VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

ACCREDITED BY NAAC WITH A++ GRADE

DEPARTMENT OF CHEMISTRY ENGINEERING CHEMISTRY

(For ECE & EEE branches)

T							
Instruction : 3 +0 Hrs / week	Semester End Exam Marks : 60	Subject Reference Code	: U24BS110CH				
Cradita . 2		Subject Reference Code	. U240311UCH				
Credits : 3	Continuous Internal Exam Marks: 40	Duration of semester End Exam : 3H					

COURSE OBJECTIVES:	COURSE OUTCOMES					
The course will enable the students to:	At the end of the course, students should be able to:					
 Study types of conductance, variation of electrode potential and EMF and to acquaint with applications of Galvanic Cell. Classify and compare various types of batteries and fuel cells. Get acquainted with different types of polymers and their applications. Explain the concepts of engineering materials like nano materials and liquid crystals. Know the principles of few analytical techniques. 	 Construct a galvanic cell and calculate its EMF and pH wherever applicable. Describe the construction, functioning and applications of the selected primary, secondary batteries and fuel cells. 					

CO-	CO-PO MAPPING FOR ENGINEERING CHEMISTRY											
СО	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
1	3	2	-	-	-	•	-	-	-	-	-	1
2	3	2	-	3-	-	•	2	-	-	-	-	2
3	3	2	-	-	-	-	2	-	-		-	2
4	3	1		-	-	-	1	-	-		-	2
5	3	1	-	-	-	-	-	-	-			1

UNIT-I: ELECTROCHEMISTRY (11)

Introduction, conductance, types of conductance – specific, equivalent, molar conductance and their interrelationship – numericals. Principle and applications of conductometric titrations- strong acid vs strong base, week acid vs strong base and mixture of acids vs strong base.

Cells – electrolytic and electrochemical cells. IUPAC convention of cell notation, cell reaction, concept of electrode potential, electromotive force (EMF). Electrochemical series – applications, Nernst equation – derivation, applications and numericals. Types of electrodes – construction and working of calomel electrode (CE), quinhydrone electrode and glass electrode (GE). Determination of pH using glass electrode and quinhydrone electrode.

UNIT-II: BATTERY TECHNOLOGY (8)

Introduction – definition of cell and battery – Types of cells (reversible and irreversible cells). Battery characteristics: free energy change, electromotive force of battery, power density, energy density – numericals, Memory effect, flat discharge rate.

Primary batteries: Construction and electrochemistry of Zn-C battery – acidic and alkaline battery and lithium-V₂O₅ battery.

Secondary batteries: Construction and working of lead-acid and lithium ion battery – advantages, limitations and applications.

Fuel cells: Concept, types of fuel cells and merits. Construction, working and applications of methanol - oxygen fuel cell and phosphoric acid fuel cell.

Prof. B.Manohar

Dr. Krishnan Rangan

Dr. D. Satyanarayana

Dr. P. Venugopal

UNIT-III: POLYMER CHEMISTRY (11)

Introduction, degree of polymerization, functionality of monomers and its effect on the structure of polymers. Classification of polymers – i) homo and co-polymers, ii) homo chain and hetero chain polymers. iii) plastics- elastomers, fibers and resins. Types of Polymerizations - Addition and condensation polymerization. Molecular weight - number average and weight average molecular weight, numericals. Glass transition temperature and factors affecting glass transition temperature.

Plastics: thermo plastics and Thermo sets.

Biodegradable polymers: Concept, preparation and uses of poly lactic acid.

Conducting polymers: Definition - classification, mechanism of conduction in (p-doped and n-doped) polyacetylene

and applications.

Polymer composites: Introduction, advantages of composites over conventional materials, Classification of composites. Manufacturing methods- Hand lay up and RTM method.

UNIT-IV: ENGINEERING MATERIALS (8)

Nanomaterials

Introduction – concept of nanomaterials – quantum confinement and surface volume ratio. Applications of Nanomaterials. Types of Nanomaterials: carbon nanotubes, quantum dots, nanowires, nanocrystals.

Synthesis of nanomaterials: Top down and bottom-up approaches - Mechanical grinding by ball milling, sol gel method. Carbon Nanotubes: Single walled carbon nanotubes (SWCNTs). Multi walled carbon nanotubes (MWCNTs), synthesis of CNTs - arc discharge and laser ablation methods.

Liquid Crystals

Introduction, classification of liquid crystals - Thermotropic and Lyotropic liquid crystals - Chemical constitution & liquid crystalline behavior. Molecular ordering in liquid crystals - Nematic, Smectic and Cholestric liquid crystals - Applications.

UNIT-V: INSTRUMENTAL METHODS OF ANALYSIS (8)

Spectroscopy: Principle of Beer-Lamberts law, numericals. Principle, block diagram and Applications of Atomic Absorption Spectroscopy (AAS).

Microscopic techniques: Introduction, Limitations of optical microscopy. Significance of de Broglie's equation, Principle and block diagram of Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM).

Thermo Gravimetric Analysis: Principle, block diagram of Thermogravimetric Analysis (TGA) and analysis of calcium oxalate and copper sulphate.

Text Books:

- 1. P. C. Jain, M Jain Engineering Chemistry, Dhanapathi Rai publishing company (17th edition), New Delhi.
- 2. Sashi Chawla, Text book of Engineering Chemistry, Dhanapathi Rai & Co, New Delhi.
- 3. O. G. PALANNA, Engineering Chemistry, TMH Edition.
- 4. J.C. Kuriacose and Rajaram, Chemistry in Engineering and Technology
- 5. Wiley Engineering Chemistry, Wiley India pvt Ltd, II edition.

Learning Resources:

- 1. B. H. Mahan, University Chemistry.
- 2. B. L. Tembe, Kamaluddin and M. S. Krishnan, Engineering Chemistry (NPTEL Web-book).
- 3. P. W. Atkins, Physical Chemistry.
- 4. S. S. Dara, S Chand and sons, Engineering Chemistry, New Delhi.
- 5. Puri, Sharma and Pathania, Principles of Physical Chemistry, Vishal Publishing Co.
- 6. D. Dhara, IIT Kharagpur, NPTEL Polymer Chemistry Course.
- 7. Gowarikar V R, Polymer chemistry, V Edition.
- 8. S M Lindsay, Introduction to Nanoscience, Oxford University press.

Dr. D. Satyanarayana