VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sensors for Engineering Applications

(General Pool: Open Elective - II)

SYLLABUS FOR B.E. IV - SEMESTER (Civil, CSE, CSE (AI&ML) EEE, IT & Mech.)

L:T:P (Hrs./week) : 3:0:0	SEE Marks : 60	Course Code: U230E410EC				
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours				

(OURSE OBJECT	TIVES	;	COURSE OUTCOMES								
1.	Understand	Sens	sor	Upon completion of the course, students will be able to								
	Principles and Clas	sification	on	1. Understand the fundamental principles of sensors and								
2.	Analyzing	Sens	sor	transducers and their importance in various								
	Characteristics	a	nd	engineering applications.								
	Response			2. Demonstrate various mechanical sensors used for								
3.	Exploring Differer	nt Typ	es	measuring displacement, acceleration, force, fluid								
of Sensors				flow, level, pressure, and stress.								
4.	Understanding			3. Explain the working principles and applications of								
	Environmental Fac	tors a	nd	thermal and optical sensors.								
	Sensor Reliability			4. Comprehend the principles and applications of								
5.	Explore the applic	ations	of	magnetic sensors and acoustic sensors.								
	sensors in	vario	us	5. Explore electrical sensors, and high-frequency sensors								
	engineering fields			and their use in various engineering applications.								
CC	-PO-PSO Mappin	g		· · · · · · · · · · · · · · · · · · ·								
	PO1 PO2 PO3	PO4	PO5	PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3								

	PO1	PO2	103	PO4	105	P06	1001	1008	109	POID	POIL	POIZ	PSOI	PSO2	PSO:
CO1	3	1	1		1								1	1	
CO2	3	2	1		2								2	2	
CO3	2	2	2		2								2	2	
CO4	2	2	2		2								2	2	
CO5	2	2	2		2								2	2	

UNIT - I

Introduction to sensors and transducers. Need for sensors in the modern world. Different fields of sensors based on the stimuli - various schematics for active and passive sensors. Static and dynamic characteristics of sensors - zero, I, and II order sensors – Response to impulse, step, ramp, and sinusoidal inputs. Environmental factors and reliability of sensors.

UNIT – II

Mechanical Sensors Displacement - acceleration and force – the flow of fluids level indicators - pressure in fluids - stress in solids. Typical sensors - wire and film strain gauge, anemometers, piezoelectric and magneto strictive accelerometers, potential metric sensors, LVDT.

UNIT – III

Thermal and Optical Sensors temperature – temperature difference – heat quantity. Thermometers for different situations – thermocouples thermistors –

color pyrometry. light intensity - wavelength and color - light dependent resistors, photodiode, phototransistor, CCD, CMOS sensors. Radiation intensity, particle counter – Gieger Muller courter (gas based), Hallide radiation detectors.

$\mathbf{UNIT} - \mathbf{IV}$

Magnetic and Acoustic Sensors magnetic field, magnetic flux density – magneto resistors, Hall sensors, superconducting squids. Intensity of sound, frequency of sound in various media, various forms of microphones, piezoelectric sensors.

UNIT – V

Electrical and High-Frequency Sensors conventional volt and ammeters, high current sensors, (current transformers), high voltage sensors, High power sensors. High frequency sensors like microwave frequency sensors, wavelength measuring sensors. MEMs and MEM based sensors.

Lab Experiments:

- 1. Measurement of displacement, and velocity with Pmod ACL with 3-axis Digital Accelerometer.
- 2. Sense the temperature with Pmod TMP3 with Ambient Temperature sensor.
- 3. Sense the ambient light with Pmod ALS with an Ambient light sensor.
- 4. Characteristics of photocell using myRIO with Photocell, API PDV-P9203.
- 5. Study of IR range sensor to measure the distance between the sensor and reflective target using IR range finder GP2Y0A21YK0F
- 6. Working principle of Hall effect using US1881 Hall-effect latch.
- Study of acoustic sensor, to record audio signals and to monitor acoustic level using Chenyum CY-502 computer microphone.
- 8. Estimate the range for a given IR and ultrasonic sensor using QRB1134 IR sensors and MAXSONAR ultrasonic sensor.

Learning Resources :

- 1. Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd.
- Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", New York: Wiley, 2001.
- 3. Henry Bolte, "Sensors A Comprehensive Sensors", John Wiley.
- 4. Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springer.
- Manabendra Bhuyan," Intelligent Instrumentation Principles and Applications", CRC Press.
- 6. Randy Frank," Understanding Smart Sensors", Second edition, Artech House.

The break-up of CIE : Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests :2Max. Marks for each Internal Tests :302. No. of Assignments :3Max. Marks for each Assignment :5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test

Duration of Internal Tests: 90 Minutes

: 5