VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sensors for Engineering Applications

(Open Elective - II)

SYLLABUS FOR B.E. IV - SEMESTER (Civil, CSE, CSE (AI&ML) EEE, IT & Mech.)

	(Hrs./week): 3:0:0	SEE Marks : 60	Course Code: U220E410EC
Credi			Duration of SEE: 3 Hours

(COURSE OBJECTIVES	COURSE OUTCOMES
1.	Understand Sensor Principles and Classification Analyzing Sensor	Upon completion of the course, students will be able to 1. Understand the fundamental principles of sensors and transducers and their importance in various
	Characteristics and Response	engineering applications. 2. Demonstrate various mechanical sensors used for
3.	Exploring Different Types of Sensors	measuring displacement, acceleration, force, fluid flow, level, pressure, and stress.
4.	Understanding Environmental Factors and	3. Explain the working principles and applications of thermal and optical sensors.4. Comprehend the principles and applications of
5.	Sensor Reliability Explore the applications of sensors in various engineering fields	 4. Comprehend the principles and applications of magnetic sensors and acoustic sensors. 5. Explore electrical sensors, and high-frequency sensors and their use in various engineering applications.

CO-PO-PSO Mapping

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1		1								1	1	
COI)	1	1		-								2	2	
CO2	3	2	1		2										
CO3	2	2	2		2								2	2	
CO4	2	2	2		2								2	2	
CO5	2	2	2		2								2	2	

UNIT - I

Introduction to sensors and transducers. Need for sensors in the modern world. Different fields of sensors based on the stimuli - various schematics for active and passive sensors. Static and dynamic characteristics of sensors - zero, I, and II order sensors - Response to impulse, step, ramp, and sinusoidal inputs. Environmental factors and reliability of sensors.

UNIT - II

Mechanical Sensors Displacement - acceleration and force – the flow of fluids - level indicators - pressure in fluids - stress in solids. Typical sensors - wire and film strain gauge, anemometers, piezoelectric and magneto strictive accelerometers, potential metric sensors, LVDT.

UNIT - III

Thermal and Optical Sensors temperature – temperature difference – heat quantity. Thermometers for different situations – thermocouples thermistors –

color pyrometry. light intensity - wavelength and color - light dependent resistors, photodiode, phototransistor, CCD, CMOS sensors. Radiation intensity, particle counter – Gieger Muller courter (gas based), Hallide radiation detectors.

UNIT - IV

Magnetic and Acoustic Sensors magnetic field, magnetic flux density – magneto resistors, Hall sensors, superconducting squids. Intensity of sound, frequency of sound in various media, various forms of microphones, piezoelectric sensors.

UNIT - V

Electrical and High-Frequency Sensors conventional volt and ammeters, high current sensors, (current transformers), high voltage sensors, High power sensors. High frequency sensors like microwave frequency sensors, wavelength measuring sensors. MEMs and MEM based sensors.

Lab Experiments:

- 1. Measurement of displacement, and velocity with Pmod ACL with 3-axis Digital Accelerometer.
- 2. Sense the temperature with Pmod TMP3 with Ambient Temperature sensor.
- 3. Sense the ambient light with Pmod ALS with an Ambient light sensor.
- 4. Characteristics of photocell using myRIO with Photocell, API PDV-P9203.
- 5. Study of IR range sensor to measure the distance between the sensor and reflective target using IR range finder GP2Y0A21YK0F
- 6. Working principle of Hall effect using US1881 Hall-effect latch.
- 7. Study of acoustic sensor, to record audio signals and to monitor acoustic level using Chenyum CY-502 computer microphone.
- 8. Estimate the range for a given IR and ultrasonic sensor using QRB1134 IR sensors and MAXSONAR ultrasonic sensor.

Learning Resources:

- 1. Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd.
- 2. Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", New York: Wiley, 2001.
- 3. Henry Bolte, "Sensors A Comprehensive Sensors", John Wiley.
- 4. Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springer.
- Manabendra Bhuyan," Intelligent Instrumentation Principles and Applications", CRC Press
- 6. Randy Frank," Understanding Smart Sensors", Second edition, Artech House.

The break-up of CIE: Internal Tests + Assignments + Quizzes								
1. No. of Internal Tests	: 2	Max. Marks for each Internal Tests	: [30				
2. No. of Assignments	: 3	Max. Marks for each Assignment	:	5				
3. No. of Quizzes	: 3	Max. Marks for each Quiz Test	:	5				

Duration of Internal Tests: 90 Minutes

ESP