VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF MECHANICAL ENGINEERING

DRIVES AND CONTROL SYSTEMS FOR ROBOTICS (Stream: Robotics) (Open Elective-III) SYLLABUS FOR B.E. V-SEMESTER

Instruction : 3Hours	SEE Marks : 60	Course Code : U22OE510ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

Course objectives	Course Outcomes							
The objectives of this course are to:	On completion of the course, the student will be able to:							
To provide students with a fundamental understanding of control systems and their	1. Understand basic control system types and analyze block diagrams using transfer functions.							
applications in robotics.	2. Interpret transient and steady-state responses and understand system stability concepts.							
	3. Represent control systems using state-space models and convert between state-space and transfer functions.							
	4. Understand control techniques to achieve precise and stable joint control in robotic systems.							
	 Implement advanced control strategies to enhance the performance and interaction of robotic systems. 							

CO-PO and CO-PSO mapping															
CO	PO mapping									PSO mapping					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2		2					2		2	2	2	
CO2	3	3	2		2							2	2	2	
CO3	3	3	2		2					2		2	2	2	
CO4	3	3	3	2	3					2		2	2	2	2
CO5	3	3	3	2	3					2		2	2	2	2

UNIT-I

Introduction to Control Systems: Examples of control systems, Open Loop & Closed Loop Systems. Transfer function of spring-mass-damper system, Transfer function of simple RLC circuit. Block diagrams, Block diagram reduction.

UNIT-II

Steady-State and Transient Response: Transient Response of first order and second order system to step input. Concept of steady-state error. Stability: Introduction to the concept of stability using Routh-Hurwicz criterion.

UNIT-III

State–space representation of linear control systems: Basic concepts. State–space representation of springmass-damper system, State–space representation of simple RLC circuit. Conversion of Transfer function into State Space, Conversion of State-Space in to Transfer Function.

UNIT-IV

Independent Joint Control: Transfer function of Armature Controlled DC Motor, Proportional (P) Control, Proportional-Integral (PI) Control, Proportional-Derivative (PD) Control, Proportional-Integral-Derivative (PID) Control.

UNIT-V

Computed Torque Feed-forward Control, Force Control: Compliance Control, Impedance Control, Hybrid Force/Motion Control.

Learning Resources:

- 1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons, Inc., 2001.
- 2. Ogata, K. "Modern Control Engineering", Prentice Hall, 2004
- 3. Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, Robotics: Modelling, Planning and Control, Springer Science & Business Media, 2008

05

4. Spong, Mark W., and M. Vidyasagar, Robot dynamics and control. John Wiley & Sons, 2008.

The break-up of CIE: Internal Tests+Assignments + Quizzes

- 1 No. of Internal Tests: 02 Max.Marks for each Internal Test: 30
- 2 No. of Assignments: 03 Max. Marks for each Assignment:
- 3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05 Duration of Internal Test: 90 Minutes