VASAVI COLLEGE OF ENGINEERING (Autonomous)

accredited by naac with 'a++' grade IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

INTRODUCTION TO BATTERIES AND BATTERY MANAGEMENT SYSTEM (GENERAL POOL)

Open Elective-IV SYLLABUS FOR B.E. VI SEMESTER

L: T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U22OE610EE
Credits:3	CIE Marks: 40	Duration of SEE: 3Hours

COURSE OBJECTIVES	COURSE OUTCOMES
students to:	students will be able to
The objective of this course is to	1 Interpret the role of battery
introduce learner to batteries, its	management system.
parameters, modeling and charging	2. Identify the requirements of Battery
requirements. The course will help	Management System.
learner to develop battery management	3. Interpret the concept associated
algorithms for batteries.	with battery charging / discharging
	process.
	4. Calculate the various parameters of
	battery and battery pack.
	5. Design the model of battery pack

UNIT -I: Introduction to Battery Management System:

Cells & Batteries, Nominal voltage and capacity, C rate, Energy and power, Cells connected in series, Cells connected in parallel, Electrochemical and lithium-ion cells, Rechargeable cell, Charging and Discharging Process, Overcharge and Undercharge, Modes of Charging.

UNIT -II: Battery Management System Requirement:

Introduction and BMS functionality, Battery pack topology, BMS Functionality, Voltage Sensing, Temperature Sensing, Current Sensing, High-voltage contactor control, Isolation sensing, Thermal control, Protection, Communication Interface, Range estimation, State-of-charge estimation, Cell total energy and cell total power.

UNIT –III: Battery State of Charge and State of Health Estimation, Cell Balancing:

Battery state of charge estimation (SOC), voltage-based methods to estimate SOC, Model-based state estimation, Battery Health Estimation, Lithium-ionaging: Negative electrode, Lithium-ion aging: Positive electrode, Cell Balancing, Causes of imbalance, Circuits for balancing.

UNIT – IV: Modelling and Simulation:

Equivalent-circuit models (ECMs), Physics-based models (PBMs), Empirical modelling approach, Physics-based modelling approach, simulating an electric vehicle, Vehicle range calculations, simulating constant power and voltage, Simulating battery packs.

UNIT -V: Design of battery BMS:

Design principles of battery BMS, Effect of distance, load, and force on batterylife and BMS, energy balancing with multi-battery system.

Learning Resources:

- 1. Plett, Gregory L. Battery management systems, Volume I: Battery modeling. ArtechHouse, 2015.
- 2. Plett, Gregory L. Battery management systems, Volume II: Equivalent-circuitmethods. Artech House, 2015.
- 3. Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Systems -Design byModelling" Philips Research Book Series 2002.
- 4. Davide Andrea," Battery Management Systems for Large Lithium-ion Battery Packs"Artech House, 2010.

The break-up of CIE : Internal Tests+Assignments+Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test
- 2. No. of Assignments : $\boxed{3}$ Max. Marks for each Assignment
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test

Duration of Internal Tests : 90 Minutes

: 30 : 5 : 5