publishers, New Delhi 2013.
 R.B Gupta, "Automobile Engineering" 7th Edition, Satya Prakashan, New Delhi, 2015.
 Joseph Heitner, "Automotive Mechanics", 2nd Edition, Affiliated East West Pvt. Ltd., 2013.

- 5. C.P. Nakra, "Basic Automobile Engineering", 7th Edition, Dhanpat Rai Publishing C (P) Ltd., 2016.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

- No. of Internal Tests: 02 Max. Marks for each Internal Test: 30 1
- 2 No. of Assignments: 02 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 02 Max. Marks for each Quiz Test: 05

Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (A) DEPARTMENT OF CHEMISTRY

Materials for Engineers

(Stream: POLYMERIC MATERIALS) OPEN ELECTIVE

Instruction :2Hour / Week	SEE- Marks : 60	Course Code : U22OE310CH
Credit : 2	CIE- Marks : 40	SEE- Duration : 2Hours

	OBJECTIVES		OUTCOMES
The course will enab	le the students:	At tl	he end of the course students should be able to:
1. To familiarize	with various types of polymers	1.	Classify the polymers.
2. To acquaint will polymerization	in allerent methods of .	2.	their mechanisms.
3. To converse techniques	the different polymerization	3.	Discuss the polymerization techniques used for the selected polymers.
4. To familiarize specialty polyn	with various high performance/ ners.	4.	Discuss the synthesis, properties and applications of selected polymers.

CO-PO	MAPPIN	G:										
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	3	-	-	-	-	-	1	-	-	-	-	1
2	3	1	-	-	-	-	1	-	-	-	-	1
3	3	-	-	-	-	-	1	-	-	-	-	1
4	3	-	-	-	-	-	1	-	-	-	-	1

UNIT-I: INTRODUCTION TO POLYMERS AND TYPES: (5h)

Introduction to various engineering materials, brief history of polymers, importance of polymers in engineering, terminology-, classification of polymers- a) based on mechanism, b) based on chain topology, c) based on end use d) linear, branched and cross linked polymers e) based on physical state, Nomenclature based on source and based on IUPAC, applications of polymers.

UNIT-II: POLYMERIZATION: (7h)

Initiators- Types of Initiators, Thermal Decomposition of Initiators, Redox Initiation, Photochemical Initiation, Initiation by Ionizing Radiation, Pure Thermal Initiation, Other Methods of Initiation, Initiator Efficiency, Definition -Mechanism - Cage Effect.Step-Reaction (Condensation) Polymerization, Polymerization Mechanisms- Mechanism of Stepwise Polymerization, Radical Chain (Addition) Polymerization, Chain Polymerization, Ionic and Coordination Chain (Addition) Polymerization, Cationic Polymerization, Anionic Polymerization, Copolymerization - Mechanisms of Copolymerization, Block and Graft Copolymers

UNIT-III: TECHNIQUES OF POLYMERIZATION: (7h)

Living Radical Polymerization - General Considerations, Atom Transfer Radical Polymerization (ATRP) -Polymerization Mechanism, Stable Free-Radical Polymerization (SFRP), Radical Addition–Fragmentation Transfer (RAFT) - and Other Living Radical Polymerizations.process conditions -bulk (mass) polymerization - solution polymerization- emulsion & suspension polymerization - heterogeneous polymerization - other processes; self-assembly and nanostructures.

UNIT-IV: COMMERCIAL & HIGH-PERFORMANCE POLYMERS: (7h)

Synthesis, properties and applications of commercial polymers: polyvinyl chloride, polystyrene Requirements for High-Temperature Polymers.

Synthesis, properties and applications of

- 1. Aromatic polyethers: Polyether sulfone,
- 2. Liquid crystal polymers: poly(oxy-1,4-phenylenecarbonyl),
- 3. Inorganic polymers Minerals Glasses Ceramics,
- 4. Organometallic polymers Polysilanes

Learning Resources:

- 1. PRINCIPLES OF POLYMERIZATION Fourth Edition GEORGE ODIAN, University of New York, New York.
- 2. TEXTBOOK OF POLYMER Science THIRD EDITION, FRED W. BILLMEYER, Troy, New York
- 3. P.C.Jain and Monica Jain, "Engineering Chemistry", DhanpatRai Pub, Co., New Delhi (2002)
- 4. Shasi Chawla, "Text Book of Engineering Chemistry", Dhanpat Rai Publishing Company, NewDelhi (2008).
- 5. NPTEL Polymer Chemistry Course, D. Dhara, IIT Kharagpur.
- 6. Polymer chemistry by Gowariker

- 1 No. of Internal Tests: 02 Max. Marks for each Internal Test: 30
- 2 No. of Assignments: 02 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 02 Max. Marks for each Quiz Test: 05
- Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) HYDERABAD DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

LEARNING TO LEARN

(General Pool Stream)

(Open Elective) SYLLABUS FOR B.E. 2/4 – III SEMESTER								
Instruction: 2 Hours	SEE: 60	Course code: U22OE310EH						
Credits: 2	CIE: 40	Duration of SEE: 3 Hours						

 Develop effective study skills, and enable students to cut	a stipulated
down on the number of hours spent studying. Explore illusions of competence in learning, the	ly.
challenges of overlearning, and the advantages of	recall what
interleaving. Handle procrastination and learn for long term. Plan, prioritise and carry out tasks based on goals and	based on set
priority.	

OVERVIEW:

No matter what your skill levels in topics you would like to master, you can change your thinking and change your life. If you are struggling to cope, you'll see a structured treasure trove of practical techniques that walk you through what you need to do to get on track. If you've ever wanted to become better at anything, this course will help serve as your guide.

UNIT 1: STUDY SKILLS

Good study skills can increase a student's confidence, competence, and self-esteem. They can also reduce anxiety about tests and deadlines. This module is designed to develop effective study skills, and enable students to cut down on the number of hours spent studying, leaving more time for other important things in their life

- 1.1 Study Skills Checklist
- 1.2 Learning Styles
- 1.3 Habits of Effective Students
- 1.4 Using the Focused and Diffuse Modes
- 1.5 Introduction to memory and Memory Technique

UNIT 2: Chunking

In this module, we're going to be talking about chunks. Chunks are compact packages of information that your mind can easily access. We'll talk about how you can form chunks, how you can use them to improve your understanding and creativity with the material, and how chunks can help you to do better on tests. We'll also explore illusions of competence in learning, the challenges of overlearning, and the advantages of interleaving.

- 2. Knowledge Chunking
- 3. Skill and Will
- 4. Sleep and Learning

UNIT 3: Procrastination and Memory

In this module, we talk about two intimately connected ideas—procrastination and memory. Building solid chunks in long term memory--chunks that are easily accessible by your short term memory—takes time. This is why learning to handle procrastination is so important. Finally, we talk about some of the best ways to access your brain's most powerful long term memory systems so that learning is long term and the learner has the ability to recall and use it as per need.

- 3. Controlling Procrastination
- 4. Ranking the importance of tasks with a to- do list
- 5. Finding their most productive time
- 6. Keeping track of time spent on different tasks
- 7. Introduction to Deep learning

UNIT 4: Renaissance Learning and Unlocking Your Potential

In this module we're going to talk more about important ideas and techniques that will enhance student's ability to learn. Students will also discover how to more profitably interact with fellow learners, how to recognize your own strengths, and how to avoid the "imposter syndrome." Fighter pilots and surgeons use checklists to help them with their critical duties—you can use a similar checklist to help you prepare for tests. Ultimately, you will learn more about the joys of living a life filled with learning!

- 4.1 Psychology of Goal Setting
- 4.2 Criteria for Goal Setting
- 4.3 Steps in Goal Setting
- 4.4 Visioning
- 4.5 Strategy & Action Plan
- 4.6 Goal Progress Review

Learning Resources

learn.talentsprint.com

				The break-u	up of	f CIE	: Internal Tests + Assignments + Quizzes			
1	No. o	f Interr	al Tests		:	2	Max. Marks for each Internal Tests		:	30
2	No. o	f Assigr	nments		:	2	Max. Marks for each Assignment		:	5
3	No. o	f Quizz	es		:	2	Max. Marks for each Quiz Test		:	5
Dur	ation	of	Internal	Tests			:	90		Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State DEPARTMENT OF MATHEMATICS

LINEAR ALGEBRA

(C	PEN ELECT	IVE-I for Civil	, EEE, ECE	, Mech of 2/	/4 B.E III-Sem)	

L:T:P (Hrs./week):2:0:0	SEE Marks :60	Course Code: U220E310MA
Credits : 2	CIE Marks: 40	Duration of SEE: 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students to:	At the end of the course students will be able to:
 Study the concept of Vector Spaces and understand the meaning of Basis and Dimension of a vector Space and Co-ordinates. Understand the meaning of Linear transformation, properties. Understandthe Range and Kernel, Rank-Nullity 	 Solve theproblems on Vector Spaces and determine the Basis and Dimension of a Vector Space and find the Co-ordinates. Determinethe Linear Transformation, Range and Kernel and Matrix of Linear Transformation. Determinethe Range and Kernel, Rank-Nullity and Matrix of Linear Transformation.
and Matrix of Linear Transformation. 4. Understand theInner Product Spaces, Orthonormal sets, Gram-Schmidt's Orthogonalization process.	 Determine the distance, orthogonal, orthonormal sets and construct orthonormal basis based on Gram-Schmidt's Orthogonalization process.

UNIT – I

Vector Spaces-Definition of a Vector Space, Subspaces, Basis and Dimension, Coordinates and Change of Basis.

UNIT – II

Linear Transformation -I

Definition of Linear Transformation- Properties of Linear Transformations – Product of Linear Transformations – Algebra of Linear Operators- Linear sum- Scalar multiple-Composition of maps.

UNIT – III

Linear Transformation -II

Range and kernel of a linear map – Dimension of Range and Kernel - Rank and nullity – Inverse of linear transformation - Rank nullity theorem (without Proof) - Matrix of Linear Transformation.

UNIT – IV

Inner Product Spaces-The Dot Product on R and Inner Product Spaces, Orthonormal Bases, Orthogonal Complements- Gram-Schmidt's Orthonormolization process.

Learning Resources:

1. Introduction to Linear Algebra with Application, Author : Jim Defranza, Daniel Gagliardi, Publisher : Tata McGraw-Hill

2. An Introduction to Linear Algebra, V.Krishna Murthy, V.P Mainra, J.L Arora, Affiliated to East-West Press Pvt Ltd

Reference Books:

- 1. Elementary Linear Algebra, Author: Anton and Rorres, Publisher: Wiley India Edition.
- 2. Advanced Engineering Mathematics, Author : Erwin Kreysig, Publisher : Wiley Publication
- 3. Elementary Linear Algebra, Author : Ron Larson, Publisher : Cengage Learning

Online Resources :

- 1. <u>http://mathworld.wolfram.com/topics</u>
- 2. http://www.nptel.ac.in/course.php

1	No. of Internal Tests		:	2	2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments		:	2	2	Max. Marks for each Assignment	:	5
3	No. of Quizzes		:	2	2	Max. Marks for each Quiz Test	:	5
Dura	ation of Internal Tests	:	90	Min	ute	25		

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF PHYSICS

SMART MATERIALS AND APPLICATIONS (General Pool)

Open elective Course

L:T:P (Hrs./week):2:0:0	SEE Marks :60	Course Code: U22OE310PH
Credits : 2	CIE Marks: 40	Duration of SEE: 3 Hrs

Со	urse Objectives	Со	urse Outcomes	BTL
The student will be able to			e student should at least be able:	
1.	grasp the concepts of peizo and ferro electric	1.	summarize various properties and applications of peizo	2
	materials		and ferro electric materials	
2.	Learn fundamentals of pyro and thermo electric	2.	apply fundamental principles of pyro and thermo	3
	materials		electricity in relevant fields of engineering	
3.	gain knowledge on shape memory alloys	3.	Explain types of shape memory alloys and their	
4.	acquire fundamental knowledge on chromic		properties and applications	3
	materials	4.	Outline the importance of chromic materials in	
			engineering fields.	2

UNIT I: PIEZO AND FERRO MATERIALS

Piezo electric effect and inverse piezoelectric effect, Piezo electric materials, Structure of Quartz crystal, Piezoelectric oscillator, Magnetostriction, Magnetostriction oscillator, piezo-electric sensors, applications of Piezo-electric materials. Characteristics and properties of ferro-electric materials, Curie-Weiss law, applications of Ferro electric materials

UNIT II: PYRO AND THERMO-ELECTRIC MATERIALS

Pyroelectricity: pyro electric effect, pyro electric materials, pyro-electric detector.

Thermoelectricity: thermoelectric effect, Seebeck effect, Peltier effect, thermocouple, Principle and working of thermoelectric generator and Thermoelectric cooler, applications of thermoelectric materials

UNIT III: SHAPE MEMORY MATERIALS

Introduction to shape memory alloys (SMA)- Shape Memory Effect (SME), Austenite, Martensite phases, Properties and characteristics SMAs, one-way and two way shape memory effects, Properties of Ni-Ti shape memory alloy, Cubased shape memory alloys, and their applications, Applications of SMAs.

UNIT-IV:

Electro-chromaticity, Electro-chromic materials, Electro-chromic sensors and devices. Photo-chromaticity, Photo-chromic materials, Photo-chromic sensors and devices. Thermo-chromaticity, thermo-chromic materials, thermo-chromic sensors and devices. Smart fluids: Magneto-rheological and Electro-rheological fluids.

Learning Resources:

- 1. K. Otsuka and C M Wayman, Shape memory materials, Cambridge university press, 1998.
- 2. T W Duerig, K N Melton, D Stockel, C M Wayman, Engineering aspects of shape memory alloys, Butterworth-Heinemann, 1990
- 3. A.K. Sawhney, A Course in Electronic Measurements and Instrumentation, Dhanpat Rai & Sons, 2015
- 4. D. Patranabis, Sensors and Transducers, PHI Learning Pvt. Ltd., 2013

				· · J				
1	No. of Internal Tests		:	2		Max. Marks for each Internal Tests	:	30
2	No. of Assignments		:	2		Max. Marks for each Assignment	:	5
3	No. of Quizzes		:	2		Max. Marks for each Quiz Test	:	5
Dur	ation of Internal Tests	:	90	Min	ute	es		

DEPARTMENT OF PHYSICS

ESSENTIALS OF SEMICONDUCTOR PHYSICS

(Stream: Semiconductor Physics and Device Applications)

(B.E-III Semester)

L:T:P (Hrs./week):2:0:0	SEE Marks :60	Course Code: U22OE320PH
Credits : 2	CIE Marks: 40	Duration of SEE: 3 Hrs

UNIT I: Basics of Quantum Mechanics (8 Hrs)

Existence of matter waves, Wave function and its significance, Schrodinger time dependent and independent wave equations, Wave equation of a free particle, Origin of band gap, Energy bands in solids, Postulates of quantum mechanics, Quantum mechanical operators and expectation values, Potential well, Quantum tunnelling.

UNIT II: Semiconductors: Energy Band and Charge Carriers (6 Hrs)

Types of semiconductors (doping, bandgap, composition), Fermi-Dirac statistics- Density of states of semiconductor, Fermi level in semiconductors, Law of mass action, Charge compensation and charge neutrality, Hall probes and its applications.

UNIT-III: Growth of Semiconductors (6 Hrs)

Introduction, Bulk crystal growth, Epitaxial crystal growth, Evaporation and sputtering, defects in crystal, Band gap engineering, GaAs crystal growth.

UNIT IV: Carrier Transport in Semiconductors (6 Hrs)

Carrier generation, Carrier life time, <u>Carrier scattering and mobility</u>, <u>Low-field and high-field transport</u>, <u>introduction to</u> <u>diffusion</u>, <u>Drift-diffusion current and total current density</u>, Einstein relation, Direct and indirect recombination and trapping, <u>Current continuity equation</u>, Carrier injection, ambipolar transport, Diffusion length.

References:

- 1. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).
- 2. Donald Neamen, Semiconductors Physics and Devices, Tata Mc Graw Hill, 2003
- 3. Tyagi, Introduction to Semiconductor Materials and Devices, Wiley Publications, 2002.
- 4. Semiconductor Devices, Basic Principles Jasprit Singh, Wiley Publications, 2001
- 5. Electronic Devices and Circuits- Millman and Halkias-Tata Mc Graw Hill, 1983.
- 6. Solid State Electronic Devices Ben G Streetman-Prentice Hall, New Delhi, 1995.

1	No. of Internal Tests		:	2	Max. Marks for each Internal Tests	:	3	0
2	No. of Assignments		:	2	Max. Marks for each Assignment	:	5	
3	No. of Quizzes		:	2	Max. Marks for each Quiz Test	:	5	
Dura	ation of Internal Tests	: 90	0	Minu	utes			

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF PHYSICS

FUNDAMENTALS OF MATERIALS SCIENCE (STREAM: MATERIALS SCIENCE FOR ENGINEERS) (B.E-III Semester)

L:T:P (Hrs./week):2:0:0	SEE Marks :60	Course Code: U22OE330PH						
Credits : 2	CIE Marks: 40	Duration of SEE: 3 Hrs						

UNIT I: Atomic structure and Chemical Bonding

Structure of the atom, The quantum states, Forces between atoms, Ionization potential, Electron affinity and electronegativity. Bond energy, Bond type and Bond length. Types of Bonds-Ionic, Covalent, Metallic bonding, Hydrogen bond, Vanderwalls bond, Cohesive energy of ionic crystals, Madelung constant.

UNIT II: Atomic Packing

Simple crystal structures, Classification of close packings 2-D & 3-D, Voids in closed packings, size and coordination of voids, significance of voids, axial ratio and lattice constants, effect of radius ratio, representation of closed packing, Paulings rule, Applications of Paulings rule to actual structures, examples of closed packed structures. Line and surface density of atoms.

UNIT III: Diffusion in Solids

Solid state diffusion, Diffusion mechanisms, Self-diffusion, Impurity diffusion coefficient, Fick's laws, Diffusion coefficient, determination of diffusion coefficient, Random walk diffusion, Diffusion in a simple cubic structure, Diffusion under external field, Kirkendall shift, Ionic conductivity, Ionic conductivity of alkali halides.

UNIT-IV: Strengthening Mechanisms

Solidification of metals and alloys, cooling curves, concepts of nucleation and growth, Heat transfer associated in nucleation and growth, Homogeneous and Heterogeneous nucleation, Structure of metal ingots, Construction of binary alloys, Formation of alloy phases, viz. Solid solutions – substitutional and interstitial, intermetallic compounds.

References:

- 1. A.J.Dekker, Solid State Physics, Macmillan India Ltd., 2008.
- 2. V Raghavan, Materials Science and Engineering, PHI, 6th Edn, 2015
- 3. W.D. Callister Jr & David G. Rethwich, Materials Science and Engineering an Introduction-, John Wiley, 10th Edn, 2018.
- 4. M. A. Wahab, Solid State Physics, Narosa. 2015.
- 5. J. P. Srivastava, Elements of Solid-State Physics, PHI, 2014.

Duration of Internal Tests	:	90 N	/linu	tes			
3 No. of Quizzes		:	2	Max. Marks for each Quiz Test	:	ļ	5
2 No. of Assignments		:	2	Max. Marks for each Assignment	:	Į	5
1 No. of Internal Tests		:	2	Max. Marks for each Internal Tests	:		30

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) SCHEME OF INSTRUCTION AND EXAMINATION (R-22)

B.E. - INFORMATION TECHNOLOGY : THIRD SEMESTER (2023 - 2024)

	B.E (IT) III-	Semeste	er (BRI		SE)			
			e of In	struction	Scheme o	ts		
Course Code	Course Name	Ho	urs per	week	Duration in	Maximu	edi	
		L	Т	P/D	Hrs	SEE	CIE	ū
THEORY								
UB22BS300MA	Matrix Theory and Vector Calculus	2	-	-	3	50	-	-
UB22ES310IT	Problem Solving through Programming using C	2	-	-	3	50	-	-
		PRAC	TICAL					
UB22ES311IT Problem Solving through Programming using C Lab			-	2	3	50	-	-
Total			-	2	-	1	50	
	Grand Total		6+0=	6				

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State DEPARTMENT OF MATHEMATICS

MATRIX THEORY & VECTOR CALCULUS BRIDGE COURSE B.E. III-SEMESTER (CBCS) (ForCSE, EEE, ECE & IT)

Instruction:	2 hours/Week	SEE Marks	:50	Subject Reference Code	UB22BS300MA
Credits:	-	CIE Marks	:-	Duration of SEE	3 Hrs

UNIT-I: DIFFERENTIATION& INTEGRATION

Differentiation of standard functions(Formulae) - Partial Derivatives – Derivativeof Composite functions and Implicit functions - Chain Rule - Total Derivative

Integration - Elementary Integration – Integration of standard functions- Methods of Integration-Integration by substitution- Integration by parts.

UNIT –II VECTOR DIFFERENTIATION

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface- Directional Derivative – Divergence and Curl of a Vector field - Conservative vector field.

UNIT – III

MULTIPLE INTEGRALS: Double and Triple integrals (Cartesian) - Change of order of integration (Cartesian Coordinates).

VECTOR INTEGRATION: Line integral and Green's Theorem (without proof)

UNIT- IV

MATRIX THEORY

Rank of matrix- Echelon form - -System of Linear Equations- Consistency of Homogeneous and Non-homogeneous system of equations- Eigen values and EigenVectors.

Suggested Books:

- 1. B.S. Grewal, Higher Engineering Mathematics
- 2. Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House

Problem Solving through Programming using C SYLLABUS FOR BRIDGE COURSE B.E. III-SEMESTER

L:T:P (Hrs./week): 2:0:0	SEE Marks : 50	Course Code: UB22ES310IT
Credits :	CIE Marks :	Duration of SEE : 3 Hours

	COURSE OUTCOMES		
COURSE OBJECTIVES	On completion of the course, students will be able to		
1. Acquire problem solving skills	1. Design flowcharts and algorithms for solving a problem and choose		
2. Develop flow charts	appropriate data type for writing programs in C language		
3. Understand structured programming	2. Design modular programs involving input output operations, decision		
concepts	making and looping constructs		
4. Write programs in C Language	3. Apply the concept of arrays for storing, sorting and searching data		
	4. Apply the concept of pointers for dynamic memory management and		
	string handling		
	5. Design programs to store data in structures and files		

UNIT-I

Introduction to Computers: Computer Systems, Computing Environments, Computer Languages, Creating and Running Programs, Flowcharts.

Introduction to C Language- Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Expressions, Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion, Statements, Bitwise Operators.

UNIT-II

Selection: Logical Data and Operators, if... else, switch Statements, Standard Functions. **Repetition:** Loops, while, for, do-while Statements, Loop Examples, break, continue, goto. **Functions:** Designing Structured Programs, Functions Basics, User Defined Functions.

UNIT-III

Recursion-Recursive Functions, Preprocessor Commands.

Arrays: Two-Dimensional Arrays, Linear Search and Binary Search, Selection Sort and Bubble Sort.

UNIT-IV

Pointers: Introduction, Pointers to Pointers, Arithmetic operations using pointers **Strings** – Concepts, C Strings, String Input/output, Functions, Arrays of Strings, String Manipulation Functions.

UNIT-V

Structure: Definition and Initialization of Structures, Accessing Structures, Nested Structures, Arrays of Structures, Structures and Functions, Pointers to Structures, Unions.

Input and Output: Files, Streams, Standard Library Input/Output Functions, Character Input/Output Functions.

Learning Resources:

- 1. B. A. Forouzan& Richard F. Gilberg, "A Structured Programming Approach using C", 3rd Edition, Cengage Learning, 2013.
- 2. Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", 2nd Edition, Prentice-Hall, 2006.
- 3. Rajaraman V, "The Fundamentals of Computer", 4th Edition, Prentice-Hall of India, 2006.
- 4. Steve Oualline, "Practical C Programming", 3rd Edition, O'Reilly Press.
- 5. Jeri R. Hanly, Elliot B. Koffman, "Problem Solving and Program Design in C", 5th Edition, Pearson Education, 2007.
- 6. E. Balagurusamy, "Programming in ANSI C", 4th Edition, TMG, 2008.
- 7. Gottfried, "Programming with C", 3rd Edition, TMH, 2010.
- 8. R G Dromey, "How to Solve it by Computer", 1st Edition, Pearson Education, 2006.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

IBRAHIMBAGH, HYDERABAD - 500 031

DEPARTMENT OF INFORMATION TECHNOLOGY

PROBLEM SOLVING THROUGH PROGRAMMING USING C LAB

SYLLABUS FOR BRIDGE COURSE B.E III SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks : 50	Course Code : UB22ES311IT
Credits : 1	CIE Marks : 30	Duration of SEE : 3 Hours

			COURSE OUTCOMES
COURSE OBJECTIVES		0	n completion of the course, students will be able to
The course will enable the students to:		At	the end of the course students will be able to:
1. 2. 3. 4.	Understand the fundamentals of programming in C Language Write, compile and debug programs in C. Formulate solution to problems and implement in C. Effectively choose programming components to solve computingproblems.	1. 2. 3. 4.	Choose appropriate data type for implementingprograms in C language. Design and implement modular programs involving input output operations, decision making and looping constructs. Implement search and sort operations on arrays. Apply the concept of pointers for implementing prog rams on dynamic memory management and string bandling
		5.	Design and implement programs to store data in structures and files.

Programming Exercise:

- 1. Programs to illustrate arithmetic and bitwise operators
- 2. Programs to illustrate selection control statements
- 3. Programs to illustrate loop control statements.
- 4. Programs to illustrate functions and recursion
- 5. Programs to illustrate one dimensional arrays, searching and sorting.
- 6. Programs to illustrate two dimensional arrays
- 7. Programs on pointers
- 8. Program on usage of built-in Functions for string manipulations.
- 9. Programs on structures and unions.
- 10. File handling programs.

Learning Resources:

- 1. Forouzan B.A & Richard F. Gilberg, A Structured Programming Approach using C, 3rd Edition(2013), Cengage Learning.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2ndEdition (2006), Prentice-Hall.
- 3. Steve Oualline, Practical CProgramming, 3rd Edition (2006), O'Reilly Press.
- 4. Balagurusamy E, Programming in ANSI C, 4th Edition(2008), TMG.
| VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) |
|--|
| SCHEME OF INSTRUCTION AND EXAMINATION (R-22) |
| B.E INFORMATION TECHNOLOGY : FOURTH SEMESTER (2023 - 2024) |

	B.E (IT) IV Semester							
Course Code	Course Code			of ion	Scheme of Examination			
course code	course name	Hou	rs per	week	Duration in	Maximum Marks		Credite
		L	Т	P/D	Hrs	SEE	CIE	creatts
U22BS420MA	Probability and Statistics	3	-	-	3	60	40	3
U22PC410IT	Computer Organization	3	-	-	3	60	40	3
U22PC420IT	Database Management Systems	3	-	-	3	60	40	3
U22PC430IT	Design & Analysis of Algorithms	3	-	-	3	60	40	3
U22PC440IT	Full Stack Development	3	-	-	3	60	40	3
U22OE4XXXX	Open Elective – II	3	-	-	3	60	40	3
U22HS030EH Human Values and Professional Ethics – II			-	-	2	40	30	1
U22BS430MA Skill Development Course – III (Aptitude – I)		1	-	-	2	40	30	1
U22PE410IT	Skill Development - IV (Technical Skills- II)	1	-	-	2	40	30	1
	PRAC	TICALS	-					
U22PC421IT	Database Management Systems Lab	-	-	2	3	50	30	1
U22PC431IT	Design and Analysis of Algorithms Lab	-	-	2	3	50	30	1
U22PC441IT	U22PC441IT Full Stack Development Lab		-	2	3	50	30	1
	Co-Curricular Activities-I				-	-	-	-
	Library /Sports/ Mentor Interaction	-	-	-	-	-	-	-
Student should a	cquire one NPTEL Certification Course equivalent to 2 credits	s (8 week	s) by th	ne end of V	I Semester.			
 Students opting 	Students opting for Honours should complete one NPTEL Course of 2 credits (8 Weeks) by the end of IV Semester.							
	Total	21	-	6		630	420	24
	Grand Total		27			10	50	27

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State DEPARTMENT OF MATHEMATICS

PROBABILITY & STATISTICS

for B.E. IV- Sem., (CBCS)

(For IT only)

L:T:P(Hrs./week): 3:0:0	SEE Marks:60	Course Code: U22BS420MA
Credits: 3	CIE Marks:40	Duration of SEE : 3 Hrs

COURSE OBJECTIVES			COURSE OUTCOMES
Th	e course will enable the students to:	At	the end of the course students will be able to:
1.	Study the concepts and application of conditional probability.	1. 2.	Apply the conditional probability to the real world problems Apply the various statistical distributions to solve practical problems.
2.	Understand various concepts of Random variables and standard Statistical Distributions.	3. 4.	Infer the properties of population conducting tests on large samples Estimate unknown parameters of populations and apply the tests of
3.	Study various methods of testing large samples		hypotheses for small samples
4.	Analyze standard statistical tests employed for small samples	5.	Solve problems to fit various curves to the given data using curve fitting, and also to find co-efficient of correlation between the
5.	Study the method to fit different curves to a given data and measuring the Correlation between variables.		variables.

UNIT -I (10Hours)

Probability:

Basic terminology- Definition of Probability – Addition Law of probability- Independent events- Conditional Probability-Multiplication law of probability - Baye's Theorem.

UNIT -II (12Hours)

Probability Distributions:

Random Variables - Probability Distribution and Density function for Discrete and Continuous Random variables -Normal Distributions-Properties-Standard Normal variate.

UNIT-III (12Hours)

Tests of Hypothesis for Large samples:

Introduction -Testing of Hypothesis- Null and Alternative Hypothesis -Errors- -Level of Significance –Confidence Intervals - One and two tailed tests - Tests of Significance for large samples – Tests for single mean- Difference of means.

UNIT-IV (8 Hours)

Tests of Hypothesis for Small samples:

Tests of Significance for small samples - t-test for single mean and difference of means and F- test for comparison of variances - Chi-square test for goodness of fit.

UNIT-V (10 Hours)

Curve Fitting:

Curve fitting by the Method of Least Squares - Fitting of Straight line - Second order curve (parabola) – Exponential Curve-Correlation – Karl Pearson's Co-efficient of Correlation.

Learning Resources:Text Books:

- 1. R.K. Jain & S.R.K. lyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali& Manish Goyal, Laxmi Publication.
- 3. Fundamentals of Mathematical Statistics, Gupta & Kapoor, Sultan chand& sons, New Delhi.

Online Resources:

1 http://mathworld.wolfram.com/topics

2 http://www.nptel.ac.in/course.php

The break-up of CIE : Internal Tests + Assignments + Quizzes

1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5
	Duration of Internal Tests	:	90 M	inutes		

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031 Department of Information Technology

COMPUTER ORGANIZATION

SYLLABUS FOR IV-SEMESTER

L:T:P(Hrs./week): 3:0:0	SEE Marks :60	Course Code : U22PC410IT
Credits : 3	CIE Marks :40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The Objectives of the course:	On completion of the course, students will be able to:
 Provide the fundamentals of Computer Organization, basic processing units. Explain input and output interfacing, memory and pipelining concepts. 	 Understand fundamentals of computer organization and instruction formats. Analyse operations of arithmetic, logic, shift and control units. Identify peripheral devices and analyse modes of data transfer. Analyse the efficiency of cache, main memory and secondary storage. Apply pipelining process to address structural, data and control hazards.

UNIT – I

Basic Structure of Computers :

Computer Types, Functional Units, Basic Operational Concepts, Bus Structures, Software, Performance, Multiprocessors and Multicomputer, Memory locations and Addresses, Memory operations, Instructions and Instruction Sequencing, Addressing Modes, Assembly language, Additional Instructions

UNIT – II

Basic Processing Unit:

Register Transfer Language and Micro operations: Register Transfer Language, Register Transfer, Arithmetic Micro operations, Logic Micro operations, Shift Micro operations, Arithmetic logic shift unit.

MICROPROGRAMMED CONTROL: Control memory, address sequencing, micro program example, Design of control unit, hardwired control, micro programmed control.

UNIT – III

Input Output Organization:

Peripheral devices, Input-output Interface, Asynchronous Data Transfer, Modes of Transfer, and Priority interrupt, Direct Memory Access.

UNIT – IV

Memory System

Some Basic Concepts, Semiconductor RAM Memories, Read-Only memories, Cache Memories, Performance considerations, Virtual Memories, Memory Management Requirements, Secondary Storage-Magnetic Hard disks, Optical Disks, Magnetic Tape Systems

UNIT – V

Pipelining:

Basic Concepts, Data Hazards, Instruction Hazards, Influence on Instruction sets, Data path and control considerations, Super Scalar Operation.

Learning Resources:

- 1. Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5th Edition, McGraw Hill, 2002.
- 2. M. M. Mano, Computer System Architecture, 3rd Edition, Prentice Hall, 1994.
- 3. W. Stallings, "Computer Organization and Architecture Designing for Performance", Prentice Hall of India, 2002.
- 4. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.
- 5. Pal Chouduri, Computer Organization and Design, 2nd Ed. Prentice Hall of India, 2007

6. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design - The Hardware/Software Interface", 2005.

7. https://nptel.ac.in/courses/106106092/

The break-up of CIE: Internal Tests+ Assignments + Quizzes

- 1 No. of Internal Tests:
- 2 No. of Assignments:
- 02 Max.Marks for each Internal Tests: 03 Max. Marks for each Assignment:
- 3 No. of Quizzes:

03 Max. Marks for each Assignment: 03 Max. Marks for each Quiz Test:

Duration of Internal Test: **90 Minutes**

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD - 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

DATABASE MANAGEMENT SYSTEMS SVI LABLIS FOD IV SEMESTED

STEERDOST OK TV-SENIESTEK							
.:T:P(Hrs./week): 3:0:0 SEE Mark	s :60	Course Code : U22PC420IT					
Credits : 3 CIE Marks	5 :40	Duration of SEE : 3 Hours					

	COURSE OBJECTIVES		COURSE OUTCOMES
The Objectives of the course:			completion of the course, students will be able to:
1.	Explain the concepts of database	1.	Identify the functional components of the DBMS, develop ER model for a given
	management systems.		problem and map ER to Relational model.
2.	Demonstrate conceptual and logical	2.	Formulate relational database principles using Relational Algebra and SQL
	database design.		Queries.
3.	Explain the essential DBMS concepts like	3.	Design a normalized database schema using different normal forms.
	database security, integrity, concurrency,	4.	Understand transaction processing and compare different concurrency control
	NoSQL databases.		and recovery techniques.
		5.	Understand NoSQL databases like HBase, Firebase, MongoDB, Cloud DB.

UNIT – I

Introduction to DBMS: Overview, File system vs DBMS, Advantages of DBMS, Database System Applications, Relational Databases, Object – Based and Semi-structured Databases, Data Storage and Querying, Database Architecture, Database Users and Administrators.

Database Design and the E-R Model: Overview of the Design Process, The E-R Model, Constraints, E-R Diagrams, E-R Design Issues, Weak Entity Sets, Extended E-R Features.

UNIT – II

Relational Model: Structure of Relational Databases, Reduction to Relational Schemas, Other Aspects of Database Design. Relational Algebra: Fundamental Relational-Algebra Operations, Additional Relational – Algebra Operations, Extended Relational -Algebra Operations, Null Values, Modification of the Databases.

Structured Query Language: Data Definition, Basic Structure of SQL Queries, Set Operations, Aggregate Functions, Null Values, Nested Sub gueries, Complex Queries, Views, Joined Relations, Indexing: Basic Concepts, Bitmap Indices, Index Definition in SQL.

UNIT - III

Advanced SQL and PLSQL: SQL Data Types and Schemas, Integrity Constraints, Authorization, SQL functions, procedural SQL, embedded SQL, cursors, ODBC and JDBC, triggers.

Schema Refinement: Features of Good Relational Design, Functional-Dependency Theory, Decomposition Using Functional Dependencies, Normalization, First, Second, Third Normal Forms, Dependency Preservation - Boyce/Codd Normal Form, Multi-valued Dependencies and Fourth Normal Form – Join Dependencies and Fifth Normal Form.

UNIT - IV

Transactions: ACID properties, Transaction States, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Testing for serializability.

Concurrency Control: Lock-Based Protocols, Timestamp-Based Protocols, Validation-Based Protocols, Multiversion Schemes, Deadlock Handling.

Recovery System: Failure Classification, Storage Structure, Log-Based Recovery, Aries, Media recovery.

UNIT – V

NoSQL: Introduction to NOSQL, NoSQL Vs RDBMS, Categories of NoSQL Databases, Case studies: HBase, Firebase, MongoDB, Cloud DB.

Learning Resources:

- 1. Abraham Silberschatz, Henry F Korth, S. Sudarshan, Database System Concepts, 6th Edition, McGraw-Hill International Edition, 2011.
- Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third Edition, McGraw-Hill International Edition, 2003. 2.
- 3. Elmasri, Navathe, Somayajulu and Gupta, Fundamentals of Database System, 6th Edition, Pearson Education, 2011.
- 4. Patric O'Neil, Elizabeth O'Neil, Database-principles, programming, and performance, Morgan Kaufmann Publishers, 2001.
- Peter Rob, Carlos coronel, Database Systems, (2007), Thomoson. 5.
- 6. https://nptel.ac.in/courses/106105175/

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests: 1

2 No. of Assignments:

02	Max.Marks for each Internal Tests:
03	Max. Marks for each Assignment:
03	Max. Marks for each Quiz Test:

3 No. of Quizzes:

Duration of Internal Test: 90 Minutes

30

05

05

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

DESIGN AND ANALYSIS OF ALGORITHMS

SYLLABUS FOR B.E IV-SEMESTER

L:T:P(Hrs./week): 3:0:0	SEE Marks : 60	Course Code : U22PC430IT
Credits : 3	CIE Marks : 40	Duration of SEE: 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
The Objectives of the course:	On completion of the course, students will be able to:
 Explain Asymptotic notations, time and space complexity analysis. 	1. Understand asymptotic notations and analyze the complexity of recursive and non-recursive algorithms.
 Discuss different algorithm design strategies and their applications. Introduce NP-Hard and NP-Completeness concepts. 	 Illustrate divide & conquer and greedy algorithm design strategies. Apply dynamic programming strategy to solve optimization problems. Solve problems using backtracking and branch and bound. Understand NP hard and NP completeness

UNIT-I

Introduction: Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best, average and worst-case behavior; Performance measurements of Algorithm, Analysis of recursive algorithms through recurrence relations: Substitution method, Recursion tree method, Amortized analysis, Disjoint Set-union-find, merge-find.

UNIT-II

Divide and conquer: The general method, Iterative and Divide and conquer for Binary search, Merge sort, Quick sort, Strassen's Matrix Multiplication Algorithm Masters' theorem.

Greedy Method: The general method, Knapsack problem, Job sequencing with deadlines, Optimal storage on tapes, Optimal merge patterns, Huffman Codes, Dijikstra's algorithm.

UNIT-III

Dynamic Programming: The general method, Bellman-Ford Algorithm, Multistage graph, All-Pairs Shortest Paths, Matrix chain multiplication, Optimal Binary Search trees, 0/1 Knapsack, Reliability design, Traveling Salesman Problem.

UNIT-IV

Backtracking: The general method, 8-Queens Problem, Graph Coloring, Hamiltonian cycles, Knapsack Problem **Branch and Bound**: The general method, 0/1 Knapsack Problem, Traveling salesperson problem

UNIT-V

NP-Hard and NP-Completeness: Basic concepts, NP-hard graph problems-Clique Decision Problem, Node Cover Decision Problem, NP-Hard Scheduling Problem - scheduling identical processors, NP-Hard code scheduling problems – Code generation with common sub-expression.

Learning Resources:

- 1. Ellis Horowitz, Sartaj Sahani, Sanguthevar Rajasekaran," Fundamentals of computer Algorithms", Second edition (2008), Universities Press
- 2. Thomas H. Cormen, Leiserson C.E, Rivest.R.L , Stein.C, Introduction to Algorithm, 2nd edition (2001), MIT press, USA.Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson,
- 3. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.
- 4. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- 5. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA.

02

- 6. https://nptel.ac.in/courses/106101060/
- 7. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-006-introduction-to-algorithms-fall-2011/lecture-videos</u>

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1 No. of Internal Tests:
- 2 No. of Assignments:

3 No. of Quizzes:

03 Max. Marks for each Assignment:

Max.Marks for each Internal Tests:

03 Max. Marks for each Quiz Test:

30
05
05

Duration of Internal Test: **90 Minutes**

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

FULL STACK DEVELOPMENT

STLLADUS FUR B.E TV- SEIVIESTER			
L:T:P (Hrs./week):: 3:0:0	SEE Marks : 60	Course Code: U22PC440IT	
Credits : 3	CIE Marks: 40	Duration of SEE : 3 Hrs	

Course Objectives	Course Outcomes
The Objectives of the course:	On completion of the course, students will be able to:
1. Provide basic skills for designing static and	1. Design static web pages using HTML and CSS.
dynamic Web Applications using HTML, CSS, Java	2. Create dynamic web pages with client-side validations using XML and
script & frame works like Bootstrap	JavaScript.
2. Demonstrate how to design and develop web	3. Develop responsive web applications using Bootstrap and ASP.NET
applications using Microsoft .NET Technology,	framework.
Node JS, React and Mongo DB.	4. Build cross-platform single page applications using React.
	Develop web applications using Node.js and MongoDB.

UNIT-I

Introduction: World Wide Web, Web Browsers, Web Servers, URL, HTTP, TCP Port.

HTML & CSS: Standard HTML document structure, Basic Tags, Images, Hypertext Links, Lists, Tables, Frames. Introduction to Cascading style sheets.

UNIT-II

JavaScript: Introduction, Basics of JavaScript-variables, data types and operators, Control Structures, Arrays, Functions, HTML Forms, Events and event handling, Asynchronous JavaScript

XML : XML: The Syntax of XML, XML Document Structure, Document Type Definitions.

UNIT-III

Bootstrap: The Grid system, Layout components: Tables, Images, alerts, buttons, badges, progress bars, cards, drop downs, pagination, Collapse, Navbar, carousel.

.Net Framework and ASP.NET:

.Net Framework Overview- Architecture, .Net Framework class Libraries, Introduction to Visual Studio. ASP.NET Benefits, ASP.NET Page Layout, Life Cycle, ASP.NET MVC Controllers, building an application using web form elements. Deploying an ASP.NET Core Application

UNIT-IV

React

Introduction to React, Add React to a website, create a new React App, Introducing JSX, Rendering Elements, Components and Props, State and Lifecycle, Handling Events, Conditional Rendering, Lists and Keys, Forms. Building Single-Page applications with React.

UNIT-V

Application using Node JS and MongoDB:

Introduction to Node.js-Installing Node.js- Using Events, Listeners, Timers, and Callbacks in Node.js, Introduction to Mongo DB - Accessing MongoDB from Node.js

Learning Resources:

1. Robert W. Sebesta, Programming the World Wide Web, 7th Edition (2014), Pearson Education.

02

03

03

- 2. "Web Technologies", 7th Edition, Uttam K.Roy,2012.
- 3. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, Internet & World Wide Web How to Program, 5th Edition, Pearson Education.
- 4. Dino Esposito, Programming ASP.NET Core (Developer Reference),2018
- 5. Learning React Functional Web Development with React and Redux by Alex Banks, Eve Porcello, Alex Banks, Eve Porcello
- 6. Brad Dayley, Brendan Dayley and Caleb Dayley, Node.js, MongoDB and Angular Web Development The definitive guide to using the MEAN stack to build web applications, 2nd Edition, Pearson Education, 2018
- 7. http://getbootstrap.com/
- 8. https://reactjs.org/
- 9. https://nodejs.org/en/

The break-up of CIE: Internal Tests+ Assignments + Quizzes

- 1 No. of Internal Tests:
- 2 No. of Assignments:
- 3 No. of Quizzes:

Max.Marks for each Internal Tests: Max. Marks for each Assignment:

Max. Marks for each Quiz Test:

30
05
05

Duration of Internal Test: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) HYDERABAD DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

HUMAN VALUES AND PROFESSIONAL ETHICS-II

(Common to all branches)

SYLLABUS FOR B.E. III & IV SEMESTERS		
L:T:P (Hrs./week):: 1:0:0	SEE Marks : 40	Course Code: U22HS010EH
Credits : 1	CIE Marks: 30	Duration of SEE : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
 Grasp the meaning of basic human aspirations vis-a-vis the professional aspirations Understand professionalism in harmony with self and society. Develop ethical human conduct and professional competence. Enrich their interactions with the world 	 At the end of the course the learners will be able to: - 1. Distinguish between Personal and Professional life goals- constantly evolving into better human beings and professionals. 2. Work out the strategy to actualize a harmonious environment wherever they work. 3. Distinguish between ethical and unethical practices, and start implementing ethical practices 4. Apply ethics and values in their personal and professional interactions.
around, both professional and personal.	

UNIT 1:

NORMATIVE ETHICS & SOCIETAL ETHICS

This unit deals with normative ethics, the branch of moral philosophy, or ethics, concerned with criteria of what is morally right and wrong. It includes the formulation of moral rules that have direct implications for what human actions, institutions, and ways of life should be like. This unit also covers societal ethics which is the systematic reflection on the moral dimensions of social structures, systems, issues, and communities.

- 1.1 Ethical Accountability
- 1.2 Society & Ethics
- 1.3 Rights & Responsibilities

UNIT 2:

PROFESSIONAL ETHICS - NEED FOR ETHICAL CODES

This unit covers the code of Professional Ethics- it is designed to ensure that students learn the necessary skills that groom them to behave like employees should, one that is socially acceptable and respectful of one another. It establishes the rules for behavior and sends a message to every employee that universal compliance is expected.

- 2.1 Professional Ethics
- 2.2 Ethical Code
- 2.3 Flipped Classroom

UNIT 3: PRIVACY

This unit covers "Cyber ethics" - the code of responsible behaviour on the Internet. Just as we are taught to act responsibly in everyday life with lessons such as "Don't take what doesn't belong to you" and "Do not harm others," we must act responsibly in the cyber world as well. The basic rule is "Do not do something in cyberspace that you would consider wrong or illegal in everyday life."

- 3.1 Basics of Cyber Ethics
- 3.2 Privacy
- 3.3 Flipped Classroom

UNIT 4:

MEDIA AND MEDICAL ETHICS

This unit covers Media and Medical ethics is the best division of applied ethics dealing with the specific ethical principles and standards of media (including broadcast media, film, theatre, the arts, print media and the internet) and medicine (practice of clinical medicine and related scientific research)

- 4.1 Media Ethics
- 4.2 Medical Ethics
- 4.3 Flipped Classroom

MODE of DELIVERY

٠	Questionnaires	•	Discussions
•	Quizzes	•	Skits
•	Case-studies	•	Short Movies/documentaries
٠	Observations and practice	•	Team tasks and individual tasks
•	Home and classroom assignments	•	Research based tasks
	Ũ	•	Viva

Relevant Websites, CD's and Documentaries

- Value Education website, Http://www.universalhumanvalues.info UPTU website, Http://www.uptu.ac.in
- Story of stuff, Http://www.storyofstuff.com
- Al Gore, As Inconvenient Truth, Paramount Classics ,USA
- Charlie Chaplin, Modern Times, United Artists, USA
- IIT Delhi, Modern Technology-The Untold story-Anand Gandhi, Right Here Right Now, Cyclewala production.

Learning Resources:

- 1. PL Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 2. B.L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 3. A.N Tripathy, 2003 Human values, New Age International Publishers.
- 4. EG Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists and Engineers, Oxford University Press.

The break-up of CIE: Internal Tests + Assignments + Quizzes

	•			•		
1	No. of Internal tests	:	1	Max. Marks	:	20
2	No. of assignments	:	2	Max. Marks	:	5
3	No. of Quizzes	:	2	Max. Marks	:	5
Du	ration of Internal Tests	:	90 Minutes			

At the end of the course the learners will be

Solve complex problems using basic concepts.

Use shortcuts with ease for effective problem

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) HYDERABAD DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

SKILL DEVELOPMENT COURSE- III : (APTITUDE- I)

(Common to all branches)

SYLLABUS FOR B.E. IV SEMESTER		
L: T: P (Hrs/Week): 1:0:0	SEE Marks: 40	Course Code: U22BS430MA
Credits: 1	CIE Marks: 30	Duration of SEE: 02 Hrs

COURSE OUTCOMES

4.

5.

solving.

COURSE OBJECTIVES

The course will enable the learners to:

- Students will be trained to enhance their employability skills.
 Students will be introduced to higher order thinking and
 Solve
- Students will be introduced to higher order thinking and problem solving skills in the following areas - Arithmetic Ability, Numerical Ability and General Reasoning.
 Students will be trained to work systematically with speed and accuracy while problem solving.
 Students will be trained to work systematically with speed and accuracy while problem solving.
 Solve questions in the mentioned areas using shortcuts and smart methods.
 Understand the fundamentals concept of Aptitude skills.
 Perform calculations with speed and accuracy.
- accuracy while problem solving.4. Students will be trained to apply concepts like percentages and averages to solve complex problems.
- Students will be trained to use effective methods like elimination of options and shortcuts to solve problem accurately.

UNIT 1

QUANTITATIVE APTITUDE- ARITHMETIC ABILITY ADVANCED -1

- 1.1 Time speed and distance
- 1.2 Boats and Streams
- 1.3 Problems on trains

UNIT 2

REASONING ABILITY- LOGICAL REASONING

- 2.1 Seating Arrangements- Linear; Circular; Complex
- 2.2 Venn diagrams
- 2.3 Syllogism
- 2.4 Cubes & Cuboids
- 2.5 Dices

UNIT 3

REASONING ABILITY- NON VERBAL REASONING

- 3.1 Figure Series
- 3.2 Directions
- 3.3 Clocks
- 3.4 Calendars

UNIT 4

QUANTITATIVE APTITUDE- ARITHMETIC ABILITY ADVANCED -2

- 4.1 Mensuration Part -1
- 4.2 Mensuration Part -2
- 4.3 Logarithms

UNIT 5

QUANTITATIVE APTITUDE- ENGINEERING MATHEMATICS

5.1 Permutations and combinations5.2 Probability

Learning Resources :

Prescribed textbook for theory:

- 1. Quantitative Aptitude S.CHAND by RS AGARWAL
- 2. A Modern Approach to Verbal & Non-Verbal Reasoning S.CHAND by Dr. R S Aggarwal

Suggested Reading

- 1. Learn.talentsprint.com/References Courses
- 2. Quantitative Aptitude Disha Publications

Course Coordinator [Faculty Name]

3. LOGICAL Reasoning Disha Publications

The break-up of CIE: Internal Te	sts + Assignments	+ Quizzes			
1 No. of Internal tests	:	2	Max. Marks	:	20
2 No. of assignments	:	2	Max. Marks	:	5
3 No. of Quizzes	:	2	Max. Marks	:	5
Duration of Internal Tests : 9	90 Minutes				

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

SKILL DEVELOPMENT COURSE- III : (TECHNICAL SKILLS- II)

SYLLABUS FOR IV-SEMESTER

STEENBOOT OK TV SEMEOTEK			
L:T:P (Hrs./week): 1:0:0	SEE Marks :40	Course Code : U22PE410IT	
Credits : 1	CIE Marks : 30	Duration of SEE : 3 Hours	

COURSE OBJECTIVES	COURSE OUTCOMES
The Objectives of the course:	On completion of the course, students will be able to:
 Understand the Nonlinear data structures and their applications. Prepare the students for the contests relative to the concepts learnt. Build confidence in coding using Non Linear Data structures Leverage the Industry Standards of the Data 	 Lean non-linear data structures with various applications that are essential for solving problems which involve complex relationships, efficient searching, and hierarchical organization. Solve scenario based problems using Tree Data structures. Learn and apply greedy algorithms for efficient solutions to complex problems.
DRM2 concepts	and well-structured databases that meet the needs of modern applications.

Phase II

#7: Problem Solving through Non-Linear Data structures – Trees I

Problem solving approaches using Non-linear data structures, Coding problemson the height of a binary tree, Size of a binary tree, Tree order traversals, Problem Solving on Binary Trees, Examples, Practice problems

#8: Problem Solving through Non-Linear Data structures – Trees II

Time comparison and analysis on Binary Search Trees & Coding problems, Search/probe sequence validation, Significance of height balancing the tree, Examples, Practice problems

#9: Problem Solving implementing Algorithms - Greedy Methods II

Algorithmic Thinking, Selection as Greedy Strategy, Heaps Min and Max, PriorityQueues, Greedy Coin change solution, Examples, Practice problems.

#10: Problem Solving implementing Algorithms - Greedy Methods II

Fractional Knapsack, Sequencing jobs with deadlines, Activity selection, Examples, Practice problems

#11: Problem Solving using DBMS I

Industry Standards of leveraging DBMS concepts: SQL Queries, Entity Relationship Models, Question, and answers

#12: Problem Solving using DBMS II

Industry Standards of leveraging DBMS concepts: Query Optimization, Transactions & Concurrency, Normalization, case studies, Question and answers

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

DATABASE MANAGEMENT SYSTEMS LAB

SYLLABUS FOR B.E. IV SEMESTER					
L:T:P(Hrs/week): 0:0:2	SEE Marks :50	Course Code: U22PC421IT			
Credits : 1	CIE Marks :30	Duration of SEE : 3 Hours			

COURSE OBJECTIVES	COURSE OUTCOMES
The Objectives of the course:	On completion of the course, students will be able to:
Demonstrate SQL and PL/SQL constructs to develop a	1. Design and implement a database schema.
database application.	Implement queries using SQL commands and SQLite.
	3. Develop application programs using PL/SQL.
	4. Develop a 2-tier Database Application.

1. DDL Commands:

- a. Creation of tables with appropriate integrity constraints
- b. Usage of alter, drop commands

2. DML Commands:

- a. Data Insertion and Updating
- b. Usage of truncate command

3. TCL and DCL Commands:

- a. Setting privileges
- b. save point, commit and rollback commands

4. SQL Queries:

- a. Simple SQL queries using Select
- b. SQL Built-in functions
- c. SQL Operators and Nested queries
- 5. Joins and aggregate functions
- 6. Grouping and ordering commands

7. PL/SQL:

- a. Blocks, Select Statement and control statements
- b. Stored procedures and functions
- 8. a. Packages and Exception Handling
 - b. Cursors
 - c. Triggers

9. SQLite: Simple Application Development using SQLite (DDL,DML Operations on SQLite).

10. Creation of full-fledged Database Application.

Learning Resources:

- 1. Ivan Bayross, SQL, PL/SQL, The Programming Language of Oracle,4th Edition, PBP Publications. Reference Books 1. NileshShah, Database Systems Using Oracle, 2nd Edition(2007), PHI.
- 2. Rick F Van der Lans, Introduction to SQL, 4thEdition(2007), Pearson Education.
- 3. Benjamin Rosenzweig Elena Silvestrova, Oracle PL/SQL by Example, 3rdEdition(2004), Person Education.
- 4. Albert Lulushi, Oracle Forms Developer's Handbook, 1st Edition(2006), Pearson Education.
- 5. <u>https://www.sqlite.org/index.html</u>
- 6. https://www.lynda.com/Accesstutorials/Welcome/195854/373426-4.html

No. of Internal Tests:	02
Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work	18
Duration of Internal Test: 2 Hours	

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

DESIGN AND ANALYSIS OF ALGORITHMS LAB

SYLLABUS FOR B.E. IV SEMESTER

Credits: 1 CIE Marks: 30 Duration of SEE: 3 Hours	L:T:P (Hrs/week):0:0:2	SEE Marks : 50	Course Code : U22PC431IT
	Credits : 1	CIE Marks : 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The Objectives of the course:	On completion of the course, students will be able to:
Develop skills in design and implementation of abstractions of various algorithm strategies and their practical applications.	 Apply divide and conquer approach to solve searching and sorting problems. Design and implement algorithms using Greedy strategy for the problems; Fractional knapsack, Huffman codes, shortest path finding (Dijkstra's algorithm). Use Dynamic programming approach to solve problems including, shortest path finding (Bellman ford algorithm, All pair shortest path), Matrix chain multiplication, 0/1 Knapsack problem. Solve N-Queens problem and Graph colouring problem using Backtracking approach. Implement Branch & Bound algorithm for 0/1 Knapsack problem and Travelling Colouring problem and Travelling

1) A) Implement a stack using a linked list such that the push and pop operations of stack still take O(1) time.

- B) Implement a queue using a linked list such that the enqueue and dequeue operations of queue take O(1) time2) Implement Linear Search, Binary Search and Hashing.
- 3) Implement a parallelized Merge Sort algorithm and Quick sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator. Program to be executed for various sizes of input. Fill the given table. Obtaining a constant value in the column "time taken" would prove that the complexity of merge sort is same in all case.

Sizo	Size Ascending		Descending		Random Order	
SIZE	Input	Time taken	Input	Time taken	Input	Time taken
4						
8						
16						
32						

- 4) Implement Knapsack Algorithm using Greedy Strategy.
- 5) Implement optimal merge patterns Huffman encoding algorithm.
- 6) From a given vertex in a weighted connected graph, find single source shortest path to other vertices using a) Dijikstra's algorithm b) Bellman ford algorithm.
- 7) Implement Matrix -chain multiplication algorithm using dynamic programming.
- 8) Implement All-pairs shortest path algorithm.
- 9) Implement 0/1 Knapsack algorithm.
- 10) Implementation of N-queens problem using back tracking.
- 11) Implement Graph coloring problem using back tracking.
- 12) Develop a program to check whether a given graph is connected or not using DFS method.
- 13) Implement 0/1 knapsack using branch and bound.
- 14) Implement Travelling salesman problem using branch and bound.

Learning Resources:

- 1. Ellis Horowitz, Sartaj Sahani, Sanguthevar Rajasekaran," Fundamentals of computer Algorithms", Second edition (2008), Universities Press
- 2. Thomas H. Cormen, Leiserson C.E, Rivest.R.L, Stein.C, Introduction to Algorithm, 2nd edition (2001), MIT press, USA.Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson,
- 3. Algorithm Design, 1ST Edition, Jon Kleinberg and ÉvaTardos, Pearson.
- 4. Algorithm Design: Foundations, Analysis, and Internet Examples, Second Edition, Michael T Goodrich and Roberto Tamassia, Wiley.
- 5. Algorithms -- A Creative Approach, 3RD Edition, UdiManber, Addison-Wesley, Reading, MA.
- 6. B.A.Forouzan & Richard F.Gilberg, "A Structured Programming Approach using C" 2nd Edition, Cengage Learning, 2007.
- 7. Mark A Weiss, Data Structures and Algorithm Analysis In C, Second Edition(2002), Pearson
- 8. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computerscience/6-006-introduction-to-algorithms-fall-2011/lecture-videos</u>
 9. <u>http://nptel.ac.in/courses/106106127/</u>
- 10. http://www.nptel.ac.in/courses/106102064

No. of Internal Tests:	02
Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work	18
Duration of Internal Test: 2 Hours	

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

FULL STACK DEVELOPMENT LAB

STELADUS FUR D.E TV- SEIVIESTER					
L:T:P (Hrs./week):: 0:0:2	SEE Marks : 50	Course Code : U22PC441IT			
Credits : 1	CIE Marks: 30	Duration of SEE : 3 Hrs			

Course Objective:	Course Outcomes:
The Objectives of the course:	On completion of the course, students will be able to:
Demonstrate the frameworks and technologies to design and develop web applications.	 Design and develop Web pages using HTML, CSS, javascript. Develop Responsive web pages using frameworks. Develop applications using ASP.NET. Develop web applications using React, Node JS and MongoDB

I-HTML:

- Creation of HTML Document using basic tags.
- Creation of Menu using ordered and unordered list and other options.
- Creation of web page using table tags and their attributes
- Creation of web page using frames.
- Creation of document using CSS.

II-JAVASCRIPT & XML:

- Basic javascript programs using control statements, arrays and functions.
- Write a java script to validate the following fields in a registration page
- i) Name (should contains alphabets and the length should not be less than 6 characters)ii) Password(should not be less than 6 characters)
 - iii) E-mail(should not contain invalid addresses)
- Creation of XML document and validating it using DTD

III-BOOTSTRAP

• Design Responsive web pages using Bootstrap.

IV-.NET FRAMEWORK

- Develop an application for implementing Registration, validation, and Login using ASP.NET controls
- Create ASP.NET MVC App that does basic CRUD (create / read / update / delete operations)

V-NODE JS, REACT and MONGODB

• Develop web application using Node JS, React and Mongo DB

Learning Resources:

- 1. Robert W. Sebesta, Programming the World Wide Web, 7th Edition (2014), Pearson Education.
- 2. "Web Technologies", 7th Edition, Uttam K.Roy,2012.
- 3. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, Internet & World Wide Web How to Program, 5th Edition, Pearson Education.
- 4. Dino Esposito, Programming ASP.NET Core (Developer Reference),2018
- 5. Learning React Functional Web Development with React and Redux by Alex Banks, Eve Porcello, Alex Banks, Eve Porcello
- 6. Brad Dayley, Brendan Dayley and Caleb Dayley, Node.js, MongoDB and Angular Web Development The definitive guide to using the MEAN stack to build web applications, 2nd Edition, Pearson Education, 2018
- 7. <u>http://getbootstrap.com/</u>
- 8. https://reactjs.org/
- 9. https://nodejs.org/en/

No. of Internal Tests:02Max. Marks for Internal Test:12Marks for day-to-day laboratory class work18Duration of Internal Test:2 Hours

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) SCHEME OF INSTRUCTION AND EXAMINATION (R20) B.E. – IT : FOURTH SEMESTER (2022 - 2023)

	SEMESTER - IV (BRIDGE COURSE)								
			Schem	e of Ins	truction		Scheme of	Examination	S
S No.	Course Code	Course Name	Но	urs per	week	Duration	Maxim	um Marks	redit
			L	Т	P/D	in Hrs	SEE	CIE	C
THEO			RY						
1	UB22HS410EH	English Language Communication	2	-	-	3	50	-	-
	PRACTICAL								
1	UB20HS411EH	English Language Communication Skills Lab	-	-	2	3	50	-	-
Total		2	-	2	-	100	-		
	Grand Total			4		-		100	-

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD-31 DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

ENGLISH LANGUAGE AND COMMUNICATION (Theory)

Bridge Course for Lateral Entry Students

2023-2024 Batch – IV Semester

L: T: P (Hrs/Week) : 2 : 0 : 0	SEE Marks: 50	Course Code: UB22HS410EH
Credits: Nil	CIE Marks: Nil	Duration of SEE: 2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The Course will enable the Learners to:	At the end of the course the students will be able to :
1. Converse effectively in various context.	1. Use language in appropriate contexts.
2. Listen for general and specific comprehension and write paragraphs.	2. Listen for global comprehension and infer meaning from spoken discourses.
3. Understand the elements of a good paragraph	3. Write paragraphs coherently.
4. Speak appropriately in daily conversations	4. Use phrases, essential vocabulary and polite expressions in every day conversations.

Unit-1 1.0: Communication & Functional English

 Role and Importance of Communication, Process of Communication, Non- verbal communication, barriers to Communication, overcoming barriers.
 Conversational phrases: greetings, introductions, apology, compliments, agreeing and disagreeing, polite forms in everyday conversations.

Unit 2 2.0: Listening

2.1 Importance of listening, Active listening

Unit 3. 3.0: Writing

1.1 Paragraph writing, coherence and cohesion.

Unit 4 4.0: Grammar and Vocabulary

4.1 Common Errors, one word substitutes, collocations.

Unit-5 5.0: Reading

5.1 **Prose text-** Our Own Civilization—CEM Joad.

Prescribed textbook for theory:

Technical communication - Principles and Practice (2nd Edition 2014) - Meenakshi Raman and Sangeeta Sharma- Oxford University Press.

Suggested Reading

E.Suresh kumar, P. Sreehari and J. Savithri - Essential English
Reading comprehension - Nuttal.J.C - Orient Blackswan
Sunitha Mishra,C. Murali Krishna, Communication Skills for Engineers, Pearson, 2004.
M. Ashraf Rizvi. Effective Technical Communication. Tata Mcgraw Hill, 2005.
Allen and Waters., How English Works.
Willis Jane., English through English.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD-31 DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB (ELCS)

Bridge Course for Lateral Entry Students

(Common to all branches)

2023-2024 Batch - IV Semester

L: T: P (Hrs/Week) : 0:0:2	SEE Marks: 50	Course Code: UB22HS411EH
Credits: Nil	CIE Marks: Nil	Duration of SEE: 2 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES				
Th	e Course will enable the learners to:	At the end of the course the learners will be able to :				
2.	Converse in various situations.	1. Participate effectively in group discussions, public speaking, debates (formal and informal)				
3.	Make paper and power point presentations.	2. Research and sift information to make presentations.				
4.	Speak effectively using discourse markers.	3. Listen for gist and make inferences from various speeches.				
		4. Use connectives and make transitions effectively while speaking.				

ELCS – Component - INTERACTIVE COMMUNICATION SKILLS LAB

Group discussion: Objectives of GD, Types of GDs; Initiating, Continuing, and concluding a GD.

Debate: Understanding the differences between a debate and a group discussion, essentials of debate, concluding a debate.

Role Plays: Types of Role plays (formal and informal), use of discourse markers.

Presentation Skills: Making effective presentations, researching on various topics, use of Audio visual aids, coping with nerves.

Prescribed textbook for laboratory:

Speak Well: Jayshree Mohanraj, Kandula Nirupa Rani and Indira Babbellapati - Orient Black Swan.

Longman Dictionary of Contemporary English - 6th Edition, 2020. (The students will be given the PDF format).

Learning Resources:

- 1. Balasubramanian: A textbook of English phonetics for Indian students, Macmillan, 2008.
- 2. Priyadarshini Patnaik : Group discussion and interviews, Cambridge University Press India private limited 2011.
- 3. Daniel Jones: Cambridge English Pronouncing Dictionary A Definitive guide to contemporary English Pronunciation.

IV – Semester Open Electives (OPEN ELECTIVE-II) Academic Year 2023-24

S. No.	Dept.	Streams	Course Code	Name of the Course	Credits
1	Civil	General Pool	U22OE410CE	Disaster Management	3
2	FOF	General Pool	U22OE410EC	Mathematical Programming for Engineers	3
3	ECE	Communication Engineering Stream	U220E440EC	Introduction to Principles of Communication Engineering	3
4	EEE	General Pool	U22OE410EE	Solar Power and Applications	3
5		Unmanned Aerial Vehicles	U22OE410ME	Design Principles of UAVs	3
6	Mechanical	Robotics	U22OE420ME	Kinematics and Dynamics of Robotics	3
7		General Pool	U22OE430ME	Optimization Methods	3
8	H&SS	General Pool	U22HS430EH	Critical Thinking	3
9	Maths	General Pool	U22OE410MA	Numerical Methods	3
10	Physics	Semiconductor Physics and Device Applications	U23OE410PH	Basic Semiconductor Devices	3
11		Materials Science For Engineers	U23OE420PH	Synthesis and Properties of Materials	3

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF CIVIL ENGINEERING DISASTER MANAGEMENT (Open Elective-II)

SYLLABUS FOR B.E.IV-SEMESTER

L:T:P(Hrs./week):3:0:1	SEE Marks:60	Course Code: U22OE410CE
Credits: 3	CIE Marks:40	Duration of SEE : 3Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
In this subject the students will	Upon the completion of this course students will be able to
 Know about the state of art of disaster management in world and explore the history of the disasters and comprehend how past events have helped shape the future. Study the various natural and manmade disasters and apply the mitigation measures. Expose students to various technologies used for disaster mitigation and management. 	 Attain knowledge on various types, stages, phases in disaster international policies and programmes with reference to the disaster reduction. Understand various types of natural disaster, their occurrence, Effects, Mitigation and management System in India. Understand different types of manmade disasters, their occurrence, Effects, Mitigation and Management System in India. Explain the utility of geography information systems (GIS), Remote sensing technology in all phases of disaster mitigation and management. Understand the Role of Remote Sensing and Geographical Information Systems (GIS) in Disaster Management.

UNIT-I: Introduction: Hazard, vulnerability and risk, Types of disasters, Disaster management cycle, Progress of disaster management in world, vulnerability profile of India, Disaster management act, Disaster management in India.

UNIT-II: Natural Disasters-Hydro-meteorological based disasters: Tropical cyclones, floods, drought zones-Causes, Types, effects and Mitigation measures.

UNIT-III: Natural Disasters Geographical based disasters: Earthquake, Tsunamis, Landslides and avalanches – Causes, Types, effects and Mitigation measures.

UNIT-IV: Human Induced hazards: Chemical industrial hazards, major power break downs, traffic accidents, etc.

UNIT-V: Role of Remote Sensing and Geographical Information Systems (GIS) in Disaster Management: Introduction to remote sensing and GIS, its applications in disaster management.

Learning Resources:

1. Rajib, S and Krishna Murthy, R.R.(2012) "Disaster Management Global Challenges and Local Solutions "Universities Press, Hyderabd, 2012.

- 2. Navele, P & Raja, C.K. (2009), Earth and Atmospheric Disasters Management, Natural and Manmade, B.S. Publications, Hyderabad, 2009.
- 3. Battacharya, T. Disaster Science and Management, Tat McGraw Hill Company, New Delhi, 2012.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1	No. of Internal Tests		:	2	Max. Marks for each Internal Test	:	30
2	No. of Assignments		:	3	Max. Marks for each Assignment	:	5
3	No. of Quizzes		:	3	Max. Marks for each Quiz Test	:	5
Du	ration of Internal Tests	:	90) Min	utes		

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Mathematical Programming for Engineers

(General Pool: Open Elective - II)

SYLLABUS FOR B.E. IV – SEMESTER (Civil, CSE, EEE, IT, Mechanical)

L:T:P (Hrs./week) : 3:0:0	SEE Marks : 60	Course Code: U22OE410EC
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

COURSE OBJECT	IVES		COURSE OUTCOMES
To provide fundamental	knowl	edge of	On completion of the course, students will be able to
programming language	for	solving	1. Generate arrays and matrices for numerical problems solving.
problems.			2. Represent data and solution in graphical display.
			3. Write scripts and functions to easily execute series of tasks in problem solving.
			4. Use arrays, matrices and functions in Engineering applications
			5 Design GUI for basic mathematical applications

CO-PO Mapping

	na pp g														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	-	-	3	-	-	-	-	-	-	-	-	2	3
CO2	-	2	-	-	3	-	-	-	-	-	-	-	-	2	3
CO3	1	1	2	2	3	-	-	-	-	-	-	-	-	2	3
CO4	1	2	-	-	3	-	-	-	-	-	-	-	-	2	3
CO5	-	1	1	1	3	-	-	-	-	-	-	-	-	2	3

UNIT - I : Introduction:

Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on-line help, file types.

MATLAB Basics: Variables and Constants –Vectors and Matrices- Arrays - manipulation- Built-in MATLAB Functions. Creating and printing simple plots, Creating, Saving and Executing a Script File, Creating and Executing a function file.

Programming Basics: Data types-Operators – Hierarchy of operations, Relational and logical operators, if-end structure, ifelse-end structure, if-elseif-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

UNIT - II : Scripts and Functions

Script Files, Function Files, Debugging methods in MATLAB.

Graphics: Basic 2D plots: Printing labels- grid and axes box- Entering text in a box- Axis control-Style options-Multiple plots-subplots-specialized 2D plots: stem-,bar, hist, pi, stairs, loglog , semilog ,polar ,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

UNIT - III : Numerical Methods Using MATLAB

Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration.

Linear Equations- Linear algebra in MATLAB, Solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

UNIT - IV : Nonlinear Equations

System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation-Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit, cubic fit using least square method. Finding roots of a polynomial -roots function, Newton-Raphson Method.

UNIT - V :

Solution of Ordinary differential Equations (ODEs)-The 4th order Runge-kutta Method, ODE Solvers in MATLAB, Solving First-order equations using ODE23 and ODE45.

Structures and Graphical user interface using app Designer: Advanced data Objects, How a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by Rudra Pratap, Oxford publications.
- 2. Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt. Ltd.

- 3. Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition- Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Math works.
- 4. An Introduction to MATLAB® Programming and Numerical Methods for Engineers 1st Edition by Timmy Siauw Alexandre Bayen, <u>Elsevier</u>-18th April 2014.
- 5. https://nptel.ac.in/courses/103106118/2
- 6. <u>https://www.udemy.com/numerical-methods/</u>

The break-up of CIE : Internal Tests + Assignments + Quizzes

1.	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2.	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3.	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5

Duration of Internal Tests: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Introduction to Principles of Communication Engineering

(Communication Engineering Stream: Open Elective - II)

SYLLABUS FOR B.E. IV – SEMESTER (other branches)

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U22OE440EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES					
Distinguish analog and digital Modulation	On completion of the course, students will be able to					
techniques used in various Communication	1. Analyze the power and transmission bandwidth of Amplitude and Freq					
systems.	Modulated signals.					
	2. Familiarize the process of reproduction of base band signal.					
	3. Analyze various pulse analog and pulse digital Modulation Techniques.					
	4. Understand the transmission of binary data in communication systems.					
	5. Estimate information content in a system					

CO-PO-PSO Mapping

00-10															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2												3	
CO2	3	2												3	
CO3	3	2												3	
CO4	2	2												3	
CO5	2	3												3	

UNIT - I

Amplitude Modulation: Introduction to Modulation, Need for Modulation, Modulation index, Side bands, AM Power, Double Side Band Suppressed Carrier Modulation, Single Side Band Modulation, Vestigial Side Band Modulation, AM demodulation, Frequency Division Multiplexing,

Lab Activity: Generation of AM using MATLAB and Simulink.

UNIT - II

Angle Modulation: Angle Modulation fundamentals, Frequency Modulation – Modulation index and sidebands, Narrowband FM, Wideband FM, Principles of Phase Modulation, FM demodulation **Lab Activity**: Generation of FM signals using MATLAB and Simulink.

UNIT - III

Signal Sampling and Analog Pulse Communication: Ideal Sampling, Pulse Amplitude Modulation, Pulse Width Modulation, Pulse Position Modulation.

Digital Communication Techniques: Quantization, Data Conversion, Time Division Multiplexing, Pulse Code Modulation, Delta Modulation.

Lab Activity: Demonstration of Sampling using MATLAB.

UNIT - IV

Transmission of Binary Data in Communication Systems: Digital Codes, Principles of Digital Transmission, ASK FSK, BPSK

Lab activity: Demonstration of ASK and BPSK using SIMULINK.

UNIT - V

Information Theory: Uncertainty, Information and entropy. Discrete memory less channels **Source Coding Techniques**: Shannon-Fano coding, Huffman Coding **Lab activity:** Entropy calculations using MATLAB

Learning Resources:

- 1. Louis E. Frenzel, Principles of Electronic Communication Systems, 3rd Edition. Tata Mcgraw Hill.
- 2. Wayne Tomasi, Electronic Communications Systems, 5th Edition, Pearson Education.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1.	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30							
2.	No. of Assignments	:	3	Max. Marks for each Assignment	:	5							
3.	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5							

Duration of Internal Tests: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Solar Power and Applications

Open Elective-II SYLLABUS FOR B.E. IV SEMESTER

L: T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U22OE410EE
Credits:3	CIE Marks: 40	Duration of SEE: 3Hours

COURSE OBJECTIVES	COURSE OUTCOMES						
The course will enable the students to:	On completion of the course, students will be able to						
To impart the basics of solar energy	1. Compare different energy resources.						
harnessing and solar panel and array.	2. Identify and choose proper type of meter for solar radiation measurement.						
	3. Use proper solar thermal system according to the load requirements.						
	4. Categorize and compare photovoltaic cells.						
	5. Apply the knowledge of solar energy.						

Unit – I

Fundamentals of Energy Sources: Oil crisis of 1973, Classifications of Energy Resources, Importance of Non-conventional energy sources, Advantages-disadvantages and salient features of Non-conventional energy sources.

Unit – II

Solar Energy Basics: Sun as a source of energy, the Earth, Radiation Spectrums, Extraterrestrial and Terrestrial Radiations, Depletion of solar Radiation, Pyranometer, Pyrheliometer, Sunshine Recorder.

Unit – III

Solar Thermal Systems: Solar Collectors, Solar Water Heater, Solar Passive space – heating and cooling systems, Solar Cookers, Solar furnaces, Solar thermal water pump, Vapour compression refrigeration and Solar pond Electric power plant.

Unit – IV

Solar Photovoltaic Systems: Solar Cell fundamentals, Cell characteristics, Cell classification, Module, Panel and Array, Maximizing the Solar PV output and load matching, MPPT.

Unit – V

Solar PV systems & Applications: Solar PV system classification - Stand-Alone Solar PV system and Grid-Interactive Solar PV system. Applications - Water Pumping, lighting, medical refrigeration, village power and Telecommunication.

Suggested Reading:

- 5. B H Khan, Non-Conventional Energy Resources, 2nd Edition, Tata McGraw Hill.
- 6. G. D. Rai, Non-Conventional Energy Sources, 13th Reprint 2014, Khanna Publications.

The break-up of CIE : Internal Tests+Assignments+Quizzes

	I	J				
1.	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2.	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3.	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5
Dur	tion of Internal Tests , 00	Minutos				

Duration of Internal Tests : 90 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF MECHANICAL ENGINEERING

Design Principles of UAVs (Stream: Unmanned Aerial Vehicles - Open Elective-II) SYLLABUS FOR B.E. IV-SEMESTER

Instruction : 3Hours /week	SEE Marks : 60	Course Code : U22OE410ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

	COURSE OUTCOMES						
	On completion of the course, students will be able to						
The objective of this Course is to understand the	1. Describe the design fundamentals of UAVs.						
features of fundamentals of design and parameters,	2. Apply the fundamental parameters in the design of UAVs.						
aerodynamic design, performance, weight estimation	3. Analyze the aerodynamic design of UAVs.						
and stability of UAVs	4. Explore the design concepts for the performance of UAVs.						
	5. Estimate the weight and stability of UAVs.						

	CO-Po and CO-PSO mapping															
CO	PO mapping												Р	SO mapping		
	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3				
CO1	3	3	2			3	3	3				3	3	3	3	
CO2	3	3	3			3	3	2				3	3	3	3	
CO3	3	3	3			3	3	2				3	3	3	3	
CO4	3	3	3			3	3	2				3	3	3	3	
CO5	3	3	3			3	3	2				3	3	3	3	

UNIT I: Design Fundamentals:

Introduction, UAV Classifications, Design Criteria, Objectives, and Priorities, Feasibility Analysis, Design Groups, Design Disciplines, Design Process: UAV Life Cycle, Systems Engineering Approach, Conceptual Design, Preliminary Design, Detail Design, Design Review, Evaluation and Feedback.

UNIT II: Fundamental parameters

Various methods to measure flight velocity: using Pitot tube and Pitot static tube, with numerical problems, Variation of Pressure, density and temperature with altitude, Standard atmosphere with numerical problems. Anatomy of Airplane: Various control surfaces for an airplane: Airfoil Nomenclature: Design steps to construct an Airfoil.

UNIT III: Aerodynamic design: Lift and drag.

Generation of Lift and drag: How lift is generated, Variation of lift with angle of attack, Sources of Drag. Aerodynamic center, Center of pressure, Various wing planforms, Mean aerodynamic cord. Lifting line theory, NACA airfoils, Drag generation and dear polar. Difference between Airfoil and Finite wing, Numerical problems on wing planforms. Interpreting airfoil data, Lift curve slope of finite wing, Drag Polar, Numerical problems on selection of an airfoil.

UNIT IV: Design for performance: Thrust and power.

Introduction to Airplane performance, Equation of motion in parallel and perpendicular direction of motion, Steady Level flight, Thrust required for steady level flight, thrust required curve, thrust available curve for reciprocating and Jet engine, Power Required and Power available curve. Numerical problems on calculation of performance parameters, Selection of power plant. Rate of climb and Climb angle, Climb performance, Engine sizing, Power Plant selection.

UNIT V: Weight estimation and stability

Weight estimation, Common propulsion systems, Electric Propulsion, Battery Sizing, Iterative weight estimation, Wing sizing, Wing Planform selection and sizing, Case study demonstration of Flight test, Effect of variation of CG location, Static Stability, Effects of C.G. location on static stability, Longitudinal Static stability, Contribution of tail in static stability, Neutral point.

Learning Resources:

- 1. Andey Lennon, "Basics of R/C Model Aircraft Design" Model Airplane News Publication
- 2. John Baichtal, Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs.

- 3. <u>K Valavanis, George J Vachtsevanos</u>, Handbook of Unmanned Aerial Vehicles, New York, Springer, Boston, Massachusetts : Credo Reference, 2014. 2016.
- 4. DGCA RPAS Guidance Manual, Revision 3 2020

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1No. of Internal Tests:02Max. Marks for each Internal Test:302No. of Assignments:03Max. Marks for each Assignment:053No. of Quizzes:03Max. Marks for each Quiz Test:05

Duration of Internal Test: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF MECHANICAL ENGINEERING

Kinematics and Dynamics of Robotics (Open Elective-II) (Stream: Robotics) SYLLABUS FOR B.E. IV-SEMESTER

Instruction : 3Hours /week	SEE Marks : 60	Course Code : U22OE420ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

COURSE OBJECTIVE	COURSE OUTCOMES
The objective of the course is to	On completion of the course, students will be able to
To develop the fundamental knowledge and skills required to analyze, design and control robotic	1. Analyze the kinematics of robotic systems and apply them to solve real world problems
systems	2 Apply differential kinematics and statics concepts to design and control robotic systems
	3 Analyze the dynamics of serial manipulators using lagrangian and Newton- Euler mechanics
	4 Develop motion and force control strategies for robotic systems using feedback control techniques
	5 Generate and analyze robot trajectories for various applications

	CO-PO and CO-PSO mapping															
CO		PO mapping												PSO mapping		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	2			2			2	2		2	3	2	1	
CO2	2	2	2			2			2	2		2	3	2	1	
CO3	3	3	3			3			3	3		2	3	2	1	
CO4	3	2	2		3	3		3	2	2	3	3	3	2	1	
CO5	2	2	2		2	2		2	2	2	2	2	3	2	1	

UNIT-I

Robot Kinematics

Forward Kinematics: Forward/direct kinematic analysis of serial manipulators.

Inverse Kinematics: General properties of inverse kinematic solution. Inverse kinematics of serial RR planar manipulators.

UNIT-II

Differential Kinematics

Linear and angular velocity of links, Velocity propagation, Manipulator Jacobian for serial manipulators, Jacobian Singularities.

UNIT-III

Static Analysis: Force and moment balance, Jacobian in statics.

Dynamics of serial manipulators

Lagrangian formulation for equations of motion for RP, RR serial manipulators,

Unit-IV

Dynamics of serial manipulators

Recursive dynamics using Newton-Euler formulation of RP and RR serial manipulator.

UNIT-V

Trajectory Generation

Joint-Space Techniques: Cubic Polynomial Trajectories, Linear Segments with Parabolic Blends-without and with via points

Cartesian-Space Techniques: Straight line path, Circular Path, Position Planning, Orientation Planning.

Learning Resources:

- 1. Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, "Robotics: Modelling, Planning and Control", Springer Science & Business Media, 2010.
- 2. M.W.Spong and M.Vidyasagar, "Robot Dynamics and Control", 1st Edition, John Wiley and sons, 1990.
- 3. R.K.Mittal and I.J.Nagrath, "Robotics and Control", Tata McGraw-Hill, 2003.
- 4. Subir Kumar Saha, "Introduction to Robotics", Tata McGraw-Hill Education, 2014.
- 5. Howie M. Choset, Seth Hutchinson, Kevin M. Lynch, "Principles of Robot Motion: Theory, Algorithms, and Implementation", MIT Press, 2005.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1	No. of Internal Tests:	02	Max. Marks for each Internal Test:	30					
2	No. of Assignments:	03	Max. Marks for each Assignment:	05					
3	No. of Quizzes:	03	Max. Marks for each Quiz Test:	05					
Du	Duration of Internal Test: 90 Minutes								

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD - 500 031 DEPARTMENT OF MECHANICAL ENGINEERING

Optimization Methods

(General Pool Open Elective-II) SYLLABUS FOR B.E. IV-SEMESTER

Instruction : 3Hours /week	SEE Marks : 60	Course Code : U22OE430ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

Course Objectives	Course Outcomes
The objectives of this course are to: understand Linear & non-linear programming, transportation modeling , CPM & PERT for project scheduling and control, and application of various optimization techniques for respective field engineering (Inter disciplinary)	 On completion of the course, the student will be able to: 1. Optimization of resources in multi disciplinary areas through linear programming under different conditions. 2. Understand revised simplex methods per customer requirements to suit for various Organizations. 3. Minimization of total cost to apply for transportation techniques for the transhipment of Goods and products and Implement techniques like project management 4. Optimization of resources in multi disciplinary areas through non-linear
	programming under different conditions.

UNIT-I

Optimization-An overview

Meaning of Optimization-Origin of Optimization-Introduction to Linear programming problems (LPP) -Formulation of LPP-Graphical method, simplex method.

UNIT-II

Advanced topics in Linear programming

Special cases in simplex method, Duality in LPP, Differences between primal and dual, shadow prices, Dual simplex method, Revised simplex method.

UNIT-III

Transportation Model

Introduction to Transportation model-Formulation and solution of transportation models- Methods for calculating Initial basic feasible solution-Optimization of transportation model using MODI method.

Project Scheduling

Introduction to network analysis, Rules to draw network diagram, Fulkerson rule for numbering events, Critical path method.

UNIT-IV

Non linear programming problems

Optimization methods for single variable, multivariable functions, Maxima-Minima

One Dimensional Minimization: Uni-modal Function, Unrestricted search, Exhaustive search, Dichtomous search, Interval Halving method, Fibonacci and golden bisection Method, Newton and Quasi Newton method.

UNIT-V

Non Linear - Unconstrained optimization: classification, Univariate search, pattern Directions, Hook Jeeves, Powel method, steepest decent method.

Learning Resources:

- 1. Singiresu S. Rao, "Engineering optimization- Theory and Practice", 4thEdition, John Wiley and Sons, 2009.
- 2. NVS Raju, "Optimization Methods for Engineers ", PHI Learning Pvt. Ltd., 2014.
- 3. Prem Kumar Gupta and Dr. DS Hira, "Operations Research ", S.Chand & Company Pvt. Ltd., 2014.
- 4. R. Paneerselvam, "Operations Research", PHI Learning Pvt Ltd., 2009.
- 5. Kalyanmoy Deb, Optimization for Engineering Design- algorithms and examples, PHI Pvt. Ltd, 1st edition 2003, Delhi. The break-up of CIE: Internal Tests + Assignments + Quizzes
- 1 No. of Internal Tests: 02 Max. Marks for each Internal Test: 30 2
 - No. of Assignments: 03 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05

Duration of Internal Test: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) HYDERABAD DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

CRITICAL THINKING

(Open Elective) SYLLABUS FOR B.E. 2/4 – IV SEMESTER

Instruction: 3 Hours	SEE: 60	Course code: U22HS430EH
Credits: 3	CIE: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE	OUTCOMES
The course will enable the learners to:	At the e	nd of the course the learners will be able to: -
1. Identify the core skills associated with	ritical thinking. 1. Anal	se and compare techniques for comparing alternate
2. Comprehend the various techniques of	critical thinking solut	ons
3. Evaluate data and draw insights from it	to make the 2. Dem	onstrate the difference between deductive and inductive
right decisions	reaso	oning and construct logically sound arguments
4. Understand where to look for bias and	3. Chec	k for accuracy of data and use it as a tool for problem
5. assumptions in problem	solvi	ng
6. Understand structure, standards and el	nics of critical 4. Evalu	ate, identify and distinguish between relevant and
writing	irrele	vant information to formulate a thesis or hypothesis.
-	5. Emp	oy evidence and information effectively

UNIT 1

COMPONENTS OF CRITICAL THINKING

- 1.1 Applying Reason
- 1.2 Open Mindedness
- 1.3 Analysis
- 1.4 Logic

UNIT 2

NON-LINEAR THINKING

- 2.1 Step out of your Comfort Zone
- 2.2 Don't Jump to Conclusions
- 2.3 Expect and Initiate Change
- 2.4 Being Ready to Adapt

UNIT 3

LOGICAL THINKING

3.1 Ask the Right Questions

- 3.2 Organize Data
- 3.3 Evaluate Information
- 3.4 Draw Conclusions

UNIT 4

INFER MEANING FROM INFORMATIVE TEXTS

4.1 Making Assumptions4.2 Watch out for Bias4.3 Ask Clarifying Questions4.4 SWOT Analysis

UNIT 5 PROBLEM SOLVING

5.1 Identifying Inconsistencies5.2 Trust your Instincts5.3 Asking Ask?

ASSESSMENTS

- Online assignments

- Individual and Group

- Case Studies

- Demonstration
- Presentations
- Expert lectures

- Writing and Audio-visual lessons

LEARNING RESOURCES

learn.talentsprint.com

- 1. Calling Bullshit: The Art of Skepticism in a Data-Driven World. by Carl Bergstrom & Jevin West. ...
- 2. Thinking, Fast and Slow. by Daniel Kahneman. ...
- 3. Factfulness: Ten Reasons We're Wrong About The World And Why Things Are Better Than You Think. ...
- 4. Box Thinking: The Surprising Truth About Success. ...

The	break-up of CIE: Internal Tests	+ Assignments	+ Quizzes			
1	No. of Internal tests	:	2	Max. Marks	:	30
2	No. of assignments	:	3	Max. Marks	:	5
3	No. of Quizzes	:	3	Max. Marks	:	5
Dura	ition of Internal Tests : 9	90 Minutes				

METHODOLOGY

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) HYDERABAD DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

TECHNICAL WRITING AND PROFESSIONAL PRESENTATIONS

(Open Elective) SYLLABUS FOR B.E. 2/4 – IV SEMESTER

Instruction: 3 Hours	SEE: 60	Course code: U210E020EH
Credits: 3	CIE: 40	Duration of SEE: 3 Hours

00		00	
	URSE UBJECTIVES		JURSE OUTCOIVIES
Th	e course will enable the learners to:	At	the end of the course the learners will
1.	Understand the principles and mechanics of technical	be	able to: -
	writing for students of engineering.	1.	Write effective reports.
2.	Identify different kinds of business correspondences and the	2.	Articulate business correspondences based
	dos and don'ts for each of them.		on need.
3.	Make effective presentations as part of today's workplace	3.	Make persuasive presentations.
	demands.		
4.	Recognize the need for Video and Written CVs with focus on	4.	Design their videos CVs.
	specific elements.		
5.	Comprehend skills associated with technical writing and	5.	Write papers ranging from process
	understand different papers ranging from process		description and feasibility reports to
	description and feasibility reports to research projects,		research projects, project proposals, and
	project proposals, and SOPs		statement of purpose

UNIT 1: FORMAL & INFORMAL TECHNICAL REPORTS

- 1.1 Informal Report Formats
- 1.2 Project and Research Reports
- 1.3 Formal Report Components, Feasibility Reports, Evaluation reports
- 1.4 Analytical and Informational reports
- 1.5 Executive summaries.

UNIT 2: BUSINESS CORRESPONDENCE

- 2.1 Electronic communication
- 2.2 Effective emails
- 2.3 Instant and text messaging guidelines

UNIT 3: PROFESSIONAL PRESENTATIONS

- 3.1 Paper presentations & Poster presentations
- 3.2 PowerPoint presentations
- 3.3 Storyboard writing

UNIT 4: RESUME & CVs

4.1 Technical Resume4.2 Cover letter, resume format4.3 Video CVs

UNIT 5: WRITING PROPOSALS & SOPs

- 5.1 Types of proposals
- 5.2 Request for proposals
- 5.3 Stating your objective.

METHODOLOGY

- Case Studies
- Demonstration
- Presentations
- Expert lectures

- Writing and Audio-visual lessons

LEARNING RESOURCES

learn.talentsprint.com

1. Read Me First!: A Style Guide for the Computer Industry by Sun Technical Publications

2. Eats, Shoots and Leaves Paperback – 18 February 2010 by Lynne Truss

3. Don't Make Me Think, Revisited: A Common Sense Approach to Web & Mobile Usability | Third Edition | By Pearson Paperback –

4. The Design of Everyday Things: Revised and Expanded Edition Paperback -

Illustrated, 5 November 2013 by Don Norman (Author)

The break-up of CIE: Internal Tests + Assignments + Quizzes

Duration of Internal Tests :

: 90 Minutes

ASSESSMENTS

- Online assignments
- Individual and Group

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State DEPARTMENT OF MATHEMATICS

NUMERICAL METHODS

(Open Elective for CSE, AIML& IT only)

For B.E., IV - Semester - CBCS

Instruction: 3:0:0	SEE Marks: 60	Course Code : U22OE410MA
Credits : 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES			COURSE OUTCOMES		
T	he course will enable the students to:	At	the end of the course students will be able to:		
1.	Study the various numerical methods to solve	1.	Apply the numerical methods to solve Algebraic and		
	Algebraic and Transcendental equations.		Transcendental equations which cannot be solved by		
2.	Understand the methods to solve linear		traditional algebraic methods		
	system of equations.	2.	Solve the linear system of equations using direct and		
3.	Understand the numerical methods in		iteration methods.		
	interpolation and extrapolation.	3.	Use the various numerical methods in interpolation and		
4.	Understand the numerical methods in		extrapolation.		
	interpolation using central differences.	4.	Use the various numerical methods in interpolation using		
5.	Understand the numerical methods in		central differences.		
	solving ordinary differential equations.	5.	Find the numerical solutions of ordinary differential		
			equations.		

Unit – I

Solution of Algebraic and Transcendental equations:

Intermediate value property of equations-Solution of Algebraic and Transcendental equations: Bisection method, Newton-Raphson method Regula-Falsi method.

Unit – II

Solution of linear system of equations:

Direct methods- Gauss elimination method- Factorization method- Iterative methods: Jacobi's Iteration method- Gauss - Seidel Iteration method-Ill-conditioned system of equations.

Unit – III

Numerical differences-I

Introduction to finite differences - Interpolation- Newton's Forward and Backward Interpolation Formulae – Interpolation with unequal intervals – Lagrange's Interpolation Formula – Divided differences- Newton's divided difference formula.

Unit – IV

Numerical differences-II

Central differences interpolation-Gauss's forwards and backward difference formulae-Stiriling's formula- Bessel's formula.

Unit – V

Numerical Solutions of Ordinary Differential Equations

Numerical Solutions of Ordinary Differential Equations: Taylor's Series Method - Euler's Method - Modified Euler's Method - Runge-Kutta of 4th order (without proofs).

Learning Resources:

Text Books:

- 7. Numerical methods in engineering and science by B.S.Grewal, Khanna publishers
- 8. Advanced Engineering Mathematics by R.K.Jain&S.R.K.Iyengar, Narosa publishing house.

Reference Books:

9. Numerical Analysis by S.S.Sastry, PHI Ltd.

Online Resources :

1. http://mathworld.wolfram.com/topics

2. <u>http://www.nptel.ac.in/course.php</u>

The	break-up of CIE : Internal Tests	+ Ass	signm	nents +	Quizzes		
1	No. of Internal Tests	:	2	Max.	Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max.	Marks for each Assignment	:	5
3	No. of Quizzes	:	3	Max.	Marks for each Quiz Test	:	5
	Duration of Internal Tests	:	90	Minutes	5		

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF PHYSICS

Basic Semiconductor Devices

(Stream: Semiconductor Physics and Device Applications)

(B.E-IV Sem)

Instruction: 3:0:0	SEE Marks: 60	Course Code : U230E410PH
Credits : 3	CIE Marks: 40	Duration of SEE : 3 Hours

UNIT I: Junction Diode

Basic structure of PN junction, Band bending, zero bias condition, Expression for built in potential, Electric field and space charge width, Abrupt and Graded junctions, Diode equation, Effect of temperature on PN junction diode, Capacitive effects in PN junction, Diode –applications.

UNIT II: Metal-Semiconductor Junction

Schottky and Ohmic contacts, Schottky barrier diode, Current voltage relationship, comparison of Schottky barrier diode and pn junction diode, Static Barrier Characteristics, Dynamic Characteristics, Ohmic Contact, Metal Oxide Semiconductor Capacitor-Capacitance-Voltage, Ideal MOS system-Threshold voltage.

UNIT III: Special Semiconductor Devices

Small signal equivalent circuits of PN-diode, short and long diode, Breakdown mechanisms in Zener diode, Varactor diode, Tunnel diode, Gunn diode, Shockley diode, IMPATT diode.

UNIT IV: BJT and Thyristor

BJT's – Construction and characteristics, Thyristor – Construction, working and characteristics, comparison of BJT and Thyristor, Heterojunction Bipolar junction transistor, Basics of gate turn-off thyristor (GTO), SiC based Bipolar Devices-Applications, Building a GaN Transistor-GaN Transistor Electrical Characteristics.

UNIT V: Fabrication Techniques

BJT fabrication: Diffused, point contact, fused or alloy and rate grown techniques, molecular beam epitaxy (MBE), epitaxial vapour phase, Liquid phase growth.

References:

1. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India (1997).

- 2. Donald Neamen, Semiconductors Physics and Devices, Tata Mc Graw Hill, 2003
- 3. Tyagi, Introduction to Semiconductor Materials and Devices, Wiley Publications, 2002.
- 4. Semiconductor Devices, Basic Principles Jasprit Singh, Wiley Publications, 2001
- 5. Electronic Devices and Circuits- Millman and Halkias-Tata Mc Graw Hill, 1983.
- 6. Solid State Electronic Devices Ben G Streetman-Prentice Hall, New Delhi, 1995.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5
	Duration of Internal Tests	:	90	Minutes		
VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF PHYSICS

SYNTHESIS AND PROPERTIES OF MATERIALS

(Stream: MATERIALS SCIENCE FOR ENGINEERS)

(B.E-IV Semester)

Instruction: 3:0:0	SEE Marks: 60	Course Code : U220E420PH
Credits : 3	CIE Marks: 40	Duration of SEE : 3 Hours

UNIT I: SYNTHESIS OF MATERIALS- PHYSICAL METHODS (10 hours)

Solid state reaction, diffusion, melt quenching, vapor deposition, Chemical vapor deposition, physical vapor deposition, sputtering, mechanical milling, electron beam deposition.

UNIT II: SYNTHESIS OF MATERIALS- CHEMICAL METHODS (8 hours)

Introduction, slow evaporation at room temperature, high-temperature solution growth, Sol-gel process, Aerosol method, Hydro-thermal process, Solvo-thermal synthesis, Photo-chemical synthesis.

UNIT III: Electrical Properties of Materials (8 hours)

The Boltzmann transport equation, Electrical conductivity, electrical conductivity at low temperatures, Matthiessen's rule, Thermal conductivity, Wiedemann-Franz law, Hall-effect, Temperature variation of electrical conductivity

UNIT-IV: Physical properties of Materials (10 hours)

Fundamentals of magnetism, different types of magnetism, Permeability, Magnetic Hysteresis, Coercive force. Young's modulus, Bulk modulus, Modulus of rigidity, tensile testing and tensile strength, breaking strength, plastic deformation, failure analysis, hardness-testing, Brinell's, Viker's impact testing – toughness, resilience, scratch test.

UNIT-V: Optical and Thermal Properties of Materials (10 hours)

Optical properties: photoconductivity, optical absorption & transmission, energy band gap determination, photoluminescence, phosphorescence, electroluminescence.

Thermal properties: concept of phonons, thermal conductivity, specific heat, exothermic & endothermic processes.

References:

- 10. A.J.Dekker, Solid State Physics, Macmillan India Ltd., 2008.
- 11. V Raghavan, Materials Science and Engineering, PHI, 6th Edn, 2015
- 12. W.D. Callister Jr & David G. Rethwich, Materials Science and Engineering an Introduction-, John Wiley, 10th Edn, 2018.
- 13. M. A. Wahab, Solid State Physics, Narosa. 2015.
- 14. J. P. Srivastava, Elements of Solid-State Physics, PHI, 2014.

The break-up of CIE : Internal Tests + Assignments + Quizzes

			<u> </u>			
1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5
	Duration of Internal Tests	:	90 I	Vinutes		