VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Mechanical Engineering

Kinematics and Dynamics of Robotics (Stream: Robotics)

(Open Elective-II)

SYLLABUS FOR B.E.IV-SEMESTER

L:T:P(Hrs/week):2:0:0	SEE Marks:60	Course Code: U220E410ME				
Credits :02	CIE Marks:40	Duration of SEE: 03Hours				

COURSE OBJECTIVE	COURSE OUTCOMES On completion of the course, students will be able to					
The objective of the course is to						
To develop the fundamental knowledge and skills required to analyze, design and control robotic systems	 Analyze the kinematics of robotic systems and apply them to solve real world problems 					
*	4 Analyze the dynamics of serial manipulators using lagrangian and Newton-Euler mechanics					
· · · · · · · · · · · · · · · · · · ·	5 Generate and analyze robot trajectories for various applications					

						CO-P	O and	CO-PS) mapp	ing					
СО	PO mapping											PSO mapping			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2			2			2	2		2	3	2	1
CO2	2	2	2			2			2	2		2	3	2	1
CO3	3	3	3			3			3	3		2	3	2	1
CO4	3	2	2		3	3		3	2	2	3	3	3	2	1
CO5	2	2	2		2	2		2	2	2	2	2	3	2	1

UNIT-I

Robot Kinematics

Forward Kinematics: Forward/direct kinematic analysis of serial manipulators.

Inverse Kinematics: General properties of inverse kinematic solution. Inverse kinematics of serial RR planar manipulators.

UNIT-II

Differential Kinematics

Linear and angular velocity of links, Velocity propagation, Manipulator Jacobian for serial manipulators, Jacobian Singularities.

UNIT-III

Static Analysis: Force and moment balance, Jacobian in statics.

Dynamics of serial manipulators

Lagrangian formulation for equations of motion for RP, RR serial manipulators,

Unit-IV

Dynamics of serial manipulators

Recursive dynamics using Newton-Euler formulation of RP and RR serial manipulator.

UNIT-V

Trajectory Generation

Joint-Space Techniques: Cubic Polynomial Trajectories, Linear Segments with Parabolic Blends-without and with via points

Cartesian-Space Techniques: Straight line path, Circular Path, Position Planning, Orientation Planning.

Si

Learning Resources:

1. Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, "Robotics: Modelling, Planning and Control", Springer Science & Business Media, 2010.

2. M.W.Spong and M.Vidyasagar, "Robot Dynamics and Control", 1st Edition, John Wiley and sons,1990.

3. R.K.Mittal and I.J.Nagrath, "Robotics and Control", Tata McGraw-Hill, 2003.

4. Subir Kumar Saha, "Introduction to Robotics", Tata McGraw-Hill Education, 2014.

5. Howie M. Choset, Seth Hutchinson, Kevin M. Lynch, "Principles of Robot Motion: Theory, Algorithms, and Implementation", MIT Press, 2005.

The break-up of CIE: Internal Tests+Assignments + Quizzes

ın	e break-up of CIL. Inter-			30
1	No. of Internal Tests:			
1		02	Max. Marks for each Assignment:	05
2	No. of Assignments:			05
2	No. of Quizzes:	02	Max. Marks for each Quiz Test:	05
3		server and real reasons		
	Duration of Internal Test:	90 Milnu	tes	

Chairman Board of Studies Department of Mechanical Engineering Vasavi College of Engineering (Autonomous) Hyderabad - 500031.