With effect from: 2021-22 (R-21)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

CALCULUS for B.E., I- Sem., (CBCS) (Common to Civil, EEE, ECE, Mech)

Instruction: 3 +1 Hours per week	Sem. End Exam Marks : 60		Subject Reference Code: U21BS110MA	
Credits : 3	Sessional Marks:	40	Duration of Semester End Exam : 3 Hrs	

COURSE OBJECTIVES	COURSE OUTCOMES	
The course will enable the students to:	At the end of the course students should be able to:	
1. Understand The concepts of curvature, radius of curvature, evolutes and to expand functions using Taylor's series.	1. Compute radius of curvature, evolute of a given curve and also to expand given function using Taylor's series.	
 Acquire knowledge of partial derivatives, and expand functions using Taylor's series functions of two real variables and, maxima-minima. Study the concepts of vector differentiation, Gradient, Divergence and Curl. Learn how to evaluate double and triple integrals, using change of order of integration and apply vector integration to transformation theorems Identify convergence of infinite series using various tests. 	 Expand the given function in terms of Taylor's series and find Maxima and minima of functions of several variables also using Lagrange's method of multipliers. Use gradient to evaluate directional derivatives and conservative vector field. Apply concepts of multiple integrals to evaluate area and volume and vector integration to transformation. Apply an appropriate test to check the nature of the infinite series. 	

UNIT- I (10 classes)

DIFFERENTIAL CALCULUS

Taylor's Series - Maclaurin's Series- Curvature- Radius of Curvature - Centre of Curvature - Evolutes. (Cartesian and Parametric co-ordinates)

UNIT -II (12 classes)

FUNCTIONS OF SEVERAL REAL BVARIABLES

Limits- Continuity -Partial Derivatives-Higher Order Partial Derivatives-Total Derivates - Derivatives of Composite and implicit functions - Taylor's series of functions of two variables - Maxima and Minima of functions of two variables - Lagrange's Method of multipliers.

UNIT - III (08 classes)

VECTOR DIFFERENTIAL CALCULUS

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface- Directional Derivative – Divergence and Curl of a Vector field-Conservative vector field.

UNIT - IV (12 classes)

MULTIPLE INTEGRALS: Double and Triple integrals (Cartesian) - Change of order of integration (Cartesian Coordinates).

VECTOR INTEGRATION: Line, Surface and Volume integrals- Green's Theorem – Gauss Divergence theorem - Stokes's Theorem. (all theorems without proof). Solenoidal and Irrotational vectors.

UNIT-V (08 classes)

INFINITE SERIES

Definition of Sequences- Series – Convergence and Divergence- Series of positive terms-Geometric series- p-series test - Comparison tests - D'Alemberts Ratio Test – Cauchy's root test - Alternating Series – Leibnitz test – Absolute and Conditional convergence.

Text Books:

- 1 Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House.
- 2 Higher Engineering Mathematics, B. S. Grewal 40^{th.} Edition, Khanna Publishers.

Reference Books:

- Advanced Engineering Mathematics 8th Edition by Erwin Kreyszig, John Wiley & Sons.
- 2 Differential Calculus by Shanti Narayan S. Chand & Co
- 3 Vector Calculus Schaum's outline series.

Online Resources:

- 1 http://mathworld.wolfram.com/topics
- 2 http://www.nptel.ac.in/course.php
- 3 https://www.coursera.org/in

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
2 No. of Assignments : 3 Max. Marks for each Assignment : 5
3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5
Duration of Internal Tests : 90 Minutes

(Dr. C Goverdhan)
(OU Nominee)

(Prof. D.Srinivasacharya) (Subject Expert -1) Prof.MA Srinivas) (Subject Expert-2) (Dr.T Suchakar Rao) (Chairman, BOS)

With effect from: 2021-22 (R-21)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State DEPARTMENT OF MATHEMATICS

CALCULUS & LINEAR ALGEBRA for B.E., I- Sem., (CBCS) (Common to CSE, CSE-AIML & IT)

Instruction: 3+1 Hours per week	Sem. End Exan	Marks: 60	Subject Reference Code : U21BS120MA
Credits : 3	Sessional Marl	ks: 40	Duration of Semester End Exam : 3 Hrs
COURSE OBJECTIVES			COURSE OUTCOMES
The course will enable the students	to:	At the end	of the course students should be able to:
1. Understand The concepts of concepts of concepts of curvature, evolutes and to exusing Taylor's series.			te radius of curvature, evolute of a given also to expand given function using cries.
2. Acquire knowledge of partial derivatives, and expand functions using Taylor's series functions of two real variables and maxima- minima.		series and	the given function in terms of Taylor's find Maxima and minima of functions of riables also using Lagrange's method of .
3.Study the concepts of Vector Spaces, Subspaces, and use in Linear transformations and study Rank-Nullity theorem			concepts of Vector Spaces on Linear tions and Rank-Nullity theorem
4. Learn Inner Product Spaces, Orthonormal sets, Gram-Schmidt's Orothogonalization process.		and consti	ine distance using Inner product space ruct Orthonormal basis using Gram-Orothogonalization process.
5. Identify convergence of infinitivarious tests.	ite series using	5. Apply a the infinite	n appropriate test to check the nature of series.

UNIT- I (08 classes)

DIFFERENTIAL CALCULUS

Taylor's Series - Maclaurin's Series- Curvature- Radius of Curvature - Centre of Curvature - Evolutes. (Cartesian and Parametric co-ordinates)

UNIT -II (12 classes)

FUNCTIONS OF SEVERAL REAL VARIABLES

Limits- Continuity -Partial Derivatives-Higher Order Partial Derivatives-Total Derivates - Derivatives of Composite and implicit functions - Taylor's series of functions of two variables - Maxima and Minima of functions of two variables - Lagrange's Method of multipliers.

UNIT-III: (12 classes)

VECTOR SPACES

Definition of Vector Space - Vector Subspaces -Linear Dependence and Independence of vectors- Basis of a Vector Space -Dimension of a Vector Space - Linear Transformation-Inverse Linear Transformation- Range and kernel of a linear map - Dimension of Range and Kernel - Rank and nullity - Rank nullity theorem (without proof)

UNIT-IV (12 classes)

MATRICES

Rank of a Matrix- Characteristic equation--Eigen values and Eigenvectors-Orthogonal Transformation -Diagonalization using Similarity Transformation- Inner Product Space-Gram-Schmidt's Ortho-normalization process.

UNIT-V (08 classes)

INFINITE SERIES

Definition of Sequences- Series – Convergence and Divergence- Series of positive terms-Geometric series- p-series test - Comparison tests - D'Alemberts Ratio Test – Cauchy's root test - Alternating Series – Leibnitz test – Absolute and Conditional convergence.

Text Books:

- 1. Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House.
- 2. Higher Engineering Mathematics, B. S. Grewal 40th. Edition, Khanna Publishers.
- 3. Introduction to linear algebra with applications, Jim DeFranza, Daniel Gagliardi, Tata McGraw-Hill
- 4. Operational Mathematics by R.V. Churchill, Mc Graw-Hill Book Company, INC.

Reference Books:

- Advanced Engineering Mathematics 8th Edition by Erwin Kreyszig , John Wiley & Sons.
- 2. Differential Calculus by Shanti Narayan S. Chand & Co
- 3. Elementary Linear algebra, Anton and Rorres, Wiley India Edition
- 5. An introduction to Linear Algebra, V.P Mainra, J.L Arora, Affiliated to East-West Press Pvt Ltd

Online Resources:

- 1. http://mathworld.wolfram.com/topics
- 2. http://www.nptel.ac.in/course.php
- 3. https://www.coursera.org/in
- 4. https://codingthematrix.com

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
2 No. of Assignments : 3 Max. Marks for each Assignment : 5
3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5
Duration of Internal Tests : 90 Minutes

(Dr. C Goverdhan)

(OU Nominee)

(Prof. D.Srinivasacharya) (Subject Expert -1) Prof.M A Srinivas) (Subject Expert-2) (Dr.T Sudhakar Rao) (Chairman, BOS)

With effect from: 2021-22 (R-21)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

DIFFERENTIAL EQUATIONS & COMPLEX ANALYSIS for B.E., II- Sem., (CBCS) (Common to Civil, EEE, ECE, Mech)

Instruction: 3+1 Hours per week	Semester End Exam Marks : 60	Subject Reference Code : U21BS210MA
Credits : 3	Sessional Marks: 40	Duration of Semester End Exam : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students to :	At the end of the course students should be able to:
 Study the concepts of matrices, Eigen values and Eigen vectors, Diagonalization and canonical form of a quadratic form. Solve first order differential equations using elementary techniques and learn its applications. Use the various higher order homogeneous and non-homogeneous linear differential equations 	 Find the rank of a given matrix, diagonalizable a given matrix and reduce a quadratic form to canonical form and find its nature. Identify the suitable I.F and solve differential equations, model the real time electrical engineering problems viz., RC & LR Circuits into differential equations and solve.
with constant coefficients to solve it and apply on	3. Apply various higher order Linear Differential
electrical circuits	equations, to solve LC and LCR circuits.
 4. Understand the Analytic functions, conditions and harmonic functions. 5. Evaluate a line integral of a function of a complex variable using Cauchy's integral formula, and how to evaluate Taylor's and Laurent Series. 	 4. Apply the condition(s) for a complex variable function to be analytic and/or harmonic and to construct an Analytic function. 5. Evaluate complex integrals by Cauchy's theorem and Cauchy's Integral formula and define singularities of a function and to expand a given function as a Taylor's / Laurent's series.

UNIT - I (12 classes)

MATRICES

Rank of a Matrix- Linearly independence and dependence of Vectors - Characteristic equation -- Eigen values and Eigenvectors - Cayley - Hamilton Theorem (without proof)-Diagonalization using Similarity Transformation.

UNIT - II (10 classes)

ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

Exact first order differential equations - Integrating factors- Clairaut's equation - Applications of First Order Differential Equations - Orthogonal trajectories (Cartesian families) - LR and RC Circuits.

UNIT - III (12 classes)

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Solutions of Homogeneous and Non Homogeneous linear equations with constant coefficients- Method of Variation of Parameters –Applications of linear differential equations to LCR circuits

UNIT - IV (08 classes)

DIFFERENTIATION OF COMPLEX FUNCTION

Limits and Continuity of function - Differentiability and Analyticity - Necessary & Sufficient Condition for a Function to be Analytic - Milne-Thompson's method -Harmonic Functions.

UNIT - V (10 classes)

INTEGRATION OF COMPLEX FUNCTION

Complex Integration- Cauchy's Theorem - Extension of Cauchy's Theorem for multiply connected regions- Cauchy's Integral Formula - Power series - Taylor's Series - Laurent's Series (without proofs) -Poles and Residues.

Text Books:

- 1. Advanced Engineering Mathematics 3rd Edition, R.K.Jain & S.R.K.Iyengar, Narosa Publishing House.
- 2. Higher Engineering Mathematics 40th Edition Dr. B.S Grewal, Khanna Publishers.
- 3. A Text book of Engineering Mathematics, N.P.Bali & Manish Goyal, Laxmi Publications.

Reference Books:

- 1 Advanced Engineering Mathematics, by Wylie & Barrett, Tata Mc Graw Hill, New Delhi.
- 2 Advanced Engineering Mathematics, 8th Edition by Erwin Kreyszig, John Wiley & Sons, Inc.
- 3 Complex Variables and applications, J.W.Brown and R.V.Churchill, 7th Edition, Tata Mc Graw Hill, 2004.

Online Resources:

- 1 http://mathworld.wolfram.com/topics
- 2 http://www.nptel.ac.in/course.php
- 3 https://www.coursera.org/in
- 4 http://davidbau.com

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
2 No. of Assignments : 3 Max. Marks for each Assignment : 5
3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests : 90 Minutes

(Dr. C Goverdhan) (OU Nominee) (Prof. D.Srinivasacharya) (Subject Expert -1) Prof.M A Srinivas)
(Subject Expert-2)

(Dr.T Suenakar Rao) (Chairman, BOS)

With effect from: 2021-22 (R-21)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031

DEPARTMENT OF MATHEMATICS

DIFFERENTIAL EQUATIONS & VECTOR CALCULUS for B.E., II- Sem., (CBCS) (Common to CSE, CSE-AIML & IT)

Instruction: 3+1 Hours per week	Semester End Exam Marks : 60	Subject Reference Code : U21BS220MA
Credits : 3	Sessional Marks: 40	Duration of Semester End Exam : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students to :	At the end of the course students should be able to:
 Solve first order differential equations using elementary techniques and learn its applications. Use the various higher order homogeneous and 	1. Identify the suitable I.F and solve differential equations, model the real time electrical engineering problems viz., RC & LR Circuits into
non-homogeneous linear differential equations	differential equations and solve.
with constant coefficients to solve it and apply on	2. Apply various higher order Linear Differential
electrical circuits	equations, to solve LC and LCR circuits.
3. Study the concepts of vector differentiation,	3. Use gradient to evaluate directional derivatives
Gradient, Divergence and Curl.	and conservative vector field.
4.Learn how to evaluate double and triple	4. Apply concepts of multiple integrals to evaluate
integrals, using change of order of integration and	area and volume and vector integration to
apply vector integration to transformation	transformation
theorems	
5.Understand Beta, Gamma functions and Error functions	5. Evaluate Improper integrals and Beta ,Gamma functions

UNIT - I (10 classes)

ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

Exact first order differential equations - Integrating factors- Clairaut's equation - Applications of First Order Differential Equations - Orthogonal trajectories (Cartesian families) - LR and RC Circuits.

UNIT – II (12 classes)

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Solutions of Homogeneous and Non Homogeneous linear equations with constant coefficients- Method of Variation of Parameters –Applications of linear differential equations to LCR circuits.

UNIT - III (08classes)

VECTOR DIFFERENTIAL CALCULUS

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface- Directional Derivative – Divergence and Curl of a Vector field-Conservative vector field.

UNIT - IV (12 classes)

MULTIPLE INTEGRALS: Double and Triple integrals (Cartesian) - Change of order of integration (Cartesian Coordinates).

VECTOR INTEGRATION: Line, Surface and Volume integrals- Green's Theorem – Gauss Divergence theorem - Stokes's Theorem. (all theorems without proof)- Solenoidal and Irrotational vectors.

UNIT - V (08 classes)

BETA-GAMMA FUNCTIONS

Improper integrals-Beta, Gamma functions- Error functions-complimentary error functions

Text Books:

- 1. Higher Engineering Mathematics 40th Edition Dr. B.S Grewal, Khanna Publishers.
- 2. Advanced Engineering Mathematics 3rd Edition, R.K.Jain & S.R.K.Iyengar, Narosa Publishing House.
- 3. A Text book of Engineering Mathematics, N.P.Bali & Manish Goyal, Laxmi Publications.

Reference Books:

- 1. Advanced Engineering Mathematics, by Wylie & Barrett, Tata Mc Graw Hill, New Delhi.
- Advanced Engineering Mathematics, 8th Edition by Erwin Kreyszig, John Wiley & Sons, Inc.

Online Resources:

- http://tutorial.math.lamar.edu/Classes/DE/DE.aspx
- http://mathworld.wolfram.com/topics
- 3. http://www.nptel.ac.in/course.php
- 4. https://www.coursera.org/in

The break-up of CIE: Internal Tests + Assignments + Quizzes

No. of Internal Tests 1 2 Max. Marks for each Internal Tests 30 2 No. of Assignments : 3 Max. Marks for each Assignment 5 3 No. of Quizzes : 3 Max. Marks for each Quiz Test 5 **Duration of Internal Tests** : 90 Minutes

(Dr. C Goverdhan) (OU Nominee) (Prof. D.Srinivasacharya) (Subject Expert -1) (Subject Expert-2)

(Dr.T Sudhakar Rao) (Chairman, BOS)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF INFORMATION TECHNOLOGY (B.E. Semester - II)

Mathematics Lab (Calculus, Linear Algebra & Differential equations)

Instruction: 2 Hours / week	SEE Marks :50	Course Code:U21BS211MA
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hrs

Course Objectives	Course Outcomes		
The course will enable the students to:	At the end of the course student will be able to:		
Demonstrate the linear algebra, calculus and differential equation concepts using Scilab.	numerical analysis and visualization.		

- 1. Introduction to Scilab and evaluating elementary functions.
- 2. Basic operations on Matrix & Vector.
- 3. Matrix analysis: Rank, Determinant, Trace, Orthogonal basis & Inverse of matrices.
- 4. Eigen values and Eigenvectors of Matrix.
- 5. Matrix decompositions: SVD, QR, LU, Pseudo Inverse
- 6. Solve system of linear equations.
- 7. Data plotting (2D,3D) of various mathematical functions.
- 8. Test the convergence of infinite series i.e., power, Taylor.
- 9. Intro to calculus and examine minima, maxima and saddle points of a given function.
- 10. Application of definite integrals to area & volume calculations.
- 11. Solving differential equations.

Learning Resources:

1. https://www.scilab.org/tutorials\

2. Scilab - Course (swayam2.ac.in)

3. Scilab Tutorial.pdf (iitb.ac.in)

(Dr. C Goverdhan)

(Prof. D.Srinivasacharya)

(Dr.T Sudhakar Rao)

(OU Nominee)

(Subject Expert -1)

(Subject Expert-2)

(Chairman, BOS)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

PDE & TRANSFORM TECHNIQUES for B.E., III- Sem., (CBCS) (Civil, EEE & Mechanical only)

Instruction :3 +1 Hours per week Semester End Exam Marks: 60 Subject Reference Code : U19BS310MA Credits Sessional Marks: 40 Duration of Semester End Exam: 3 Hrs.

 Expand any function which is continuous, Discontinuous, even or odd in terms of its Fourier series. Formulate the Partial differential equations by eliminating arbitrary constants and functions and solve linear, non linear Partial differential equations.
Discontinuous, even or odd in terms of its Fourier series. 2. Formulate the Partial differential equations by eliminating arbitrary constants and functions and solve linear, non linear Partial differential equations.
eliminating arbitrary constants and functions and solve linear, non linear Partial differential equations.
3. Solve the one dimensional wave(Vibrations of a
string), heat equations and two dimensional heat equations.
4. Evaluate Laplace transforms and inverse Laplace transforms of functions. Apply Laplace transforms to solve ordinary differential equations arising in
engineering problems. 5. Determine Fourier transform, Fourier sine and cosine transform of a function.

UNIT-I (14 Hours)

Laplace Transforms: Introduction to Laplace transforms - Inverse Laplace transform - Sufficient Condition for Existence of Laplace Transform -Properties of Laplace Transform of Derivatives - Laplace Transform of Integrals - Multiplication by to - Division by to - Evaluation of Integrals by Laplace Transforms- Convolution Theorem - Application of Laplace transforms to Initial value Problems with Constant Coefficients.

UNIT -II (10 Hours)

Fourier series: Introduction to Fourier series - Conditions for a Fourier expansion - Functions having points of discontinuity - Change of Interval - Fourier series expansions of even and odd functions - Fourier Expansion of Half- range Sine and Cosine series.

UNIT-III (10 Hours)

Fourier Transforms: Fourier Integral Theorem (without Proof) - Fourier Transforms - Inverse Fourier Transform - Properties of Fourier Transform - Fourier Cosine & Sine Transforms,

W. Vaendhe (chairman, Bos)

UNIT -IV (10 Hours)

Partial Differential Equations: Formation of first and second order Partial Differential Equations -Solution of First Order Equations - Linear Equation - Lagrange's Equation - Non-linear first order equations - Standard Forms.

UNIT-III (8 Hours)

Applications of Partial Differential Equations: Method of Separation of Variables - One Dimensional Wave Equation- One Dimensional Heat Equation - Two Dimensional Heat equation Laplace's Equation-(Temperature distribution in long plates).

Text Books:

- 1. R.K. Jain & S.R.K. lyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.

Online Resources:

- 1. http://tutorial.math.lamar.edu/Classes/DE/DE.aspx
- http://mathworld.wolfram.com/topics
 http://www.nptel.ac.in/course.php

(Prof. N. Kishan) (OU Nominee)

(Prof. D.Srinivasacharya) (Subject Expert -1)

(Prof.A. Ramu)

(Subject Expert-2)

(Dr. B Srivathsa

(Industry Expert)

(Dr.N Vasudha) (Chairman)

with effect from :2019-20 (R-19)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

TRANSFORM TECHNIQUES, PROBABILITY & STATISTICS for B.E., III- Sem., (CBCS) (For CSE only)

Instruction :3 +1 Hours per week	Semester End Exam Marks : 60	Subject Reference Code : U19BS320MA
Credits : 3	Sessional Marks : 40	Duration of Semester End Exam : 3 Hrs.

	COURSE OBJECTIVES The course will enable the students to:		COURSE OUTCOMES
Th			At the end of the course students will be able to:
1.	Study the Fourier series, conditions for expansion of function and half range series	1.	Expand any function which is continuous, Discontinuous, even or odd in terms of its Fourier series.
2.	Study the concept of Fourier, Sine, Cosine and inverse Fourier Transform Sine and Cosine transform of a function and various properties.		Determine Fourier transform, Fourier sine and cosine transform and inverse Fourier, Sine and Cosine transform of a function.
3.	Study various methods of testing large samples	3.	Infer properties of population conducting tests on samples
4.	Analyze standard statistical tests	4.	Categorize population based on tests on small samples
5.	employed for small samples Understand fitting of a straight line to a given data and measuring Correlation between variables	5.	Solve problems on fitting of a straight line to the given data and also to find co-efficient of correlation and to determine regression lines and their application problems.

UNIT -I (10 Hours)

Fourier series: Introduction to Fourier series - Conditions for a Fourier expansion - Functions having points of discontinuity - Change of Interval - Fourier series expansions of even and odd functions -Fourier Expansion of Half-range Sine and Cosine series.

UNIT-II (10 Hours)

Fourier Transforms: Fourier Integral Theorem (without Proof) - Fourier Transforms - Inverse Fourier Transform - Properties of Fourier Transform - Fourier Cosine & Sine Transforms.

UNIT-III(10 Hours)

Probability:

Random Variables - Discrete and Continuous Random variables-Properties- Distribution functions and densities - Expectation - Variance - Normal Distributions.

N. llaevolla. Cchairman, sos)

UNIT-IV(12 Hours)

Test of Hypothesis

Introduction -Testing of Hypothesis- Null and Alternative Hypothesis -Errors- -Level of Significance-Confidence Intervals -Tests of Significance for small samples - t-test for single mean - F- test for comparison of variances - Chi-square test for goodness of fit..

UNIT-V (10 Hours)

Regression & Correlation:

The Method of Least Squares - Fitting of Straight line- Regression - Lines of Regression- Correlation - Karl Pearson's Co-efficient of Correlation

Text Books:

- R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.
- 3. Fundamentals of Mathematical Statistics, Gupta & Kapoor, Sultan chand & sons, New Delhi.

(Prof. N. Kishan) (OU Nominee) (Prof. D.Srinivasacharya) (Subject Expert -1)

(Prof.A. Ramu) (Subject Expert-2)

(Industry Expert)

(Dr.N Vasudha)

(Chairman)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

PDE & NUMERICAL METHODS for B.E., III- Sem., (CBCS) (For ECE only)

Instruction	:3 +1 Hours per week	Semester End Exam Marks : 60	Subject Reference Code : U19BS330MA
Credits	:3	Sessional Marks : 40	Duration of Semester End Exam : 3 Hrs.

COURSE OBJECTIVES	COURSE OUTCOMES		
The course will enable the students to:	At the end of the course students will be able to:		
Formulate and understand linear and nonlinear partial differential equations.	1. Formulate the Partial differential equations by eliminating arbitrary constants and functions and solve linear, non linear Partial differential equations.		
 Study the applications of Partial Differential equations 	 Solve the one dimensional wave(Vibrations of a string), heat equations and two dimensional heat equations. 		
3. Study the methods to solve algebraic and transcendental equations, apply numerical methods to interpolate.	 Solve algebraic and transcendental equations using Bisection method Regula-Falsi, Newton- Raphson and apply numerical methods to interpolate. 		
 Understand numerical differentiation and integrate functions and to solve differential equations using numerical methods. 	 Solve problems using numerical differentiation using interpolation approach and differential equations using numerical methods. 		
5. Study the method to fit different curves to a given data, how Correlation between variables can be measured	5. Solve problems to fit various curves to the given data using curve fitting, and also to find co-efficient of correlation and to determine regression lines and their applications.		

UNIT -I (10 Hours)

Partial Differential Equations:

Formation of first and second order Partial Differential Equations - Solution of First Order Equations -Linear Equation - Lagrange's Equation- Non-linear first order equations -Standard Forms.

UNIT-II (10 Hours)

Applications of Partial Differential Equations:

Method of Separation of Variables - One Dimensional Wave Equation- One Dimensional Heat Equation - Two Dimensional Heat equation- Laplace's Equation- (Temperature distribution in long plates).

W. Llaeudha. (chairman, Bos)

UNIT-III (10 Hours)

Interpolation:

Finite Differences- Interpolation- Newton's Forward and Backward Interpolation Formulae – Interpolation with unequal intervals – Lagrange's Interpolation Formula – Divided differences-Newton's Divided difference formula.

UNIT -IV (12 Hours)

Numerical solutions of ODE:

Numerical Differentiation -Interpolation approach Numerical Solutions of Ordinary Differential Equations of first order - Taylor's Series Method - Euler's Method - Runge-Kutta Method of 4^{th} order(without proofs).

UNIT-V (10 Hours)

Curve Fitting:

Curve fitting by the Method of Least Squares - Fitting of Straight line-Second degree parabola-Regression - Lines of Regression - Correlation - Karl Pearson's Co-efficient of Correlation.

Text Books:

- R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.

Online Resources:

- 1. http://tutorial.math.lamar.edu/Classes/DE/DE.aspx
- 2. http://mathworld.wolfram.com/topics
- 3. http://www.nptel.ac.in/course.php

(Prof. N. Kishan) (OU Nominee)

(Prof. D.Srinivasacharya) (Subject Expert -1) (Prof.A. Ramu) (Subject Expert-2)

(Dr. B Srivathsa) (Industry Expert)

(Dr.N Vasudha) (Chairman)

J. Clasnothe.

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

process of the discrete mathematics for B.E., III- Sem., (CBCS) (for IT only)

Instruction :3 +1 Hours per week	Semester End Exam Marks : 60	Subject Reference Code : U18BS340MA	
Credits : 3	Consideral Mail 40	Duration of Semester End Exam : 3 Hrs.	
	Sessional Marks: 40		

	COURSE OBJECTIVES	COURSE OUTCOMES		
Th	ne course will enable the students to:	At the end of the course students will be able to:		
1.	Understand Propositions and their equivalences, predicates and quantifiers and learn various proof strategies.	Use logical notation to define and reason about fundamental mathematical concepts and synthesize induction hypothesis and simple		
2.	Study the concepts of number theory such Modular Arithmetic. Congruences and basic cryptography etc	Induction proofs.2. Prove elementary properties of modular arithmetic and basic cryptography and apply in		
3.	Understand the basics of counting, combinatory, and various methods of solving Recurrence relations.	Computer Science. 3. Calculate number of possible outcomes of elementary combinatorial processes such as permutations and combinations Model and analyze computational processes using analytic and Combinatorial methods.		
4.	Understand Relations. Equivalence relations. Posets and Hasse diagrams.	 Prove whether a given relation is an equivalence relation/poset and will be able to draw a Hasse diagram. 		
5.	Analyze the concepts of Graphs.	 Apply graph theory models of data structures and to solve problems of connectivity. 		

UNIT - I (10 Hours)

Logic: Logic-Logical connectives- Propositional equivalences- Predicates and quantifiers - Nested quantifiers.

Mathematical Reasoning, Induction: Proof Strategy- Methods of Proofs- Mathematical Induction-Second Principle of Mathematical Induction.

UNIT - II (10 Hours)

Number Theory: The Integers and Division- Division Algorithm- Fundamental Theorem of Arithmetic –Modular Arithmetic-Integers and Algorithms- Euclidean Algorithm. Applications of Number Theory-Linear Congruences- The Chinese Remainder Theorem (without Proof)- Fermat's Little Theorem- Public key cryptography- RSA Encryption and Decryption.

N. Chairman, Bas)

UNIT - III (12 Hours)

Counting: Basics of counting- Pigeonhole principle- Permutations and combinations – Pascal's Identity- Vandermonde's Identity- Generalized Permutations and combinations.

Advanced Counting Techniques: Recurrence relations: Solving Recurrence Relations- Linear Homogeneous and Non-Homogeneous Recurrence relations.

UNIT - IV (10 Hours)

Relations: Relations - Properties -Representing relations - Equivalence Relations - Partial Orderings- Poset- Hasse diagrams - Maximal & Minimal Elements.

UNIT -V (10 Hours)

Graph Theory: Introduction- Types of graphs- Graph terminology- Basic theorems- Representing Graphs and Graph Isomorphism - Connectivity- Euler and Hamiltonian paths - Planar graphs- Euler's Formula- Graph coloring- Basic Definitions.

Text Books:

- Kenneth H.Rosen Discrete Mathematics and its application 5th edition, Mc Graw -Hill, 2003.
- Joel. Mott. Abraham Kandel, T.P.Baker, Discrete Mathematics for Computer Scientist & Mathematicans, Prentiee Hail N.J., 2nd edn, 1986.

Reference Books:

- 1. Discrete and Combinatorial Mathematics by Ralph P. Grimaldi , Pearson International
- 2. J.P.Trembly, R.Manohar, Discrete Mathematical Structure with Application to Computer Science, Mc Graw-Hill 1997.
- 3. R.K. Bisht, H.S.Dhami Discrete Mathematics, Oxford University Press, 2015.

Online Resources:

- 1. http://mathworld.wolfram.com/topics
- 2. http://www.nptel.ac.in/course.php

(Prof. N. Kishan) (OU Nominee) (Prof. D.Srinivasacharya) (Subject Expert -1)

(Prof.A. Ramu) (Subject Expert-2) (Dr. B Srivathsa) & (Industry Expert)

(Dr.N Vasudha) (Chairman)

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD - 500 031 DEPARTMENT OF MATHEMATICS

LINEAR ALGEBRA AND ITS APPLICATIONS (OPEN ELECTIVE-I for all branches of 2/4 B.E sem-3)

Name of the Faculty: Mr.Y.Bhanu Prakash

L:T:P (Hrs./week):2:0:0	SEE Marks :60	Course Code: U190E310MA
Credits : 2	CIE Marks: 40	Duration of SEE: 3 Hrs

UNIT - I (8 classes)

Vector Spaces-Definition of a Vector Space, Subspaces, Basis and Dimension, Coordinates and Change of Basis.

UNIT - II (6 classes)

Linear Transformation -I

Definition of Linear Transformation- Properties of Linear Transformations – Product of Linear Transformations – Algebra of Linear Operators.

UNIT - III (6 classes)

Linear Transformation -II

Range and kernel of a linear map – Dimension of Range and Kernel - Rank and nullity – Inverse of linear transformation - Rank nullity theorem (without Proof)- Matrix of Linear Transformation.

UNIT - IV (8 classes)

Inner Product Spaces-The Dot Product on R and Inner Product Spaces, Orthonormal Bases, Orthogonal Complements, Application: Least Squares Approximation

Learning Resources:

- Introduction to Linear Algebra with Application, Author: Jim Defranza, Daniel Gagliardi, Publisher: Tata McGraw-Hill
- An Introduction to Linear Algebra, V.Krishna Murthy, V.P Mainra, J.L Arora, Affiliated to East-West Press Pvt Ltd

Reference Books:

- (i) Elementary Linear Algebra, Author: Anton and Rorres, Publisher: Wiley India Edition.
- (ii) Advanced Engineering Mathematics, Author: Erwin Kreysig, Publisher: Wiley Publication
- (iii) Elementary Linear Algebra, Author: Ron Larson, Publisher: Cengage Learning

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No of Internal Tests : 2 Max. Marks for each Internal Tests : 30
2 No. of Assignments : 2 Max. Marks for each Assignment : 5
3 No. of Quizzes : 2 Max. Marks for each Quiz Test : 5
Duration of Internal Tests : 90 Minutes

23/08/21

With effect from the 2021-22

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF MATHEMATICS

MATRIX THEORY & VECTOR CALCULUS BRIDGE COURSE B.E. III-SEMESTER (CBCS) (For CSE, EEE, ECE & IT)

Instruction:	2 hours/Week	SEE Marks	: 50	Subject Reference Code	UB20BS300MA
Credits:	-	CIE Marks	:-	Duration of SEE	3 Hrs

UNIT-I: (4 Hours) DIFFERENTIATION & INTEGRATION

Differentiation of standard functions(Formulae) - Partial Derivatives - Derivative of Composite functions and Implicit functions - Chain Rule - Total Derivative

Integration - Elementary Integration - Integration of standard functions- Methods of Integration-Integration by substitution- Integration by parts.

UNIT – II (6 Hours) VECTOR DIFFERENTIATION

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface - Directional Derivative — Divergence and Curl of a Vector field - Conservative vector field.

UNIT – III (6 Hours) VECTOR INTEGRATION

Line, Surface and Volume integrals- Green's Theorem – Gauss Divergence theorem - Stokes's Theorem. (all theorems without proof).

UNIT- IV(8 Hours) MATRIX THEORY

Rank of matrix- Echelon form - -System of Linear Equations- Consistency of Homogeneous and Non-homogeneous system of equations- Eigen values and EigenVectors.

Suggested Books:

1. B.S. Grewal, Higher Engineering Mathematics

2.

(Dr. C Goverdhan)

(Prof. D.Srinivasacharya)

(Subject Expert-2)

(Chairman, BO

(Dr.T Sudhakar Rao)

Asst. Professor

Popt. of Mathematics

Vasavi College of Francia Gr

(OU Nominee)

(Subject Expert -1)

With effect from the 2021-22

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF MATHEMATICS

MATRIX THEORY & VECTOR CALCULUS BRIDGE COURSE B.E. IN-SEMESTER (CBCS) (For CIVIL & MECH)

Instruction:	2 hours/Week		: 50	Subject Reference	UB20BS400MA
		Marks		Code	
Credits:	-	CIE Marks	: -	Duration of SEE	3 Hrs

UNIT-I: (4 Hours) DIFFERENTIATION & INTEGRATION

Differentiation of standard functions(Formulae) - Partial Derivatives - Derivative of Composite functions and Implicit functions - Chain Rule - Total Derivative

Integration - Elementary Integration - Integration of standard functions- Methods of Integration-Integration by substitution- Integration by parts.

UNIT - II (6 Hours) VECTOR DIFFERENTIATION

Scalar and Vector point functions -Vector Differentiation-Level Surfaces-Gradient of a scalar point function- Normal to a level surface - Directional Derivative — Divergence and Curl of a Vector field - Conservative vector field.

UNIT - III (6 Hours) VECTOR INTEGRATION

Line, Surface and Volume integrals- Green's Theorem – Gauss Divergence theorem - Stokes's Theorem. (all theorems without proof).

UNIT- IV(8 Hours) MATRIX THEORY

Rank of matrix- Echelon form - -System of Linear Equations- Consistency of Homogeneous and Non-homogeneous system of equations- Eigen values and EigenVectors.

Suggested Books:

1. B.S. Grewal, Higher Engineering Mathematics

(Dr. C Goverdhan)

(Prof. D.Srinivasacharya)

Prof.M A Srinivas)

(Dr.T Sudhakar Rao)

(OU Nominee)

(Subject Expert -1)

(Subject Expert-2)

(Chairman, BOS)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS NUMERICAL METHODS, PROBABILITY & STATISTICS

for B.E., IV- Sem., (CBCS) (Civil, EEE & Mechanical only)

Instruction: 3 +1 Hours per week	Sem. End Exam Marks: 60	Cubin LB	
Credits : 3		Subject Reference Code	: U18BS410MA
.5	Sessional Marks : 40	Duration of Semester End Ex	

	COURSE OBJECTIVES	T	COURSE OUTCOMES	
7	The course will enable the students to:		At the end of the course students will be able to:	
	. Study the methods to solve algebraic and transcendental equations, apply numerical methods to interpolate.		Solve algebraic and transcendental equations using Bisection method Regula-Falsi, Newton-Rap son and apply numerical methods to interpolate.	
2.	Understand numerical differentiation and integrate functions and to solve differential equations using numerical methods.	2,		
3,	Understand Random variables Probability Distributions.	3.	Apply various probability distributions to solve practical problems.	
4.	Understand tests of hypothesis for large and small samples.	4.	Estimate unknown parameters of populations and apply the tests of hypotheses for large and small samples.	
5.	Study the method to fit different curves to a given data, how Correlation between variables can be measured.	5.	Solve problems to fit various curves to the given data using curve fitting, and also to find co-efficient of correlation and to determine regression lines and their applications.	

UNIT -I (10 Hours) Interpolation:

. . .

Finite Differences- Interpolation- Newton's Forward and Backward Interpolation Formulae - Interpolation with unequal intervals – Lagrange's Interpolation Formula – Divided differences – Newton's Divided

UNIT -II (10 Hours)

Numerical Solutions of ODE:

Numerical Differentiation -Interpolation approach- Numerical Solutions of Ordinary Differential Equations of first order - Taylor's Series Method - Euler's Method - Runge-Kutta Method of 4th order(without proofs)

UNIT-III (10 Hours)

Probability:

Random Variables - Discrete and Continuous Random variables-Properties- Distribution functions and densities - Expectation - Variance - Normal Distribution.

N. Charman, Bas)

UNIT-IV(12 Hours)

Test of Hypothesis:

Introduction -Testing of Hypothesis - Null and Alternative Hypothesis - Errors - Level of Significance - Confidence Intervals-Tests of Significance for small samples - t-test for single mean - F- test for comparison of variances - Chi-square test for goodness of fit - Introduction to Design of experiments.

UNIT-V (10 Hours)

Curve Fitting:

Curve fitting by the Method of Least Squares - Fitting of Straight line- Regression - Lines of Regression Correlation - Karl Pearson's Co-efficient of Correlation.

Text Books:

- 1. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.
- 3. Probability, Statistics and Random Processes, T. Veerarajan , Tata MCGraw Hill Education Private Ltd.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.
- 3. Fundamentals of Mathematical Statistics, Gupta & Kapoor, Sultan chand & sons, New Delhi.

Online Resources:

- 1. http://tutorial.math.lamar.edu/Classes/DE/DE.aspx
- 2. http://mathworld.wolfram.com/topics
- 3. http://www.nptel.ac.in/course.php

(Prof. N. Kishan) (OU Nominee) (Prof. D.Srinivasacharya) (Subject Expert -1) (Prof.A. Ramu)

(Subject Expert-2)

Dr. B Srivathsa

(Industry Expert)

(Dr.N Vasudha) (Chairman)

with effect from :2019-20 (R-18)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

PROBABILITY & STATISTICS

for B.E., IV- Sem., (CBCS)
(For IT only)

Instruction: 3 +1 Hours per week	Sem. End Exam Marks: 60	Subject Reference Code: U18BS420MA
Credits : 3	Sessional Marks: 40	Duration of Semester End Exam: 3 Hrs

COURSE OBJECTIVES		COURSE OUTCOMES	
The course will enable the students to:		At the end of the course students will be able to:	
1.	Study the concepts and application of conditional probability	 Apply conditional probability to the real world problems 	
2.	Understand various concepts of Random variables and standard Statistical Distributions	 Apply various statistical distributions to sol practical problems, to estimate unknown parameter of populations and apply the tests of hypotheses. 	
3.	Study various methods of testing large samples	3. Infer properties of population conducting tests samples	
4.	Analyze standard statistical tests	 Categorize population based on tests on sm samples 	
	employed for small samples	 Solve problems on fitting of a straight line to t given data and also to find co-efficient of correlati 	
5.	Understand fitting of a straight line to a given data and measuring Correlation between variables.	and to determine regression lines and th application problems.	

UNIT-I (10 Hours)

Probability:

Basic terminology- Definition of Probability – Addition Law of probability- Independent events- Conditional Probability- Multiplication law of probability - Baye's Theorem.

UNIT-II (12 Hours)

Probability Distributions:

Random Variables - Probability Distribution and Density function for Discrete and Continuous Random variables - Expectation - Variance - Normal Distributions.

UNIT-III (12 Hours)

Tests of Hypothesis for Large samples:

Introduction -Testing of Hypothesis- Null and Alternative Hypothesis -Errors- -Level of Significance - Confidence Intervals - One and two tailed tests - Tests of Significance for large samples - Tests for single mean- Difference of means.

N. Chairman, 205).

UNIT-IV (8 Hours)

Tests of Hypothesis for Small samples:

Tests of Significance for small samples - t-test for single mean and difference of means - F- test for comparison of variances - Chi-square test for goodness of fit..

UNIT-V (10 Hours)

Curve Fitting:

Curve fitting by the Method of Least Squares - Fitting of Straight line - Second degree parabolas - Regression - Lines of Regression - Correlation - Karl Pearson's Co-efficient of Correlation.

Text Books:

- 1. R.K. Jain & S.R.K. lyengar, Advanced Engineering Mathematics, Third Edition, Narosa Publications, 2007.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.
- 3. Fundamentals of Mathematical Statistics, Gupta & Kapoor, Sultan chand & sons, New Delhi.

Online Resources:

- 1. http://mathworld.wolfram.com/topics
- 2. http://www.nptel.ac.in/course.php

(Prof. N. Kishan) (OU Nominee) (Prof. D.Srinivasacharya) (Subject Expert -1)

Scoran-

(Prof.A. Ramu) (Subject Expert-2) (Dr. B Srivathsa) (Industry Expert)

(Dr.N Vasudha) (Chairman)

with effect from :2021-22

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF MATHEMATICS NUMERICAL METHODS (REVISED)

(Open Elective)
For B.E., V - Semester - CBCS
(for CSE & IT only)

Instruction: 3 Hours per week	Sem. End Exam Marks: 60	Subject Reference Code : U190E510M
Credits : 3	Sessional Marks : 40	Duration of Semester End Exam : 3 Hours

COURSE OBJECTIVES The course will enable the students to:		COURSE OUTCOMES	
		At the end of the course students will be able to:	
1.	Study various numerical methods to solve Algebraic and Transcendental equations. Understand the methods to solve linear system of equations.	1.	Apply numerical methods to solve Algebraic and Transcendental equations which cannot be solved by traditional algebraic methods Solve linear system of equations using direct and
3.	interpolation and extrapolation.	3.	iteration methods. Use various numerical methods in interpolation and
4.	Understand the numerical methods in interpolation using central differences.	4.	use various numerical methods in interpolation using central differences.
5.	Understand numerical methods in solving ordinary differential equations.		Find numerical solutions of ordinary differential equations.

Unit - I: (8 Hours)

Solution of Algebraic and Transcendental equations:

Intermediate value property of equations-Solution of Algebraic and Transcendental equations: Bisection method, Newton-Raphson method Regula-Falsi method.

Unit - II: (8 Hours)

Solution of linear system of equations:

Direct methods- Gauss elimination method- Factorization method- Iterative methods: Jacobi's Iteration method- Gauss - Seidel Iteration method-Ill-conditioned system of equations.

Unit – III: (8 Hours) Numerical differences-I

Introduction to finite differences - Interpolation- Newton's Forward and Backward Interpolation Formulae - Interpolation with unequal intervals - Lagrange's Interpolation Formula - Divided

differences- Newton's divided difference formula.

Unit - IV: (8 Hours)

Numerical differences-II

Central differences interpolation-Gauss's forwards and backward difference formulae-Stiriling's formula- Bessel's formula.

Unit - V: (8 Hours)

Numerical Solutions of Ordinary Differential Equations

Numerical Solutions of Ordinary Differential Equations: Taylor's Series Method - Euler's Method - Modified Euler's Method - Runge-Kutta Method of 4th order (without proofs).

Text Books:

- 1. Numerical methods in engineering and science by B.S.Grewal, Khanna publishers
- 2. Advanced Engineering Mathematics by R.K.Jain & S.R.K.Iyengar, Narosa publishing house.

Reference Books:

1. Numerical Analysis by S.S.Sastry, PHI Ltd.

(Dr. C Goverdhan)

(Prof. D.Srinivasacharya)

(Prof.M A Srinivas)

(Dr.T Sudhakar Rao)

(OU Nominee)

(Subject Expert -1)

(Subject Expert-2)

(Chairman, BOS)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS (OPEN ELECTIVE)

DISCRETE MATHEMATICS AND APPLICATIONS for B.E., V- Sem., (CBCS) (For Civil, ECE, EEE & MECH only)

Instruction: 3 Hours per week	Sem. End Exam Marks: 60	Subject Reference Code : U170E520MA
Credits : 3		Duration of Semester End Exam : 3 Hrs

COURSE OBJECTIVES The course will enable the students to:		COURSE OUTCOMES	
		At the end of the course students will be able to:	
1.	Understand Propositions and their equivalences, predicates and quantifiers and learn various proof strategies.	-	Use logical notation to define and reason about fundamental mathematical concepts and synthesize induction hypothesis and simple Induction proofs.
2.	Study the concepts of number theory such Modular Arithmetic, Congruences and basic cryptography etc.,	2.	Prove elementary properties of modular arithmetic and basic cryptography and apply in
3.	Understand the basics of counting, combinatory, and various methods of solving Recurrence relations.	3.	Computer Science. Calculate number of possible outcomes of elementary combinatorial processes such as permutations and combinations Model and analyze computational processes using analytic and Combinatorial methods.
4.	Understand Relations, Equivalence relations, Posets and Hasse diagrams.	4.	Prove whether a given relation is an equivalence relation/poset and will be able to draw a Hasse diagram.
5.	Analyze the concepts of Graphs.	5.	Apply graph theory models of data structures and to solve problems of connectivity.

UNIT - I (10 Hours)

Logic: Logical connectives- Propositional equivalences- Predicates and quantifiers - Nested quantifiers.

Mathematical Reasoning, Induction: Proof Strategy- Methods of Proofs- Mathematical Induction-Second Principle of Mathematical Induction.

UNIT - II (8 Hours)

Number Theory: The Integers and Division-Division Algorithm- Fundamental Theorem of Arithmetic –Modular Arithmetic-Integers and Algorithms- Euclidean Algorithm -Linear Congruences- Fermat's Little Theorem.

W. lloevolla (chairman, Bos)

Unit – IV: (8 Hours) Numerical Integration

Inroduction to Numerical Integration - Boole's Rule - Weddle's Rule - Evaluation of Double Integrals using Numerical Methods - Trapezoidal Rule - Simpson's Rule.

Unit - V: (8 Hours)

Numerical Solutions of Ordinary Differential Equations

Numerical Solutions of Ordinary Differential Equations: Euler's Method - Modified Euler's Method - Predictor—Corrector methods- Milne's method —Adam's Bashforth method.

Text Books:

- 1. Numerical methods in engineering and science by B.S.Grewal, Khanna publishers
- 2. Advanced Engineering Mathematics by R.K.Jain & S.R.K.Iyengar, Narosa publishing house.

Reference Books:

1. Numerical Analysis by S.S.Sastry, PHI Ltd.

(Prof. N. Kishan) (OU Nominee)

(Prof. D.Srinivasacharya) (Subject Expert -1) (Prof.A. Ramu) (Subject Expert-2)

(Dr. B Srtvathsa) & (Industry Expert)

(Dr.N Vasudha) (Chairman)