VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

ACCREDITED BY NAAC WITH 'A++' GRADE

IBRAHIMBAGH, HYDERABAD

MINOR DEGREE IN COMPUTER SCIENCE AND ENGINEERING

				heme e		Sche	eme of Examination		
Course Code	Name of the Course	Semester	Semester Hours per Wee		Veek	Duration	Maximum Marks		Credits
			L	T	Р	in Hrs	SEE	CIE	Cre
		THEORY &	LAB						
U22MD510CS	Operating Systems	V	3	-	-	3	60	40	3
U22MD511CS	Operating Systems Lab	V	-	-	2	3	50	30	1
U22MD610CS	Database Management Systems	VI	3	-	-	3	60	40	3
U22MD611CS	Database Management Systems Lab	VI	-	-	2	3	50	30	1
U22MD710CS	Full Stack Web Development	VII	3	-	-	3	60	40	3
U22MD711CS	Full Stack Web Development Lab	VII	-	-	2	3	50	30	1
U22MD719CS	Course Project	VIII	-	-	8	3	50	50	4
	NPTEL Course	VII	-	-	-	-	ı	-	2
	TOTAL		9	-	14	-	380	260	18
	GRAND TOTAL			23			6	540	.0

Student should acquire One NPTEL course certification (8 weeks or above duration) having 2 credits during V Sem to VII Sem

AI&ML	Data Science	IoT	Networks &Security	General
Introduction to Artificial Intelligence	Data Science for Engineers	Distributed Systems	Computer Networks and Internet Protocol	Programming In Modern C++
Artificial Intelligence Search Methods for Problem Solving	Data Analytics with Python	Cloud Computing	Cryptography and Network Security	Programming In Java
Introduction to Machine Learning	Big Data Computing	Introduction to Internet of Things	Introduction to Cyber Security	Software Engineering
Deep Learning	Computer Vision	Introduction to Industry 4.0 and Industrial Internet of Things	Blockchain and its Applications	Design & Implementation of Human-Computer Interfaces

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

OPERATING SYSTEMS

SYLLABUS FOR MINOR DEGREE IN CSE V-SEMESTER

L:T:P (Hrs./week):3:0:0	SEE Marks:60	Course Code: U22MD510CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours.

Course objective	Course outcomes
At the end of the Course	At the end of the Course students will
students should be able to:	be able to:
1. Understand different	1. Differentiate various Operating
Operating system Structures,	system structures and describe
Services and apply methods	different services of Operating
to implement main memory	system
& file system	2. Describe different states of a
2. Understand different case	process and illustrate various
studies	Process scheduling algorithms
	3. Apply various Main memory
	management techniques
	4. Illustrate file system
	implementation techniques and
	compare different operating
	systems

UNIT-I

Introduction to operating systems: Definition, Clustered and Real time systems, OS System structure, OS Services, Difference between desktop, mobile and server operating system.

UNIT-II

Process: Process concept, Process Scheduling, Operations on process, Threads, Multi threading Models, Multi-core programming.

UNIT-III

Memory Management: Contiguous allocation, Paging, Demand paging, Page replacement algorithms

UNIT-IV

Deadlocks: System model, deadlock characterization, Methods for handling deadlocks, Deadlock Prevention, Deadlock Avoidance, Resource allocation graph, Bankers algorithm

UNIT-V

File System Interface: File Concept, Access Methods

File System Implementation: File-System Structure, File-System

Implementation, Allocation Methods

Case Studies: Windows, Linux, Android

Learning Resources:

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, *Operating System Concepts*, 10th Edition Wiley India, 2018.
- 2. Andrew S. Tanenbaum, *Modern Operating Systems*, 2nd Edition, Pearson Education, Asia-2001.
- 3. Dhananjay M. Dhamdhere, *Operating System-concept based approach*, 3rd edition, Tata McGraw Hill, Asia-2009
- 4. Robet Love: Linux Kernel Development, Pearson Education, 2004
- 5. Richard Stevens, Stephen Rago, *Advanced Programming in the UNIX Environment*, 3rd Edition, Pearson Education, 2013

1	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2	No. of Assignments	:	3	Max. Marks for each Assignment	:	5

The break-up of CIE: Internal Tests + Assignments + Quizzes

3 No. of Quizzes : Max. Marks for each Quiz : 5

Duration of Internal Tests : 1 Hour 30 Minutes

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

OPERATING SYSTEMS LAB

SYLLABUS FOR MINOR DEGREE IN CSE V-SEMESTER

L:T:P (Hrs./week):0:0:2	SEE Marks:50	Course Code: U22MD511CS
Credits: 1	CIE Marks:30	Duration of SEE : 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to	
1	Apply system calls for process management and file management	Dual boot Operating system and partition the hard disk	d
2	Implement techniques related to CPU Scheduling, Main memory management	 Implement shell programs for a given task Implement operations on Files and Process by using system calls Implement CPU Scheduling algorithms Implement Page Replacement techniques 	ì

Programming Exercise:

- 1. Building & Booting of Operating system, Disk partitioning and Dual boot of OS
- 2. Write shell programs by using simple shell commands
- 3. Write shell programs by using conditional statements
- 4. Write shell programs to showcase the usage of control loops
- 5. Write a C program to create a file
- 6. Write a C program to manipulate the contents of a file
- 7. Write a C program to create a child process
- 8. Write a C program to illustrate wait() system call
- 9. Write a C program to implement CPU scheduling algorithms
- 10. Write a C program to implement page replacement algorithms

Learning Resources:

- 1. Kernighan and Pike, UNIX Programming Environment, PHI/ Pearson Education
- 2. U. Vahalia, UNIX Internals: The New Frontiers, Pearson Education Inc.2003.
- 3. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, *Operating System Concepts*, 10th Edition (2018), Wiley India.
- 4. Richard Stevens, Stephen Rago, *Advanced Programming in the UNIX Environment*, 3rd Edition(2013), Pearson Education
- 5. http://web.stanford.edu/~ouster/cgi-bin/cs140-spring19/index.php
- 6. https://nptel.ac.in/courses/106106144/

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work			
Duration of Internal Test: 2 Hours			

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

Department of Computer Science & Engineering

DATABASE MANAGEMENT SYSTEMS

SYLLABUS FOR MINOR DEGREE IN CSF VI-SEMESTER

L:T:P(Hrs./week):3:0:0	SEE Marks:60	Course Code: U22MD610CS
Credits: 3	CIE Marks:40	Duration of SEE : 3 Hours

	Course objective	Course outcomes			
Studen	ts should be able to	At the end of the course, students			
		WII	I be able to		
1.	Identify different issues	1.			
	involved in the design and		components of database		
	implementation of a		management system. Create		
	database system.		conceptual data model using		
2.	Understand transaction		Entity Relationship Diagram.		
	processing, concurrency	2.	Transform a conceptual data		
	control and recovery		model into a relational model.		
	techniques.	3.	Apply normalization techniques		
			in database design.		
		4.	Apply No-SQL concepts in the		
			data base design.		
		5.	Apply concurrency control		
			techniques for efficient		
			transaction management		

UNIT-I

Introduction: Database System Application, Purpose of Database Systems, View of Data, Database Languages, Relational Database, Database Design, Specialty Databases, Data Storage and Querying, Database Users and Administrators.

Database Design and E-R Model: Overview of the Design Process, The E-R Model, Constraints, E-R Diagrams, E-R Design Issues, Extended E-R features, Reduction to Relational Schemas, Other aspects of Database Design.

UNIT-II

Relational Model: Structure of Relation Database, Fundamental Relational Algebra Operations, Additional Relational Algebra Operations,

Extended Relational Algebra Operations, Modification of the Database, Relational Calculus

Structured Query Language: Introduction, Basic Structure of SQL Queries, Set Operations, Additional Basic Operations, Aggregate Functions, Null Values, Nested Sub queries, Views, Join Expression.

UNIT-III

Advanced SQL: SQL Data Types, Integrity constraints Authorization, Functions and Procedural Constructs, Recursive Queries, Triggers, JDBC, ODBC and Embedded SQL.

Relational Database Design: Features of Good Relational Designs, Atomic Domains and first Normal form, Decomposition Using Functional Dependencies, functional Dependency Theory.

UNIT-IV

No-SQL: Overview and History of NoSQL Databases. Definition of the Four Types of NoSQL Database, The Value of Relational Databases **Transaction Management:** Transaction concept, Storage Structure, Transaction Atomicity and Durability, Transaction Isolation and Atomicity, Serializability, Recoverability.

UNIT-V

Indexing and Hashing: Basic Concepts, Ordered Indices, B+ Tree Index Files, B-Tree Files, Multiple – Key Access, Static Hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing

Concurrency Control: Lock Based Protocols, Timestamp – Based Protocols Validation Based Protocols, Deadlock Handling.

Learning Resources

- Abraham Silberschatz, Henry F Korth, Sudharshan S, Database System Concepts, 6th Edition(2011), McGraw-Hill International Edition.
- Sadalage, P. & Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Wiley Publications, 1st Edition, 2019.
- 3. Date CJ, Kannan A, Swamynathan S, An Introduction to Database System, 8th Edition(2006) Pearson Education.
- 4. Raghu Ramakrishna, and Johannes Gehrke, Database Management Systems, 3rd Edition(2003), McGraw Hill.
- 5. RamezElmasri, Durvasul VLN Somyazulu, Shamkant B Navathe, Shyam K Gupta, Fundamentals of Database Systems, 4th Edition(2006), Pearson Education.
- 6. Peter rob, Carlos coronel, Database Systems, (2007), Thomoson.
- 7. http://nptel.ac.in/courses/106106093/

With effect from the Academic Year 2024-25

me			+ Assignments + Quizzes		
1	No. of Internal Tests	: 2	Max. Marks for each Internal Test	:	30
2	No. of Assignments	: 3	Max. Marks for each Assignment	:	5
3	No. of Quizzes	: 3	Max. Marks for each Quiz Test	:	5
Dur	ration of Internal Tests	: 1 Ho	our 30 Minutes		

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

Department of Computer Science & Engineering

DATABASE MANAGEMENT SYSTEMS LAB

SYLLABUS FOR MINOR DEGREE IN CSE VI-SEMESTER

L:T:P (Hrs./week):0:0:2	SEE Marks:50	Course Code: U22MD611CS
Credits: 1	CIE Marks:30	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
 Apply SQL commands on a database. Develop an application using forms, reports and PL/SQL. 	 Design and implement a database schema. Apply DDL, DML, DCL and TCL commands on a database. Apply sub queries to get data from given database. Implement PL/SQL programs for creating stored procedures.

Programming Exercise:

- Creation of database tables without constraints.
- 2. Creating tables using combination of constraints.
- 3. Usage of Stored Functions.
- 4. Exercising all types of Joins.
- 5. Exercising complex Queries.
- 6. Exercising sub Queries.
- 7. Exercising sample PL/SQL programs
- 8. Demonstration of PL/SQL functions
- 9. Demonstration of PL/SQL Procedures

Learning Resources:

- Ivan Bayross, SQL, PL/SQL, The Programming Language of Oracle, 4th Edition, PBP Publications.
- Nilesh Shah, Database Systems Using Oracle, 2nd Edition(2007), PHI.
- 3. Rick F Van der Lans, Introduction to SQL, 4thEdition(2007), Pearson Education.
- 4. Benjamin Rosenzweig Elena Silvestrova, Oracle PL/SQL by Example, 3rdEdition(2004), Person Education.
- Albert Lulushi, Oracle Forms Developer's Handbook, 1st Edition(2006), Pearson Education.
- 6. https://www.lynda.com/Access-tutorials/Welcome/195854/373426-4.html

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work			18
Duration of Internal Test: 2 Hours			

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

Department of Computer Science & Engineering

FULL STACK WEB DEVELOPMENT

SYLLABUS FOR MINOR DEGREE IN CSE VII-SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks : 60	Course Code: U22DM710CS
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to	
To Develop web application using HTML, CSS, JavaScript and PHP.	 Design static web pages. Apply styles to the web pages. Create dynamic web pages using JavaScript. Develop server-side components using Node.js. 	

UNIT-I: Web Basics and overview: Introduction to Internet, World Wide Web, Web Browsers, Web Servers, URL, MIME, HTTP, Web Programmers Toolbox, Introduction to HTML Purpose of HTML and XHTML, Text Formatting, Hypertext Links, Images, Lists, Tables, Forms and Frames.

UNIT-II: Cascading Style Sheets- Levels of Stylesheet, Style Specification Formats, Selector Formats, Property Value Forms, Font Properties, List Properties, Alignment of Text, Box Model, Background Images, Borders, div and span tags, Conflict Resolution.

UNIT-III: JavaScript - Object Orientation and JavaScript, Primitives, Operations, Expressions, Control Statements, Object Creation, Arrays, Functions- Introduction, Program Modules in JavaScript, Programmer-Defined Functions, Function Definitions, Random-Number Generation, Scope Rules, JavaScript Global Functions, Recursion, Constructors, Regular Expressions, DOM Model, Events, Event Handling in JavaScript, JavaScript objects.

UNIT-IV: Multi-tier Architecture, Web server.

Node.js: Setup, Node Life cycle, REPL, Node Modules- FS, HTTP, URL, NPM, Redirecting Requests, Call backs and events.

UNIT-V: SQL database vs No SQL database.

MongoDB

SQL and NoSQL Concepts, Create and Manage MongoDB, CRUD operations on MongoDB, MongoDB with Node.js, Services Offered by MongoDB.

Learning Resources:

- 1. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, Internet & World Wide Web How to Program, 5th Edition, Pearson Education.
- 2. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramaniam, Apress, 2019
- 3. Robert W. Sebesta, "Programming the World Wide Web", Pearson Education.(3rd)
- 4. Uttam K.Roy, "Web Technologies", Oxford publishers.

The break-up of CIE: Internal Tests + Assignments + Quizzes

5. http://www.w3schools.com

1	No. of Internal Tests	: 2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments	: 3	Max. Marks for each Assignment	:	5
3	No. of Quizzes	: 3	Max. Marks for each	:	5

Duration of Internal Tests : 1 Hour 30 Minutes

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

Department of Computer Science & Engineering

FULL STACK WEB DEVELOPMENT LAB

SYLLABUS FOR MINOR DEGREE IN CSE VII-SEMESTER

L:T:P (Hrs./week):0:0:2	SEE Marks:50	Course Code: U22MD711CS	
Credits: 1	CIE Marks:30	Duration of SEE : 3 Hours	

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
1. Develop web applications.	1. Design a website using HTML.
2. Publish web services.	2. Design webpages by applying CSS.
	3. Design dynamic websites using
	JavaScript.
	4. Develop dynamic web applications using
	server side code

Programming Exercise:

- 1. Creation of static website using HTML.
- 2. Creation of Web Site using HTML Forms.
- 3. Apply CSS to the Web Site.
- 4. Apply CSS box model to the Web Site.
- 5. Create a dynamic website using JavaScript.
- 6. Demonstrate event handling using JavaScript.
- 7. Validation of website using JavaScript.
- 8. Creation of dynamic content in a web Application using Node.
- 9. Program to perform CRUD operations on Mongo DB.
- 10. Creation of dynamic content in a web Application using Node and Mongo DB.

Learning Resources:

- 1. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, Internet & World Wide Web How to Program, 5th Edition, Pearson Education.
- 2. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramaniam, Apress, 2019
- 3. Robert W. Sebesta, "Programming the World Wide Web", Pearson Education.(3rd)
- 4. Uttam K.Roy, "Web Technologies", Oxford publishers.
- 5. http://www.w3schools.com

With effect from the Academic Year 2024-25

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work 18			18
Duration of Internal Test: 2 Hours			

ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

COURSE PROJECT

SYLLABUS FOR MINOR DEGREE IN CSE VIII-SEMESTER

L:T:P (Hrs./week): 0:0:4	SEE Marks:50	Course Code: U22MD719CS
Credits: 4	CIE Marks:50	Duration of SEE: 3 Hrs

			COURSE OUTCOMES
	COURSE OBJECTIVES	Or	completion of the course, students will
		be	able to
1	Develop an application in	1	Review the literature survey to
	the relevant area of		identify the problem.
	Computer Science.		
2	Learn contemporary	2	Design a model to address the
	technologies.		proposed problem.
		3	Develop and test the solution.
		4	Demonstrate the work done in the
			project through presentation and
			documentation.
		5	Adapt to contemporary technologies.

The students are required to carry out a mini project in areas such as Data Structures, Database Management Systems, Operating Systems or any other area relevant to Computer Science and Engineering.

Students are required to submit a report on the mini project at the end of the semester.