with effect from :2020-21 (R-20) VASAVI COLLEGE OF ENGINEERING (AUTONOMOU\$)

(Accredited by NAAC with A⁺⁺ Grade)

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

ADVANCED LINEAR ALGEBRA

(OPEN ELECTIVE)

for B.E., IV- Sem., (Common to all branches)

			112005410MA
Instruction : 3 Hours per week	Sem. End Exam Marks : 60	Subject Reference Code	: U2U0E410MA
		Duration of Semester End Exam : 3 Hrs	
Credits : 3	Sessional Marks : 40		

COURSE OBJECTIVES The course will enable the students to:		COURSE OUTCOMES At the end of the course students will be able to:		
				1.
	vectors.	2.	Determine the Basis and Dimension of a Vector Space	
2.	Understand the meaning of Basis and Dimension of a vector Space and Co-		and find the Co-ordinates.	
	ordinates.	3.	Determine Linear Transformation, Range and Remer	
3.	Understand the meaning of Linear transformation, properties.		and matrix of Elifear mansformation	
4.	Understand Range and Kernel, Rank- Nullity and Matrix of Linear	4.	Determine Range and Kernel, Rank-Nullity and Matrix of Linear Transformation.	
	Transformation.	5.	Determine distance, orthogonal, orthonormal sets	
5.	Understand Inner Product Spaces, Orthonormal sets, Gram-Schmidt's Orothogonalization process and its applications :Least squares,QR decomposition		and construct orthonormal basis based on on Schmidt's Orothogonalization process.Least Squa approximations-QR decomposition and its application	

UNIT-I Vector Spaces -I (8 Hours)

Internal Composition - External Composition -Definition of Vector Space - Vector Subspaces - Linear sum of two Subspaces - Linear Combination of Vectors - Linear Span of a set - Linear Dependence and Independence of vectors.

UNIT-II

Vector Spaces – II (8 Hours)

Basis of a Vector Space - Finite Dimensional Space - Coordinates - Dimension of a Vector Space -Dimension of a Subspace-Isomorphism.

UNIT-III

Linear Transformation -I (8 Hours):

Definition of Linear Transformation- Properties of Linear Transformations – Sum of Linear Transformations – Algebra of Linear Operators

UNIT-IV

Linear Transformation -II (6 Hours)

Range and kernel of a linear map – Dimension of Range and Kernel - Rank and nullity –- Rank nullity theorem (without proof)- Matrix of Linear Transformation.

UNIT-V

Inner Product Spaces (8 classes)

Definition of Inner Product Space-Norm or Length of a vector -Triangle inquality (with proof)– Normed vector space- Distance – orthogonal complement – Orthogonal and Orthonormal sets – Gram-Schmidt's Orthogonalization process. Applications: Least Squares Approximations-QR decomposition and its applications.

Text Books:

- 1. Introduction to linear algebra with applications, Jim DeFranza, Daniel Gagliardi, Tata McGraw-Hill
- 2. An introduction to Linear Algebra, V.P Mainra, J.L Arora, Affiliated to East-West Press Pvt Ltd

Reference Books:

- 1. Elementary Linear algebra, Anton and Rorres, Wiley India Edition
- 2. Advanced Engineering Mathematics, Erwin Kreysing, Wiley Publication
- 3. Elementary Linear algebra, ron Larson, Cengage Learning

Online Resources :

- 1. http://tutorial.math.lamar.edu/Classes/DE/DE.aspx
- 2. http://mathworld.wolfram.com/topics
- 3. http://www.nptel.ac.in/course.php

5 25/3/21