VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Ibrahimbagh, Hyderabad-31

Approved by A.I.C.T.E., New Delhi and Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR B.E. V and VI Semesters for ECE With effect from 2018-2019 (For the batch admitted in 2016-17)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Phones: +91-40-23146040, 23146041

Fax: +91-40-23146090

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EXAMINATION FOR BE V-SEMESTER w.e.f. 2018-19 under CBCS (Students admitted in 2016-17)

S.	Course	Course	Scheme of Instruction				Scheme of Examination			Credits
NO.	Code	Course	Hrs / week		Duration	Maximu	ım Marks	rec		
			L	Т	D	Р	in Hrs	SEE	CIE	O
THEO	RY									
1	PC510EC	Integrated Circuits & Applications	3	1	-	1	3	70	30	3
2	PC520EC	Automatic Control Systems	3	1	-	-	3	70	30	3
3	PC530EC	Digital Signal Processing	3	1	-	-	3	70	30	3
4	PC540EC	Computer Organization and Architecture	3	1	-	-	3	70	30	3
5	PC550EC	Analog Communication	3	-	-	1	3	70	30	3
6	HS510EH	FS - III: Soft skills	1	1	-	-	1.5	35	15	1
7	MC510EC	FS - III: Technical Skills	1	1	-	1	1.5	35	15	1
8	OE5XXX	Open Elective – IV	1	-	-	-	2	50	30	1
9	OE5XXX	Open Elective – V	2	-	-	-	3	70	30	2
PRAC	TICALS									
10	PC561EC	Integrated Circuits Lab	-	-	-	2	3	50	25	1
11	PC571EC	Sensors & Systems Lab	-	-	-	2	3	50	25	1
12	PC581EC	Digital Signal Processing Lab	-	-	-	2	3	50	25	1
		Total	20	6	-	6		690	315	23
		Grand Total		3	2			10	005	

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER INTEGRATED CIRCUITS AND APPLICATIONS

Instruction: 3+1 Hrs /week	SEE Marks :70	Course Code: PC510EC
Credits : 3	CIE Marks: 30	Duration of SEE: 3 Hrs

	Course Objectives	Course Outcomes			
1.	Students will acquire the	At	the end of the course, students will be		
	knowledge of linear IC	abl	e to:		
	applications and design	1.	Illustrate the internal circuit, parameters and		
	various circuits using IC's		features of op-amp.		
	for any given	2.	Design of linear and non-linear circuits using		
	specifications.		op-amp.		
2.	Student shall describe	3.	Design and analyze various applications		
	specifications of a digital		using ICs, such as 741, 555, 723 etc,.		
	IC for various logic	4.	Define specifications of digital IC and select		
	families and design		appropriate IC based on specifications.		
	combinational and	5.	Design and analyze applications using		
	sequential circuits with		different combinational and Sequential		
	digital ICs.	circuits (IC's)			
		6.	Expand the memory size using		
			semiconductors memory.		

UNIT - I

Integrated Circuits and Op-Amp Applications: Chip Size and Circuit Complexity, Ideal and Practical Op-Amp, Op-Amp Characteristics - DC, AC-Slew Rate and Frequency Response, 741 Op-Amp, Modes of Operation: Inverting, Non- Inverting, Differential, Op-Amp Applications: Basic Applications of Op-Amp, Instrumentation Amplifier, AC Amplifier, V to I and I to V Converters, Sample & Hold Circuits, Differentiators and Integrators, Comparators, Schmitt Trigger, Multivibrators, 723 Voltage Regulator.

UNIT - II

Active Filters, Oscillators, Timers & Phase Locked Loops First Order and Second Order Low Pass, High Pass and Band Pass Filters, Band Reject and All Pass Filters. Analysis and Design of Function Generators using IC 8038. 555 Timer: Functional Diagram, Monostable, Astable Operations and Applications, Schmitt Trigger, VCO, Functional Diagram of 566, Phase Locked Loop (PLL): Block Schematic, Principles and Description of Individual Blocks of 565.

UNIT – III

D-A and A-D Converters Introduction, Basic DAC Techniques – Weighted Resistor Type, R-2R Ladder Type, Inverted R- 2R Type, Different types of ADCs – Parallel Comparator Type, Counter Type, Successive Approximation Register Type and Dual Slope Type, DAC and ADC Specifications.

UNIT - IV

Digital Integrated Circuits Classification of Digital Integrated Circuits, Standard TTL NAND Gate-Analysis & Characteristics, TTL Open Collectors Outputs, Tristate TTL, MOS & CMOS Open Drain and Tristate Outputs, Concept of negative logic, ECL logic family. Comparison of various Logic Families, IC Interfacing - TTL Driving CMOS & CMOS Driving TTL. TTL-74XX Series & CMOS 40XX Series ICs, Arithmetic Circuit ICs-Parallel Binary Adder/Subtractor using 2's Complement System, Magnitude Comparator Circuits.

UNIT - V

Sequential Circuits 74XX and CMOS 40XX Series ICs, Design of Synchronous and Asynchronous Counters and Mod-N counters, Shift Registers & Applications.

Semiconductors memories: ROM, PROM, EPROM, EEPROM, RAM, Types, Architectures, operation and applications, NVRAM, Flash memory, Introduction to PLD's.

- 1. Op-amps and Linear Integrated Circuits, Ramakant A. Gayakwad, Prentice Hall, 2003.
- 2. Linear Integrated Circuits, D. Roy Chowdhury, 3rd Edition, New Age International(P) Ltd., 2008
- 3. Ronald J. Tocci, Neal S.Widmer & Gregory L.Moss, "*Digital Systems: Principles and Applications*,"PHI,10/e, 2009.
- 4. Sonde, B. S., "Introduction to system Design using IC's," Wiley, 2/e, 1994.
- 5. Digital Fundamentals, Floyd and Jain, 8th Edition, Pearson Education, 2005.
- 6. Modern Digital Electronics, RP. Jain, 4th Edition, Tata McGraw-Hill, 2010.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER AUTOMATIC CONTROL SYSTEMS

Instruction: 3+1 Hrs /week	SEE Marks: 70	Course Code : PC520EC	
Credits : 3	CIE Marks : 30	Duration of SEE: 3 Hrs	

	Course Objectives	Course Outcomes
1.	Apply principles of control theory to	At the end of the course, students
2.	model physical system. Analyze the performance of a given system in time and frequency domains and choose appropriate compensator if needed.	 will be able to: Derive dynamic equations for electro mechanical systems and obtain transfer function using block diagram reduction technique, Mason's gain formula from given system model. Analyze the stability of the system in time domain and determine its performance characteristics. Apply Bode plot, Nyquist criteria techniques to determine the performance of the system in frequency domain. Determine the transfer function and stability for digital control system. Analyze the system in the presence of initial conditions and apply Kalman's test for controllability and observability.

UNIT - I

Control System fundamentals and Components: Classification of control systems, Open and Closed loop systems, Error sensing devices – potentiometers and synchro's. AC and DC servo motors. Mathematical modeling of mechanical systems and their conversion into electrical systems. Block diagram reduction and Signal flow graphs.

UNIT - II

Time response: Transfer function and Impulse response, types of input. Transient response of second order system for step input. Time domain specifications. Types of systems, static error coefficients, error series, Routh - Hurwitz criterion for stability.

Root locus techniques: Analysis of typical systems using root locus techniques. Effect of location of roots on system response.

UNIT - III

Frequency response plots: Bode plots, frequency domain specifications. Gain margin and Phase Margin. Principle of argument, Polar plot, Nyquist plot and Nyquist criterion for stability. Compensation: Cascade and feedback compensation using Bode plots. Phase lag, lead, lag-lead compensators. PID controller.

UNIT - IV

Discrete Control Analysis: Digital control, advantages and disadvantages, and digital control system architecture. The discrete transfer function. Sampled data systems. Transfer function of sample data systems. Stability of Discrete data systems.

UNIT - V

State Space Representation: Concept of state and state variables. State models of linear time invariant systems, State transition matrix, Solution of state equations. Design of digital control systems using state-space concepts. Controllability and observability.

- 1. Nagrath, I.J., and Gopal, M., "Control System Engineering," New Age Publishers, 5/e, 2009.
- 2. Ogata, K., "Modern Control Engineering," 5/e, PHI, 2010.
- 3. Benjamin C. Kuo, "Automatic Control Systems," 7/e, PHI, 2010.
- 4. Richard C. Dorf & Robart H. Bishop, "Modern Control Systems," 11/e, Pearson, 2008.
- 5. Gopal, Madan, "Digital Control Engineering," 1/e, New Age Publishers, 2008.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER DIGITAL SIGNAL PROCESSING

Instruction: 3+1 Hrs /week	SEE Marks :70	Course Code : PC530EC	
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs	

Course Objectives	Course Outcomes
1. Students will apply FFT	At the end of the course, students will
algorithms, discuss various	be able to:
design methods of FIR & IIR	1. Apply the knowledge FFT Algorithms
filters, describe the concepts of	for computation of DFT.
multirate signal processing and	2. Design FIR & IIR filters using various
identify important features of	methods.
TMS 320C 54XX DSP processors.	3. Analyze the effects of finite word
	length in digital filters.
	4. Apply decimation and interpolation
	concepts for the design of sampling
	rate converters.
	5. Study TMS320C54XX DSP processors
	for the design of digital filters.

UNIT - I

Fast Fourier Transform : Overview of Discrete time Fourier Transform (DTFT), Discrete Fourier transform (DFT), – Efficient computation of DFT-Properties of DFT .

FFT algorithms –Radix-2 FFT algorithms – Decimation in Time – Decimation in Frequency algorithms - in place computation- bit reversal-Use of FFT algorithms in Linear Filtering and Correlation.

UNIT - II

Digital filters (FIR) Design: Amplitude and phase responses of FIR filters – Linear phase filters – Windowing techniques for design of Linear phase FIR filters – Rectangular, Bartlet, Hamming, Blackman, Kaiser – realization and finite word length effects.

UNIT - III

Digital filters (IIR) Design: Butterworth and Chebychev approximation- IIR digital filter design techniques- Impulse Invariant transformation - Bilinear transform techniques- Digital Butterworth- Chebychev filters,-comparisons between FIR and IIR filters. Digital filters structures.

UNIT - IV

Multirate Digital Signal Processing: Introduction -Decimation by a Factor D- Interpolation by a Factor I- Sampling Rate Conversion by a Rational Factor I/D- Implementation of Sampling Rate Conversion- Multistage implementation of Sampling Rate Conversion- Sampling Rate Conversion by an Arbitrary factor- Application of Multirate Signal Processing.

UNIT - V

Introduction to DSP Processors: Difference between DSP and other microprocessors architectures- their comparison and need for ASP, RISC and CPU- General purpose DSP processors- TMS 320C 54XX processors, architecture, addressing modes-instruction set.

- Alan V. Oppenheim & Ronald W. Schafer, "Digital Signal Processing," PHI, 2/e, 2010.
- 2. John G. Proakis & Dimtris G. Manolakis, "Digital Signal Processing Principles, Algorithms and Application,"
- 3. PHI, 3/e, 2000.
- 4. Ashok Ambardar, "Digital Signal Processing: A Modern Introduction," Cengage Learning, 2009.
- 5. Li Tan, "Digital Signal Processing: Fundamentals and Applications," Elsevier, 2012.
- 6. B.Venkataramani & M. Bhaskar, "Digital Signal Processor Architecture, Programming and Application," TMH,2002.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER COMPUTER ORGANIZATION AND ARCHITECTURE

Instruction: 3+1 Hrs /week	SEE Marks :70	Course Code: PC540EC	
Credits : 3	CIE Marks: 30	Duration of SEE: 3 Hrs	

Course Objectives	Course Outcomes
Course Objectives 1. To familiarize the students with the concept of organization of basic CPU and control unit towards microprocessor level. 2. To familiarize students with Architecture, programming and interfacing 8086 microprocessor with external environment.	Course Outcomes At the end of the course, students will be able to: 1. Apply digital engineering fundamentals to acquire knowledge of arithmetic algorithms for fixed and floating-point CPUs. 2. Implementing the techniques of pipelining and parallelism in stored program structures to analyze the performance of a Processor. 3. Interpret various techniques for efficient memory & I/O utilization to develop a system application. 4. Define a microprocessor and analyze the basic features of 8086µp by applying computer
	organization fundamentals. Interfacing and programming required peripherals to develop a system around 8086µp.

UNIT - I

Data representation and Computer arithmetic: Introduction to Computer Systems, Organization and architecture, evolution and computer generations; Fixed point representation of numbers, digital arithmetic algorithms for Addition, Subtraction, Multiplication using Booth's algorithm and Division using restoring and non restoring algorithms. Floating point representation with IEEE standards and its arithmetic operations.

UNIT - II

Central Processing Unit: Basic concepts of CU & ALU, General register organization, Instruction formats, Features of CISC and RISC, Instruction Pipeline, Stored program organization, Hardwired control unit, Micro programmed Control organization, address sequencing, micro instruction format and micro program sequencer.

UNIT - III

Memory organization: Memory hierarchy, Primary memory, Secondary memory, Associative memory, Cache memory: mapping functions, Virtual memory, address mapping using pages, Memory management hardware. I/O organization: Program controlled I/O, Interrupt driven I/O, DMA.

UNIT - IV

8086 Architecture: Memory segmentation, Physical address calculation, Deriving of system bus, stack organization, addressing modes, Interrupt vector table, Interrupt handling, Minimum and Maximum mode operation of 8086. Brief overview of features of x86 series microprocessors.(x=1,2,3,4, Pentium).

8086 Assembly Language programming: Instruction set, Assembler directives, Programs using data transfer, Arithmetic, logical, Branching and String processing.

UNIT - V

8086 Interfacing: Memory interfacing using RAM, EPROM IC Chips, 8255 PPI, 8253/8254 programmable interval timers, need for DMA and interfacing with DMA controller (8257 IC), programmable communication interface (8251).

- 1. Morris Mano, M., "*Computer System Architecture*," 3/e, Pearson Education, 2005.
- 2. Hamacher, Vranesic, Zaky, "*Computer Organization*," 5/e, McGraw Hill, 2007.
- 3. Ray A.K & Bhurchandhi K.M, "Advanced Microprocessor and Peripherals," 2/e, TMH, 2007.
- 4. Douglas V Hall, "Microprocessors and Interfacing Programming and Hardware," 2/e, THM, 2007.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER ANALOG COMMUNICATION

Instruction: 3 Hrs /week	SEE Marks :70	Course Code : PC550EC	
Credits : 3	CIE Marks: 30	Duration of SEE: 3 Hrs	

	Course Objectives	Course Outcomes		
1.	To understand the basic	At t	the end of the course, students will	
	concepts of Analog continuous	be a	able to:	
	and Pulse modulation schemes.	1.	Analyze and apply the knowledge of	
2.	To design and analyse AM and		signals to analog modulation and	
	FM transmitters and receivers.		demodulation schemes.	
3.	To understand the importance of	2.	Formulate different analog modulation	
	noise, its effect and also to		schemes in terms of modulation index,	
	estimate the figure of merit of		bandwidth, transmitted power.	
	various communication systems.	3.	Analyse the performance	
			characteristics of analog	
			communication receiver	
		4.	Estimate noise figure based on the	
			knowledge of different types of	
			receivers.	
		5.	Acquire knowledge about pulse	
			modulation schemes.	

UNIT - I

Linear Modulation schemes: Need for modulation, double side band suppressed carrier (DSB-SC) modulation, conventional Amplitude Modulation (AM). Hilbert transform, properties of Hilbert transform. Preenvelop. Complex envelop representation of band pass signals, In-phase and Quadrature component representation of band pass signals. Low pass representation of band pass systems. Single side band (SSB) modulation and Vestigial-side band (VSB) modulation. Modulation and demodulation schemes

UNIT - II

Angle modulation schemes: Frequency Modulation (FM) and Phase modulation (PM), Concept of instantaneous phase and frequency. Types of FM modulation: Narrow band FM and wide band FM. FM spectrum in terms of Bessel functions. Direct and indirect (Armstrong's) methods of FM generation. Balanced discriminator, Foster–Seeley discriminator and Ratio detector for FM demodulation. Pre-Emphasis and De-Emphasis. Capture effect.

UNIT - III

Transmitters and Receivers: Classification of transmitters. High level and low level AM transmitters. FM transmitters. Principle of operation of Tuned radio frequency (TRF) and super heterodyne receivers. Selection of RF amplifier. Choice of Intermediate frequency. Image frequency and its rejection ratio, Receiver characteristics: Double spotting, Tracking and alignment, Automatic Gain Control.

UNIT - IV

Noise Sources and types. Atmospheric noise, Shot noise and thermal noise. Noise temperature. Noise in two-port network: noise figure, equivalent noise temperature and noise bandwidth. Noise figure and equivalent noise temperature of cascade stages. Narrow band noise representation. S/N ratio and Figure of merit calculations in AM, DSB-SC, SSB and FM systems.

UNIT - V

Analog pulse modulation schemes: Sampling of continuous time signals. Sampling of low pass and band pass signals. Types of sampling. Pulse Amplitude Modulation (PAM) generation and demodulation. Pulse time modulation schemes: PWM and PPM generation and detection.

- 1. Simon Haykin, "Communication Systems," 4/e, Wiley India, 2011.
- 2. Herbert Taub, Donald L. Shilling & Goutam Saha, "Principles of Communication Systems," 3/e, TMH, 2008.
- 3. P. Ramakrishna Rao, "Analog Communication," 1/e, TMH, 2011.
- 4. A. Bruce Carlson and Paul B. Crilly, "Communication Systems," 5/e, 2011.
- 5. Singh, R.P. and Sapre, S.D., "Communication Systems," TMH, 2007.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER FINISHING SCHOOL – III: SOFT SKILLS

Instruction: 1+1 Hrs /week	SEE Marks :35	Course Code : HS510EH	
Credits : 1	CIE Marks: 15	Duration of SEE: 1.5 Hrs	

	Course Objectives	Course Outcomes
1.	This is a foundation course and aims at	At the end of the course,
	enhancing employability skills in	students will be able to:
	students. Students will be introduced to	1. Solve questions on the above
	higher order thinking skills and problem	mentioned areas using short
	solving on the following areas -	cuts and smart methods
	Arithmetic ability, Numerical ability and	2. Understand the fundamentals
	General reasoning. Students will be	concepts of Aptitude skills
	trained to work systematically with speed	3. Perform calculations with
	and accuracy while problem solving.	speed and accuracy
2.	The three major areas covered in this	
	course include	
	 Numerical Ability 	
	2. Arithmetic Ability	
	3. General reasoning	

UNIT – I : QUANTITATIVE APTITUDE - NUMERICAL ABILITY

- o Numerical Ability
- o Introduction to higher order thinking skills
- Speed Maths
- Number systems
- o ICM & HCF

UNIT – II : QUANTITATIVE APTITUDE- ARITHMETIC ABILITY FOUNDATION

- o Arithmetic Ability
- o Percentage
- Profit loss and discounts
- Ratio proportions Allegations and mixtures
- Averages

UNIT – III: QUANTITATIVE APTITUDE- ARITHMETIC ABILITY ADVANCED

- Arithmetic Ability
- o Time speed and distance
- Time and work
- Interest calculations

UNIT - IV: REASONING ABILITY - GENERAL REASONING PART 1

- o General Reasoning
- o Coding decoding
- o Directions
- Series completions

UNIT - V: REASONING ABILITY- GENERAL REASONING PART 2

- o General Reasoning
- o Analogies
- o Classification
- Alphabet test
- o Mathematical operations

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER FINISHING SCHOOL – III: TECHNICAL SKILLS BASICS OF JAVA

Instruction: 1+1 Hrs /week	SEE Marks :35	Course Code : MC510EC	
Credits : 1	CIE Marks: 15	Duration of SEE: 1.5 Hrs	

Course Objectives	Course Outcomes
1. students will be able to	At the end of the course, students will be
develop Java programs	able to:
that leverage the object-	1. Analyze the semantics of HTML, Java script.
oriented features of the	2. Interpret the different parts of a web page.
Java language, use data	3. Interpret the Java SDK environment to
types, arrays and other	create, debug and run simple Java
data collections.	programs.
2. Implement error-handling	4. Apply fundamentals of object-oriented
techniques using	programming in Java, including defining
exception handling	classes, invoking methods, using class
3. Develop technical skills	libraries, etc.
necessary for complete	5. Demonstrate understanding of applets,
understanding of front-	events and keywords.
end web development.	-

UNIT - I

HTML for Java Programmers: Introduction to Internet. HTML, HTML format, HTML tags, the applet tag, HTML Document Creation. Introduction to scripting languages VBScript and Java Script.

UNIT - II

Overview of Java, Features of Java, Java tools, Java applications, The Java language: Java keywords, Primitive types, Literals, Arrays, Operators, and Control Operations: Selection, Iteration, Jumping.

UNIT - III

Java Classes class inheritance

Exception handling, working with Threads: Thread basics, Thread classes, Creating Threads, scheduling and Thread Priorities, Daemons, Grouping threads, Thread states, Synchronization, Packages.

UNIT - IV

Java Applets, Programming the user interface: Introduction and Basic Concepts, Abstract Window Toolkit (AWT), Drawing, Interactive Interface Elements, Organizing Interface with Layouts, Images, Windows, Frames, Dialog Box, and File Dialog Box

UNIT - V

Applet method of interest, Extending the AWT, Extending Components, Event Handling: AWT Event handling, the Event class, java input events:

- 1. Thomas. A. Powell, *HTML- The Complete Reference*, TMH, 2002.
- 2. Herbert Schildt, *JAVA The Complete Reference*, TMH, 2014 9th edition.
- 3. Comer, Internet Book everything you need to know about computer networking & How Internet Works, 4th PHI, 2015.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER INTEGRATED CIRCUITS LAB

Instruction: 2 Hrs /week	SEE Marks :50	Course Code: PC561EC
Credits : 1	CIE Marks: 25	Duration of SEE : 3 Hrs

Course Objective	Course Outcomes
1. Students will design and	At the end of the course, students will be
verify circuits using ICs for	able to:
the given specifications.	1. Design and implement the applications of
	Op-Amps.
	2. Design and verify the characteristics of
	555 timer and 723voltage regulator IC's.
	3. Design and verify various combinational
	circuits such as adders, code-converters
	etc.
	4. Design and verify various sequential
	circuits such as adders, code-converters
	etc.

Lab Experiments:

PART – A

- 1. Measurement of parameters of Op-Amp. Voltage Follower, Inverting and Non Inverting Amplifiers, Level Translators using Op-Amp.
- 2. Arithmetic Circuits: Summer, Integrator Differentiator using Op-Amp.
- 3. Active filters: LP, HP and BP using Op-Amp.
- 4. Op-Amp Oscillators: RC phase shift oscillator, Wein bridge oscillator.
- 5. Triangle and Square wave Generators. Schmitt Trigger using Op-Amp.
- 6. Voltage Controlled Oscillator Using LM 566.
- 7. IC Regulators and current boosting.
- 8. Applications of 555 Timer.
- 9. PLL characteristics

PART - B

- Measurement of propagation delay, fan-out, Noise margin and transfer Characteristics of TTL and CMOS IC gates and open collector / drain gates.
- 2. Designing code converters using logic gates and standard code converters. Parity generator and checker circuit.
- 3. Flip-Flop conversions and latches using gates and ICs.

- 4. Designing Synchronous, Asynchronous up/down counters
- 5. Shift registers and ring counters using IC Flip-Flops & Standards IC counters.
- 6. Full adders, subtractors using logic gates and multiple bits IC Adder/Subtractor and arithmetic Circuits.
- 7. Mux-Demux applications.
- 8. Interfacing counters with 7-segment LED/LCD display units.
- 9. Mealy and Moore type sequence detector

General Note:

- 1. At least 5 experiments from each part.
- 2. A total of not less than 10 experiments must be carried out during the semester.
- 3. Analysis and design of circuits, wherever possible, should be carried out using SPICE tools.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER SENSORS & SYSTEMS LAB

Instruction: 2 Hrs /week	SEE Marks :50	Course Code: PC571EC	
Credits : 1	CIE Marks: 25	Duration of SEE: 3 Hrs	

Cou	ırse Objectives		Course Outcomes:
1. To de	sign and analyze	At	the end of the course, students will be
contro	ol systems using control	abl	e to:
syster	n tool/box / simulink /	1.	To perform time domain and frequency
MATL	AB		domain analysis of a given control
2. To	inculcate multi-		systems.
discip	inary strategies to	2.	To design a suitable compensator to meet
develo	op, optimize and		the required specification.
capita	lize on technologies	3.	To conduct stability analysis of a given
that	enable new and		sample data control systems.
impro	ved processes.	4.	To analyze and understand various
			sensors based on the classification and
			working principle.
		5.	To identify the problem and use the
			appropriate sensors for multidisciplinary
			applications.

List of the Experiments:

- 1. To study distortion factor meter and determination of the % distortion of the given oscillator.
- 2. To determine output characteristics of LVDT and Measure displacement using LVDT.
- To study characteristics of temperature transducer like thermocouple, thermistor and RTD with implementation of a small project using signal conditioning circuits like instrumentation amplifier.
- 4. Measurement of strain using strain gauge.
- 5. To study characteristics of load cell.
- 6. To study differential pressure transducer & signal conditioning of output signal.
- 7. Measurement of level using capacitive transducer.
- 8. Study of distance measurement using ultrasonic transducer.
- 9. To study characteristics of fiber optic transducer for temperature or pressure measurements.
- 10. (i) Simulation of 2nd and higher order systems for step and impulse signals and evaluate time domain specifications.
 - (ii) Evaluation of effect of additional poles and Zeros on time response of $2^{\rm nd}$ order systems.

- 11. (i) To determine the range of D.C gain of –Ve feedback amplifier for a loop transfer using root locus technique.
 - (ii) to the study effect of O.L poles and zeros on root locus.
- 12. To determine gain margin and phase margin of a system using bode plot and Nyquist plot. Comment on system stability.
- 13. (i) To study the effect of P, PI & PID controller on loop transfer function.
 - (ii) Design a suitable comparator to meet derived specifications of a system (validate the design)
- 14. Determine controllability and observability from a given state model.
- 15. Determine the stability of a sample data system.
- 16. Introduction to Virtual Instrumentation

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- V SEMESTER DIGITAL SIGNAL PROCESSING LAB

Instruction: 2 Hrs /week	SEE Marks :50	Course Code: PC581EC
Credits : 1	CIE Marks: 25	Duration of SEE : 3 Hrs

Course Objective	Course Outcomes		
1. Students will	At the end of the course, students will be able to:		
design and	1. Develop MATLAB files for the verification of system		
develop digital	response.		
systems using	2. Design digital filters using various methods.		
MATLAB and Code	3. Implement a Multirate Signal Processing System.		
Composer Studio	4. Design and implement digital filter Code Composer		
Environment.	Studio and Digital Signal Processing Kits.		

(A) Experiments on DSK and CCS

- 1. Solutions of difference equations
- 2. Impulse Response
- 3. Linear Convolution.
- 4. Circular Convolution
- 5. Study of procedure to work in real-time.
- 6. Fast Fourier Transform Algorithms: (DIT, DIF)
- 7. Design of FIR (LP/HP) using windows, (a)Rectangular,
- (b)Triangular (c) Hamming window
- 8. Design of IIR (HP/LP) filters.

(B) Experiments on signal processing.

- 1. DFT and FFT algorithm
- 2. Linear Convolutions
- 3. Circular Convolutions
- 4. FIR filter design using different data windows
- 5. IIR filter design: Butter worth, chebysheve type 1 and 2 and Bilinear transformation Methods.
- 6. Interpolation and Decimation.

Note:

- 1. Minimum of **5** from Part A and **5** from Part B is mandatory.
- 2. For section 'B', MATLAB with different toolboxes like Signal Processing, Signal Processing block set, and SIMULINK/ MATHEMATICA/ any popular software can be used.

OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS IN B.E- V SEMESTER (2018-19) Engineering Branches

Open Elective IV (Semester - V)				
Dept.	Title	Code	credits	
Civil	Environmental Impact Assessment	OE510CE	1	
	Remote Sensing	OE520CE	1	
CSE	Introduction to Software engineering	OE510CS	1	
ECE	Introduction to Telemetry	OE510EC	1	
EEE	Basics of power systems	OE510EE	1	
IT	Introduction to Linux	OE510IT	1	
Mech.	Basics Of 3-D Printing	OE500ME	1	
Open Elective V (Semester - V)				
Civil	Global Positioning Systems	OE530CE	2	
	Project Management	OE540CE	2	
CSE	Introduction to Java Programming	OE520CS	2	
ECE	Introduction to Signal Processing	OE520EC	2	
EEE	Fundamentals of Power Electronics	OE520EE	2	
IT	Introduction to Java Programming Language	OE520IT	2	
Mech	Introduction to Robotics	OE510ME	2	
	Basics Of Entrepreneurship	OE520ME	2	

B.E- V and VI SEMESTER (2018-19) Basic Sciences and H&SS

	Open Elective IV (Semester - V)				
Dept	Title	Code	credits		
CHEM	Electronic Engineering Materials	OE400CH	1		
	Polymer Technology	OE410CH	1		
	Industrial Pollution Prevention and Control	OE420CH	1		
	Electrochemical Energy Systems	OE430CH	2		
	Corrosion Science and Technology	OE440CH	2		
PHY	Display Devices	OE400PH	1		
	Fundamentals of Vacuum Technology	OE410PH	1		
	Introduction to Non-destructive Testing	OE420PH	1		
	Fundamentals of Cryogenics	OE430PH	2		
	Smart Materials and Applications	OE440PH	2		
	Fundamentals of Thin Film Technology	OE450PH	2		
ENG	Technical Writing and Professional Presentations	OE510EH	2		

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR BE V-SEMESTER ENVIRONMENTAL IMPACT ASSESSMENT (Open Elective – IV)

Instruction: 1 Hr /week	SEE Marks :50	Course Code : OE510CE	
Credits : 1	CIE Marks: 30	Duration of SEE: 2 Hrs	

COURSE OBJECTIVES	COURSE OUTCOMES	
The objectives of the course are	Upon the completion of the course, students	
to introduce	are expected to	
1. The issues, impact and	1. Apprise the need, legal provisions and	
management plan due to	2 Enumerate the methods of Environmental	
Environmental of the project	Impact Assessment.	
	3.Predict the impact and prepare the	
	management plan for Environmental issues of	
	the project	
	4. Issues related to rehabilitation of affected	
	people, Preparation of Environmental impact	
	statement	

UNIT-I

Environmental Impact Assessment: Need for environmental impact assessment (EIA), objectives of EIA. EIA capabilities and limitations. Legal provisions of EIA. Methods of EIA, base line data collection required for EIA

UNIT-II

Evaluation of impacts: Prediction of impacts. Preparation of Environmental Management Plan, preparation of EIAs of road project, Industry, and dam. Issues related to rehabilitation of affected people, Preparation of Environmental impact statement and Environment management plan.

Learning Resources:

- 1. Peavy and Rowe, Environmental Engineering, McGraw Hill Publications.
- 2. Keiley, Environmental Engineering, McGraw Hill Publishers, 2003.
- 3. Sincero and Sincere, Environmental Engineering, Prentice Hall of India.

Online Resources

1.http://nptel.ac.in/courses/

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR B.E. V-SEMESTER REMOTE SENSING (Open Elective – IV)

(to other branches)

Instruction: 1 Hr /week	SEE Marks :50	Course Code: OE520CE
Credits : 1	CIE Marks: 30	Duration of SEE: 2 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES	
Objectives of this course	Upon the completion of the course, students are	
1. Provide fundamental knowledge on geo spatial technology such as remote sensing	 expected to Explain the basic principles of remote sensing to analyse the surface features on the Earth. Describe the characteristics of satellites, platforms & sensors used in acquisition of remote sensing data required for further processing. Identify and correct the remotely sensed data for atmospheric, radiometric and geometric errors to produce a high quality image. Apply the principles and techniques of remote sensing to solve various problems in engineering field. 	

UNIT-I

Introduction: Definition, Elements of remote sensing, Physics of remote sensing, Sources of Energy, Active and Passive Radiation, Types of remote sensing, Electromagnetic spectrum and radiation, Interaction with Atmosphere, Atmospheric windows, Spectral reflectance of Earth's surface features

Data Acquisition: Satellite orbits and characteristics, various types of platforms, Sensor types & characteristics, Types of resolution-spatial, spectral, radiometric &temporal

UNIT-II

Data Pre-processing: Atmospheric errors and removal, Radiometric corrections, Geometric corrections, Geo-referencing, re-sampling methods - Basic Principles of Visual Interpretation

Applications: Applications of optical remote sensing techniques in various fields of Engineering

Learning Resources:

- 1. Anji Reddy M., Remote Sensing and Geographic Information System, 2012
- 2. John A. Richards, Remote sensing Digital Image Analysis, 2012

DEPARTMENT OF CIVIL ENGINEERING GLOBAL POSITIONING SYSTEM (Open Elective-V)

(to other branches)

Instruction: 2 Hr /week	SEE Marks :70	Course Code : OE530CE
Credits : 2	CIE Marks: 30	Duration of SEE: 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES	
Objectives of this course are to	Upon the completion of the course, students are expected to	
To provide fundamental knowledge on geo spatial technology such as GPS	 Describe the fundamental theory and concepts of the Global Positioning System to provide 3D positioning with great accuracy. Compute errors and biases in GPS measurements and apply necessary corrections to obtain accuracy as per the user specifications. Describe the differences between point and relative GPS positioning, Analyse DGPS and RTK surveys used to obtain GPS measurements in the field. 	

UNIT-I

Overview of GNSS and Introduction to GPS, GLONASS, GALILEO, COMPASS, IRNSS systems

GPS: Basic concepts, Functional system of GPS – Space segment, control segment and user segment, Working principle of GPS, Signal structure and code modulation, Pseudo-range measurements and navigation position

UNIT-II

Errors and biases in GPS measurements, Accuracy of navigation position: UERE and DOP, Intentional degradation of GPS signals: Selective availability (SA) and Anti-spoofing (AS)

Differential GPS: Space based augmentation systems (e.g., SBAS, GAGAN) and Ground based augmentation systems (e.g., WASS, EGNOS)

UNIT-III

GPS Carrier Phase measurements: Signal Differencing, Double Differencing and Triple Differencing in GPS measurements.

UNIT-IV

Surveying with GNSS: Point positioning, Relative positioning, Static and

Kinematic positioning.

GNSS applications: GIS and GPS integration

Learning Resources:

- 1. Leick, A., GPS Satellite Survey, John Wiley: NJ, 2015
- 2 Hofmann, B., Lichtenegger H. and Collins J., Global Positioning System: Theory and Practice, Springer: Berlin, 2011.
- 3. Hofmann-Wellenhof, Bernhard, Lichtenegger, Herbert, Wasle, Elmar, GNSS GPS, GLONASS, Galileo and more, 2013.

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR BE V-SEMESTER PROJECT MANAGEMENT (Open Elective – V)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code: OE540CE
Credits : 2	CIE Marks: 30	Duration of SEE : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
The objectives of the course are	Upon the completion of the course, students
to	are expected to
1. Learn the concept of project	Understand the objectives, functions and
management along with	principles of management in projects.
functions and objectives.	Practice the network techniques like CPM
2. Understand the various	and PERT for better planning and
techniques used for project	scheduling of engineering works.
planning such as bar charts,	3. Analyse the importance of cost and time in
CPM, PERT and crashing of	network analysis and planning the work
networks.	accordingly.
3. Acquire knowledge on various	4. Knowledge on Contracts, Tenders, and
types of contracts, tenders.	Work orders related to the projects.

UNIT-I

Significance of Project Management: Objectives and functions of project management, management team, principles of organization and types of organisation.

UNIT-II

Project Planning: Planning, bar charts, network techniques in project management - CPM and PERT. Expected likely, pessimistic and optimistic time, normal distribution curve and network problems.

UNIT-III

Contracts: Introduction, types of contracts and their advantages and disadvantages, conditions of contracts, Introduction to Indian contract act.

UNIT-IV

Time Cost Analysis: Cost time analysis in network planning, updating **Tender:** Tender form, Tender Documents, Tender Notice, Work Order.

Learning Resources:

- 1.Srinath L.S., PERT and CPM: Principles and Application, East-West Press, 1975.
- 2.Peret, F, Construction Project Management an Integrated approach, Taylor and Francis, Taylor and Francis Group, London & New York, 2009
- 3. Punmia B.C., and Khandelwal, PERT and CPM, Laxmi Publications, 1990.
- 4.http://nptel.ac.in/courses/

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E V SEMESTER INTRODUCTION TO SOFTWARE ENGINEERING (Open Elective-IV)

Instruction: 1 Hr /week	SEE Marks :50	Course Code :OE510CS
Credits : 1	CIE Marks: 30	Duration of SEE : 2 Hrs

Course Objectives	Course Outcomes
Students should be able to	At the end of the course, students will be
	able to
Understand the concepts involved in the lifecycle of software development Learn the best practices to be employed for the design and testing.	1. Explain the various software development lifecycle models for a software system development. 2. Build the prototype for software business case and analyze the requirements of software project. 3. Analyze the different behavioral and structural models for the designed object oriented system. 4. Identify verification and validation methods in a software engineering project and implement testing methods at various
	phases of SDLC

UNIT-I

Introduction to Software Engineering:

A generic view of Process: Software Engineering, Process Framework CMM Process Patterns, Process Assessment.

Process Models: Waterfall Model, Incremental Process Models, Evolutionary Process Models, Specialized Process Models, The Unified Process.

An Agile view of Process: What is Agility, What is an Agile Process, Agile Process Models.

Requirements Engineering: A bridge to Design and Construction, Requirements Engineering Tasks, Initiating Requirements Engineering Process, Eliciting Requirements, Negotiating Requirements, Validating Requirements.

UNIT-II

Object oriented Modeling & design using UML: Introduction to UML.

Structural Modeling: Classes and Advanced Classes, Relationships and Advanced Relationships, Common Mechanisms, Class Diagrams.

Behavioural Modelling: Interactions, Interaction diagrams, Use Cases, Use Case Diagrams, Activity diagrams, State Machines, State chart Diagrams.

Testing Tactics: Software testing fundamentals, Black box and White box testing.

Suggested Books:

- 1. Roger S. Pressman, Software Engineering: A Practitioner's Approach, 6th Edition (2005), Tata Mc GrawHill.
- 2. Grady Booch, James Rumbagu, Ivor Jacobson, The Unified Modeling Language-User guide, (Covering UML 2.0) ,2nd Edition (2007), Pearson Education, India.

Reference Books:

- 1. Shari Lawrence Pfleeger, Software engineering Theory and Practices, 4th Edition (2011), Pearson Education, India.
- 2. Pankaj Jalote, An Integrated Approach to Software Engineering, 3rd Edition (2005), Narosa Publishing House.

Online Resources:

- 1. http://nptel.ac.in/courses/106101061/
- 2. https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-355j-software-engineering concepts-fall-2005/lecture-notes/

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E V SEMESTER INTRODUCTION TO JAVA PROGRAMMING (Open elective-V)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code :OE520CS
Credits : 2	CIE Marks: 30	Duration of SEE : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES	
Students should be able to	At the end of the course, Students will be able to	
 Apply object oriented principles for developing an application using Java constructs Design GUI using existing 	 Apply the object oriented programming (OOP) concepts to design an application. Employ runtime error handling, concurrent programming practices to develop a parallel processing application 	
Java classes and interfaces	3. Read and write the IO operations using console and files streams4. Design dynamic GUI for a java application using AWT classes	

UNIT - I

Java Programming Fundamentals: Introduction, Overview of Java, Data types, Variables and Arrays, Operators, Control Statements, Classes and Methods, Garbage Collection, this keyword, final, Inheritance, Method Overriding.

UNIT - II

Abstract class, Nested class, Interface, Package, Exception Handling, Multithreaded Programming, String Handling.

UNIT - III

Util: StringTokenizer, Date, Calendar, Random, Timer, Observable **IO:** Java I/O Classes and Interfaces, Files and Directories, Byte and Character Streams

UNIT - IV

GUI and event Programming: Applet Class, Applet architecture, The Delegation Event Model, Event Classes, Source of Events, Events Listener Interfaces, AWT: Classes, Working with Graphics, Frames, Menu, Layout Managers.

Suggested Books:

1. Herbert Schildt, *The Complete Reference Java*, 7th Edition, Tata McGraw Hill 2005.

Reference Books:

- 1. P. Radha Krishna, *Object Oriented Programming through Java*, Universities Press, 2007.
- 2. Sachin Malhotra, Saurabh Choudhary, *Programming in Java*, 2nd Edition, Oxford Press, 2014.

Online Resources:

https://docs.oracle.com/javase/tutorial/java

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS FOR B.E. V-SEMESTER INTRODUCTION TO TELEMETRY (Open Elective -IV)

(for other Departments)

Instruction: 1 Hrs /week	SEE Marks :50	Course Code : OE510EC
Credits : 1	CIE Marks: 30	Duration of SEE : 2 Hrs

Course Objective	Course Outcomes	
1. To understand the concept	At the end of the course, students will be	
of telemetry systems.	able to:	
	Analyze different components of telemetry systems.	
	Acquire knowledge on wired and wireless data acquisition techniques in telemetry systems.	
	Demonstrate the knowledge on satellite telemetry systems.	
	4. Apply techniques of different telemetry systems in real time applications.	

UNIT - I

Introduction to Telemetry Principles: Introduction, the Basic System, Classification, Non-electrical Telemetry Systems, Voltage and Current Telemetry Systems, Local Transmitters and Converters, Frequency Telemetry, Power Line Carrier Communication (PLCC).

Wave Propagation: Space Propagation of Waves, Surface Wave, the Ionosphere, Some Considerations on Space Wave Propagation.

UNIT - II

Basics of Satellite Telemetry, Introduction, General Considerations, TT & C Services, Digital Transmission System in Satellite Telemetry, TDM, Some Aspects of TT&C – Subsystems, Satellite Telemetry and Communications: MA Techniques.

Fiber Optic Telemetry: Introduction, Optic Fiber Cable, Dispersion, Losses, Connectors and Splices, Sources and Detectors, Transmitter and Receiver Circuits, Coherent Optical Fiber Communication System, Wavelength Division Multiplexing.

- 1. D. Patranabis, Telemetry Principles, Tata McGraw-Hill, 1999
- 2. Swoboda G., Telecontrol Methods and Applications of Telemetry and Remote Control, Reinhold Publishing Corp., London, 1991
- 3. Young R.E., Telemetry Engineering, Little Books Ltd., London, 1988
- 4. Gruenberg L., Handbook of Telemetry and Remote Control, McGraw Hill, New York, 1987.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS FOR B.E. V-SEMESTER INTRODUCTION TO SIGNAL PROCESSING (Open Elective -V)

(for other Departments)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code : OE520EC
Credits : 2	CIE Marks: 30	Duration of SEE: 3 Hrs

Course Objectives	Course Outcomes
1. To Introduce the	At the end of the course, students will be able:
basics of Signals and	1. To classify discrete time signals as energy and
Systems, and the	power and to classify discrete time systems as
principles of Digital	causal-non causal, linear-nonlinear and stable-
Signal Processing	unstable.
(DSP). To design	2. To study the properties of discrete time Fourier
digital filter using	transform, discrete Fourier transform and z-
frequency domain	transform.
concepts.	3. To implement the DFT using FFT for the given
	sequence.
	4. To realize digital filter structures from their z-
	transform.
	5. To apply DSP techniques to audio, image
	processing and telecommunication areas.

UNIT - I

Introduction to signals: Definition, Representation, Elementary Signals: Unit Impulse, Unit Step, Unit Ramp, Rectangular and Triangular, Classification of signals: periodic and non-periodic, Energy and Power, even and odd, Basic operations on signals such as shifting, scaling and reversal.

UNIT - II

Introduction to Discrete Time Systems: Definition, Classification of systems: Linear and Non-linear, Time Invariant and Time Variant, Causal and Non-causal, Stable and Unstable, Introduction to LTI systems, Properties of an LTI system and linear convolution.

UNIT - III

Discrete Transform Techniques: Discrete Time Fourier Transform and its properties, Discrete Fourier Transform and its properties, Circular convolution, Twiddled factor and its properties, Introduction to FFT algorithms, Z-transform and its properties, transfer function.

UNIT - IV

A Frame work for digital filter design: Types of digital filters, Ideal filter characteristics, Specification of practical filters, Design of FIR filters using windowing techniques, Design of Digital IIR Low Pass Filter using butterworth approximation, realization of filter structures. Some Application Areas of DSP.

- 1. Rao, K. Deergha, Swamy M.N.S., "Digital Signal Processing Theory and Practice", 1st edition, Springer, 2018.
- 2. Ifeachor, E.C. and Jerris, B.W., "Digital Signal Processing: A practical Approach," 2nd edition, Pearson Education.
- 3. Tan, Li, "Digital Signal Processing Fundamentals and Applications", Academic Press.
- 4. Mitra, S.K., "Digital Signal Processing A Computer Based Approach", 3rd Ed., Tata McGraw-Hill.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING SYLLABUS OF B.E V- SEMESTER BASICS OF POWER SYSTEMS (Open Elective –IV)

Instruction: 1 Hrs /week	SEE Marks :50	Course Code : OE510EE
Credits : 1	CIE Marks: 30	Duration of SEE: 2 Hrs

Course objective:	Course Outcomes:
Electrical Power plays	At the end of the course, students will be
significant role in day to day	able to:
life of entire mankind.	1. Identify the various and major ways of
This course gives an over	generation of Power in India.
view of electrical power	2. Estimate the Energy generated by Hydel
generation and economic	Generating station.
aspects of power to all	3. Calculate the Capacitance value for P.f.
engineers of all disciplines.	improvement.
	4. Assess the Tariffs of domestic and
	commercial.

UNIT - I

Thermal Power Station: Line diagram of Thermal Power Station (TPS) showing paths of coal, steam, water, air, ash and flue gasses. Brief description of TPS components-Economizers, Boilers, Super heaters, Turbines, Condensers, Chimney and cooling towers.

Hydro Power Stations: Power Generation Principles, Choice of site, layout and various parts of generating stations, Estimation of power in Hydel, flow duration curve, hydrograph, mass curve etc. Types of Hydel stations.

UNIT - II

Nuclear Power Stations: Nuclear Fission and Chain reaction, Nuclear fuels, Principle of operation of Nuclear reactor, Reactor Components-Moderators, Control rods, Reflectors and Coolants, Radiation hazards-Shielding and Safety precautions.

Economics of Power Generation: Load Curve, load demand and diversity factors, base load and peak load operation, types of costs and depreciation fund calculations, Tariffs.

Power Factor: Causes of low P.F, Improving power factor ,Methods of power factor improvement, Numerical problems.

Suggested Reading

- 1. C.L. Wadhwa, Electrical Power Systems, Wiley Eastern Ltd. 5th Edition, 2005
- 2. C.L. Wadhwa, Generation, Distribution and Utilisation of Electrical Energy, Wiley Eastern Ltd., 5th Edition, 2005
- 3. S.N.Singh- Electrical Power Generation, Transmission and Distribution-Prentice Hall pvt.ltd. New-2003.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING SYLLABUS OF B.E V- SEMESTER

FUNDAMENTALS OF POWER ELECTRONICS (Open Elective –V)

Instruction: 2Hrs /week	SEE Marks :70	Course Code :OE520EE
Credits : 2	CIE Marks: 30	Duration of SEE : 3 Hrs

Course objective:	Course Outcomes:	
To provide fundamentals of	At the end of the course, students will be	
power semi-conductor	able to:	
devices and power electronics converters in	Categorize and compare power electronic devices.	
power electronics.	2. Explain the operation of AC-DC, DC-DC and DC-AC converters.	
	3. Explain the control strategies of Choppers and PWM techniques in inverters.	
	4. Analyze and select the appropriate converter	
	for a given application.	

Unit -I Power Semi - conductor Switches:

Operation and static characteristics of power diode, SCR, MOSFET and IGBT, applications.

Unit - II AC - DC Converters:

Operation of $1-\varphi$ half wave rectifiers with R, R – L and R – L – E loads, operation of $1-\varphi$ bride type full and semi – converters with R – L – E load, applications.

Unit – III Choppers:

Operation of step down and step up choppers, control strategies, applications.

Unit – IV DC – AC Converters:

Operation of 1 - ϕ inverters, operation of 3 - ϕ inverters – 180° and 120° mode, pulse width modulation techniques, applications.

Learning Resources:

- 1. Bimbra.P.S, *Power Electronics*, Third Edition, Khanna Publishers, 2012.
- 2. Singh, M.D and Khanchandani, K.B, *Power Electronics*, Tata McGraw Hill, 2nd Edition, 2006.
- 3. Rashid, M.H *Power Electronics: Devices, Circuits and Applications,* Pearson, 2003
- 4. Mohan, Undeland, Robbins, *Power Electronics Converters, Applications and Design*, Wiley India Pvt Ltd, 2010.

DEPARTMENT OF INFORMATION TECHNOLOGY SYLLABUS FOR B.E V- SEMESTER INTRODUCTION TO LINUX (Open Elective - IV)

Instruction:1Hrs/ week	SEE Marks: 50	Course Code :OE510IT	
Credits: 1	CIE Marks:30	Duration of SEE : 2	
		Hours	

Course Objectives	Course Outcomes	
The course will enable	At the end of the course student will be	
the students to:	able to:	
Acquire basic skills for using	1. Install Linux operating system and use	
Linux operating system.	desktop environment.	
	2. Identify and use Linux utilities to create	
	and manage simple file processing	
	operations.	
	3. Organize directory structures with	
	appropriate security.	
	4. Configure and use Linux shell.	

Unit I

Introduction to Linux, Installing Linux, Running Linux from USB Drive Understanding X Windows System and Desktop, Navigating through Linux Desktop and Managing files. Understanding Linux file system, listing files and directory attributes , Making files and directories, Listing and changing permissions and ownership.

Unit II

Understanding the Linux Shell, Understanding aliases, Using the shell from console or terminals,

Using command history and tab completion, Connecting and expanding commands, Creating aliases, Making shell settings permanent, Using man pages and other documentation.

Learning resources:

Introduction to Linux – A Hands On Guide, Machtelt Garrels. https://linuxjourney.com/

DEPARTMENT OF INFORMATION TECHNOLOGY Syllabus for B.E V- SEMESTER

INTRODUCTION TO JAVA PROGRAMMING LANGUAGE (Open Elective - V)

Instruction: 2Hrs/ week	SEE Marks: 70	Course Code : OE520IT
Credits: 2	CIE Marks:30	Duration of SEE : 3Hours

Course Objectives	Course Outcomes	
The course will enable the	At the end of the course student will be	
students to:	able to:	
Acquire skills to write basic	Use arrays to store multiple data elements.	
Java programs.	2. Organize programs logically with the usage	
	of packages.	
	3. Create, throw and handle exceptions.	
	4. Perform basic Input Output file operations.	

Unit I

Java Programming Fundamentals: Introduction, Overview of Java, structure of a Java program, data types, variables-scope and lifetime, operators, control statements, classes, methods, command line arguments.

Unit II

Arrays: one-dimensional arrays, creating an array, declaration of arrays, initialization of arrays, two dimensional arrays. Inheritance, Interfaces: defining interfaces, extending interfaces, implementing interfaces.

Unit III

Packages: creation, importing a package and user defined packages.

Exception Handling: Introduction, types of exceptions, syntax of exception handling code, multiple catch statements, using finally statement, user-defined exceptions.

Unit IV

Basic I/O Streams: Java I/O classes and interfaces, Files, Stream and Byte classes. Character Streams, Serialization.

Exploring java.lang: Object, Wrapper classes, String, StringBuffer.

Suggested Reading:

- 1. Herbert Schildt, The Complete Reference Java, 7th Edition, Tata McGraw Hill, 2006.
- 2. James M Slack, Programming and Problem solving with JAVA, Thomson Learning, 2002.
- 3. C Thomas Wu, An Introduction to Object Oriented Programming with Java 5th edition, McGraw Hill Publishing, 2010.
- 4. Y. Daniel Liang, An Introduction to JAVA Programming, TMHI, 2009.
- 5. Kathy Sierra, Head First Java, 2/e, Shroff Publishers, 2012.

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E. V-SEMESTER BASICS OF 3-D PRINTING (Open Elective-IV)

Instruction: 1 Hour/week	SEE Marks: 50	Course Code	: OE500ME
Credits : 1	CIE Marks :30	Duration of SEE	: 2Hours

Course Objectives	Course Outcomes
The objective of the course	After completion of the course, the student will
is to	be able to
• understand the	1. understand the fundamentals of Additive
fundamentals of various rapid prototyping	manufacturing Technologies for engineering applications.
technologies with	2. Understand the methodology to
emphasis on FDM	manufacture the products using FDM
technology for	technology
application to various industrial needs.	study the applications, advantages and case studies of FDM technology.
	 identify different industrial sectors for application of AMT to reduce manufacturing cost and time.

UNIT-I

Introduction, Reverse engineering and its Methodology, Historical development, Advantages of 3-D printing, 3-D printing process chain, Classification of various 3-D printing processes.

Fused Deposition Modeling (FDM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies, Practical demonstration

UNIT-II

Applications of 3-D printing in various fields like aerospace, jewellery, medicine, forensic science and anthropology, visualization of bio-molecules, etc.

Learning Resources:

- 1. C K Chua, K F Leong, C S Lim, "Rapid Prototyping Principles and applications", 3rd Ed., World Scientific Publishing Co. Pvt. Ltd, 2010
- 2. Pham, D.T. and Dimov S.S., "Rapid Manufacturing", Springer, 2001
- 3. AmithabaGhose, "Rapid prototyping", Eastern Law house, 1997
- 4. Paul F. Jacobs, "Rapid Prototyping & Manufacturing" ASME Press, 1996

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E. V-SEMESTER INTRODUCTION TO ROBOTICS (Open Elective-V)

Instruction:2Hours /week	SEE Marks: 70	Course Code	:	OE510ME
Credits : 2	CIE Marks: 30	Duration of SEE	:	3 Hours

Course objectives	Course Outcomes
The objectives of this course are	On completion of the course, the student
to:	will be able to
Identify robots and its	1. list and explain the basic elements of
peripherals for satisfactory	industrial robots
operation and control of robots	2. analyse robot kinematics and its control
for industrial and non-industrial	methods.
applications.	3. classifythe various sensors used in
	robots for better performance.
	4. summarize various industrial and non-
	industrial applications of robots.

UNIT I - ROBOT BASICS

Robot-Basic concepts, Need, Law, History, Anatomy, specifications.

Robot configurations-cartesian, cylinder, polar and articulate.

Robot wrist mechanism, Precision and accuracy of robot.

ROBOT ELEMENTS

End effectors-Classification, Types of Mechanical actuation, Gripper design, Robot drive system

Types, Position and velocity feedback devices-Robot joints and links-Types, Motion interpolation.

UNIT II - ROBOT KINEMATICS AND CONTROL

Robot kinematics – Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation.

Control of robot manipulators – Point to point, Continuous Path Control, Robot programming

UNIT III - ROBOT SENSORS

Sensors in robot – Touch sensors-Tactile sensor – Proximity and range sensors. Force sensor-Light sensors, Pressure sensors,

 $\label{thm:continuous} \mbox{Introduction to Machine Vision and Artificial Intelligence.}$

UNIT IV - ROBOT APPLICATIONS

Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater, Defense, Disaster management.

Applications, Micro and Nanorobots, Future Applications.

Learning Resources:

- Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata – McGraw Hill Pub. Co., 2008.
- 2. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
- 3. Klafter.R.D, Chmielewski.T.A, and Noggin's., "Robot Engineering: An Integrated Approach", Prentice Hall of India Pvt. Ltd., 1994.
- 4. Fu.K.S, Gonzalez.R.C&Lee.C.S.G, "Robotics control, sensing, vision and intelligence", Tata- McGraw Hill Pub. Co., 2008
- 5. , Yu. "Industrial Robotics", MIR Publishers Moscow, 1985.

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E. V-SEMESTER BASICS OF ENTREPRENEURSHIP (Open Elective-V)

Instruction: 2 Hours / week	SEE Marks : 70	Course Code : OE520ME
Credits : 2	CIE Marks : 30	Duration of SEE : 3 Hours

Course objectives	Course Outcomes	
The objectives of this course are to: understand and discover entrepreneurship build a strong foundation for the students to start, build and grow a viable and sustainable venture develop an entrepreneurial outlook and mind set, critical skills and knowledge	On completion of the course the student will be able to: 1. understand entrepreneurship as a career option and develop customers, channels and traction 2. understand the method of creating business model and make a minimum viable product. 3. develop costing and pricing strategies 4. understand team building and its importance 5. create marketing and sales strategies for business and understand business regulations and government schemes.	

UNIT-I

Introduction to Entrepreneurship: Define Entrepreneurship, Entrepreneurship as a career option, Benefits and Myths of Entrepreneurship, Characteristics, Qualities and Skills of Entrepreneurship on Economy and Society

Opportunity and Customer Analysis: Identify your Entrepreneurial Style, Identify Business Opportunities, Methods of finding and understanding Customer Problems, Process of Design Thinking, Identify Potential Problems, Customer Segmentation and Targeting, Customer Adoption Process, Craft your Value Proportions, Customer-Driven Innovation.

UNIT-II

Business Model and Validation: Types of Business Models, Lean Approach, the Problem-Solution Test, Solution Interview Method, Difference between Start-up Venture and small Business, Industry Analysis, Identify Minimum Viable Product (MVP), Build-Measure-Lean Feedback Loop, Product-market fit test.

UNIT-III

Economics and Financial Analysis: Revenue sources of Companies, Income analysis and Cost Analysis-Product Cost and Operation Cost, Basics

of Unit Costing, Profit Analysis, Customer Value Analysis, Different Pricing Strategies, Investors Expectations, Practice Pitching to Investors and Corporate.

UNIT-IV

Team Building and Project Management: Leadership Styles, Team Building in Venture, Role of good team in Venture, Roles and Respondents, Explore Collaboration Tools and Techniques-brainstorming, Mind Mapping. Importance of Project Management, Time Management, Work Flow, Network Analysis Techniques.

Marketing &Business Regulations: Positioning, Positioning Strategies, Building Digital Presence and Leveraging Social Media, Measuring effectiveness of Channels, Customer Decision-making Process, Sales plans and Targets, Unique Sales Proposition (USP), Follow-up and Close Sales. Business Regulations of starting and operating a Business, Start-up Ecosystem, Government schemes.

Learning Resources:

- 1. Robert D Hisrich, Michael P Peters, Dean A Shepherd, "Entrepreneurship", Sixth edition, New Delhi, 2006.
- 2. Thomas W. Zimmerer, Norman M. Scarborough, "Essentials of Entrepreneurship and small business Management", Fourth edition, Pearson, New Delhi, 2006.
- 3. Alfred E. Osborne, "Entrepreneurs Toolkit", Harvard Business Essentials, HBS Press, USA, 2005
- 4. Madhurima Lall and Shikha Sahai, "Entrepreneurship", Excel Books, First Edition, New Delhi, 2006

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SCHEME OF INSTRUCTION AND EXAMINATION FOR BE VI-SEMESTER w.e.f. 2018-19 under CBCS (Students admitted in 2016-17)

S.	Course	Course	Scheme of Instruction		Scheme of Examination		Credits			
No	Code	Course Hrs / week		(Duration	Maximu	ım Marks	rec		
			L	Т	D	Р	in Hrs.	SEE	CIE	0
THE	ORY									
1	PC610EC	Digital Communication	3	1	-	-	3	70	30	3
2	PC620EC	Transmission Lines and Antennas	3	1	-	-	3	70	30	3
3	PC630EC	Microcontrollers and Applications	3	1	-	-	3	70	30	3
4	PC640EC	Computer Networks	3	-	-	-	3	70	30	3
5	HS500EH	Economics and Finance for Engineers	2	1	-	-	3	70	30	2
6	MC500EH	Human Values & Professional Ethics - II	1	-	-	-	2	50	30	1
7	HS610EH	FS - IV : Soft Skills	1	1	•	-	1.5	35	15	1
8	MC6XXEC	FS - IV : Technical Skills	1	1	-	-	1.5	35	15	1
9	OE6XXXX	Open Elective – VI	1	-	-	-	2	50	30	1
10	OE6XXXX	Open Elective – VII	2	-	-	-	3	70	30	2
PRA	CTICALS									
11	PC651EC	Analog & Digital Communication Lab	-	-	-	2	3	50	25	1
12	PC661EC	Microcontrollers Lab	-	-	-	2	3	50	25	1
13	PC671EC	Computer Networks Lab	-	-	-	2	3	50	25	1
	Total 20 6 - 6 740 345 23									
Grand Total 32							10	085		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER DIGITAL COMMUNICATION

Instruction: 3+1 Hrs /week	SEE Marks :70	Course Code : PC610EC	
Credits : 3	CIE Marks: 30	Duration of SEE: 3 Hrs	

	Course Objectives	Course Outcomes
1.	To understand the building blocks	At the end of the course, students
	of digital communication system.	will be able to:
2.	To analyze error performance of a	 Compare digital modulation
	digital communication system in the	techniques and their performance.
	presence of noise.	Understand different analog to
3.	To study various source coding and	digital conversion in different
	channel coding techniques.	applications
4.	To understand the concept of	Assess entropy and efficiency of
	spread spectrum communication	source coding techniques.
	system	4. Design block codes, convolution &
		cyclic codes.
		5. Analyze spread spectrum
		modulation techniques their
		acquisition and tracking circuits.

UNIT - I

Elements of Digital Communication System, Comparison of Digital and Analog Communication Systems. Analog to Digital Conversion, Quantization and Encoding techniques, PCM. Companding in PCM systems: μ -law and Alaw. Applications of PCM: PCM-TDM. Introduction to Linear Prediction Theory. Modulation and demodulation of DPCM and DM. Quantization noise and Slope overload error in DM. Modulation and demodulation of ADM. Comparison of PCM, DPCM, DM and ADM. SNR of PCM and DM. Vocoders.

UNIT - II

Uncertainty, Information and entropy. Source coding, Shannon – Fano algorithm and Huffman coding. Discrete memoryless channels, Probability relations in a channel, priori & posteriori entropies, cascaded channels, mutual information, Channel capacity, information rate and information capacity. Rate distortion.

UNIT - III:

Types of transmission errors, need for error control coding, Linear Block Codes (LBC): description of LBC, generation, Syndrome and error detection, minimum distance of a block code, error correcting and error detecting capabilities, Standard array and syndrome decoding, Hamming

codes. Binary cyclic codes (BCC): description of cyclic codes, encoding, decoding and error correction of cyclic codes using shift registers, BCH codes. Convolution codes: description, encoding and decoding.

UNIT - IV:

Base band digital data transmission, error probability, matched filter, correlation receiver, coherent and non-coherent ASK, FSK, PSK, DPSK and QPSK, and error probability. Need for MSK, Modulation, Comparison of digital carrier modulation schemes. M-ary signaling schemes. Synchronization methods.

UNIT - V

Need for spreading a code, generation and characteristics of PN sequences. Direct Sequence Spread Spectrum and Frequency hopping spread spectrum systems and their applications. Acquisition schemes for spread spectrum receivers, Tracking of FH and DS signals.

Suggested Reading:

- I. Simon Haykin, "Communication Systems," 4/e, Wiley India, 2011.
- 2. Herbert Taub, Donald L. Shilling & Goutam Saha, "Principles of Communication Systems," 3/e, TMH, 2008.
- 3. P. Ramakrishna Rao, "Digital Communication," 1/e, TMH, 2011.
- 4. A. Bruce Carlson and Paul B. Crilly, "Communication Systems," 5/e, 2011.
- 5. Sam Shanmugham.K., "Digital and Analog Communication Systems," Wiley, 1979.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER TRANSMISSION LINES AND ANTENNAS

Instruction: 3+1 Hrs /week	SEE Marks :70	Course Code : PC620EC	
Credits : 3	CIE Marks: 30	Duration of SEE: 3 Hrs	

	Course Objectives		Course Outcomes	
1.	Students will understand	At t	At the end of the course students will	
	antenna fundamentals and	be a	able to:	
	parameters	1.	Apply principles of electromagnetics to	
2.	Study the working of antennas at		explain antenna radiation	
	different frequencies	2. Identify basic antenna parameters		
3.	Acquire the knowledge of	3.	Design and analyze wire antennas,	
	different modes of wave		antenna arrays and aperture antennas	
	propagation	4.	Demonstrate the ability to measure	
			antenna parameters	
		5.	Identify and describe effects of	
			atmosphere on radio wave	
			propagation	

UNIT - I

Constant K filters: low pass, high pass, band pass, band elimination filter design; m-derived filters: low pass, high pass, band pass, band elimination filter design; composite filter design; Notch filter.

Transmission Lines – I: Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Lossless / Low Loss Characterization, Distortion – Conditions for Distortionless and Minimum Attenuation, Types of Loading.

UNIT - II

Transmission Lines – II: Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. UHF Lines as Circuit Elements: $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines – Impedance Transformations. Significance of Z min and Z max, Smith Chart – Configuration and Applications, Single and Double Stub Matching.

UNIT - III

Antenna fundamentals and wire antennas: Principles of radiation, retarded potential and isotropic radiator, Basic antenna parameters: patterns, radiation intensity, far field, near field, Gain and directivity, Friis transmission, Antenna Polarization, effective aperture, antenna temperature, aperture efficiency. Point sources, Current distribution,

infinitesimal dipole. Half-wave dipole, quarter wave monopole, Loop antenna, Far field pattern of circular loop with uniform current.

UNIT - IV

Antenna arrays: Arrays of point sources, two element array with equal and unequal amplitudes, different phases; Linear array with uniform distribution; binomial array; principle of pattern multiplication. Broadside and End fire arrays, effect of inter element phase shift on beam scanning. Effect of earth on vertical patterns and horizontal patterns; Turnstile antenna, Rhombic Antenna, Yagi - Uda Array and Log periodic array Antennas.

UNIT - V

VHF, UHF & MW antennas: Helical Antennas – Geometry, Helix modes, Design considerations for Mono-filar Helical antenna, Horn, Parabolic Reflector, Lens antennas. Microstrip antennas: different types, advantages and disadvantages of Microstrip antennas.

Suggested Reading:

- 1. Networks, Lines and Fields, John D. Ryder, PHI, 2nd ed., 1999
- 2. Edward C. Jordan and Kenneth G. Balmain, "Electromagnetic Waves and Radiating Systems," 2/e, PHI, 2001.
- 3. Constantine A. Balanis, "Antenna Theory: Analysis and Design," 3/e, John Wiley, 2005.
- 4. John D. Krauss, Ronald J. Marhefka & Ahmad S. Khan, "Antennas and Wave Propagation," 4/e, TMH, 2010.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER MICROCONTROLLERS AND APPLICATIONS

Instruction: 3+1 Hrs /week	SEE Marks :70	Course Code : PC630EC	
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs	

Course Objective	Course Outcomes		
1. To introduce 8051μc SoC architecture, programming of internal blocks, and interface with real world devices for designing microcontroller based electronic solution.	At the end of the course, students will be able to: 1. Differentiate between a microprocessor and microcontroller and choose a particular target for designing an application as per technology update. 2. Summarize the features of 8051 MCU and configure the internal registers. 3. Design programs using embedded C constructs with C51 MCU target for a given requirement. 4. Develop device drivers in embedded C for interfacing the real world I/O, memories, sensors and transducers. 5. Suggest other microcontroller families available and compare its performance		
	with 8051.		

UNIT - I

8051 Microcontroller: Introduction, Controller family, Internal architecture, Pin configuration, I/O port structure Memory organization, Stack organization.

Assembly language Programming with 8051: Instruction set, Data transfer, Arithmetic, logical and Branching instructions, Addressing modes.

UNIT - II

On chip peripheral interface and programming in Assembly language and C: 8051 timer in different modes, counter programming, 8051 Serial data communication; need of MAX232, Interrupt programming.

UNIT - III

Off chip peripheral interface and programming in C: Memory expansion, Off chip EPROM, SRAM, Expansion of I/O ports using 8255 PPI; Sensor interface – ADC; sampling Clock generation, DAC interface.

UNIT - IV

I/O Interfacing and programming in C: 8051µc Interface with Seven-segment display, LCD module, Keyboard, DC Motor and Stepper Motor interfacing, RTC Interfacing.

UNIT - V

Introduction to Advanced microcontrollers: Architectural features of MSP430x, ARM (Quantitative analysis only).

Applications of $8051\mu c$: PWM generation, Speed control in Industrial applications, Automotive and Home automation.

Suggested Reading:

- 1. Muhammad Ali Mazidi, Janice G. Mazidi & Rolin D. McKinlay (Author); 8051 Microcontroller and Embedded Systems, The: Pearson New International Edition 2nd edition; 2013. ISBN-13: 978-1292026572
- 2. Ayala K.J, "The 8051 Micro Controller Architecture, programming and Application," Penram International, 2007.
- 3. Davies J H, "MSP430 Microcontroller Basics" Elsevier India Pvt. Ltd.-New Delhi Edition: 2010
- 4. Andrew N.Slos, demonic symes, chris wrigth" ARM system developers guide designing and optimizing system s/w " Elsevier 1st edition.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER COMPUTER NETWORKS

Instruction: 3 Hrs /week	SEE Marks :70	Course Code : PC640EC	
Credits : 3	CIE Marks: 30	Duration of SEE : 3 Hrs	

	Course objectives	Course outcomes
1.	To understand the different	At the end of the course, students
	Topologies and configurations in	will be able to:
	the area of computer networks.	Analyze principles of LAN design
2.	To understand the terminology and	such as topology and configuration
	concepts of the OSI model and the	depending on types of users
	TCP/IP model.	accessing the network.
3.	To understand the state-of-the-art	Explore contemporary issues in
	technology in network protocols,	networking technologies
	network architecture.	Identify deficiencies in existing
4.	To study contemporary issues and	protocols, and then formulate new
	develop new protocols in network	and better protocols
	security	4. Analyze and Understand the skills of
		sub netting and routing
		5. To Apply and use of cryptography
		and network security in day to day
		applications.

UNIT - I

Data communication, Network Topologies: LAN, WAN, MAN, Types-Bus, Star, Ring, Hybrid. Line configurations. Reference Models: OSI, TCP/IP. Data Link Layer: Design issues, Framing, Error Detection and Correction, Flow control Protocols: Stop and Wait, Sliding Window, ARQ Protocols, HDI C.

UNIT - II

MAC Sub Layer: Multiple Access Protocols: ALOHA, CSMA, Wireless LAN. IEEE 802.2, 802.3, 802.11, 802.16 standards. Bluetooth, Bridges and Routers.

Circuit switching: Circuit Switching Principles and concepts. Packet switching: Virtual circuit and Datagram subnets.

UNIT - III

Network Layer: Network layer Services, Routing algorithms: Shortest Path Routing, Flooding, Hierarchical routing, Broadcast, Multicast, Distance Vector Routing, and Congestion Control Algorithms.

Internet Working: The Network Layer in Internet and ATM Networks.

UNIT - IV

Transport Layer: Transport Services, Elements of Transport Layer, Connection management, TCP and UDP protocols, ATM AAL Layer Protocol.

UNIT - V

Application Layer: Domain Name System, SNMP, Electronic Mail, World Wide Web.

Network Security: Cryptography Symmetric Key and Public Key algorithms, Digital Signatures, Authentication Protocols.

Suggested Reading:

- 1. Andrew S Tanenbaum "Computer Networks" 5/ed. Pearson Education, 2011.
- 2. Behrouz A. Forouzan "Data Communication and Networking" 3/e, TMH, 2008.
- 3. William Stallings "Data and Computer Communications", 8/e, PHI, 2004.
- 4. S.Keshav "An Engineering Approach to Computer Networks" 2/e, Pearson Education.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER ECONOMICS AND FINANCE FOR ENGINEERS

Instruction: 2+1 Hrs /week	SEE Marks :70	Course Code : HS500EH
Credits : 2	CIE Marks: 30	Duration of SEE : 3 Hrs

Course Objectives	Course Outcomes
 The objective of the 	At the end of the course, students will be able
Course is to equip the	to:
prospective engineers	1. Decide appropriate price for goods and services
with the concepts and tools of economics,	with the company's given cost structure for an estimated profit of the companies.
finance, cost and taxes for business decisions.	2. Analyze the given financial statements of a firm
TOI business decisions.	to understand its past financial performance in the market.
	3. Compare the long term financial investment
	proposals to decide whether a proposal is
	financially viable or not through capital budgeting techniques.
	Identify the suitable sources of finance for the company by considering the functions of major banks such as SBI and RBI
	5. Calculate the impact of the new tax policies on
	the company's financial structure/ individual incomes.

Unit I: Basics of Fconomics:

Scarcity Definition of Economics - Macro and Micro Economics - Managerial Economics - Meaning of a Firm - Objectives of a Firm - Profit Maximization - Demand Concept - Price Elasticity of Demand - Meaning of Supply - Equilibrium Price and Quantity - Production - Cobb Doughlas Production Function - Economies of Scale

Unit II: Cost and Price:

Cost - Meaning - Classification of Costs - Short run and Long run costs - Cost Sheet - Break even Analysis - Methods of Pricing (Problems on Cost Sheet, Breakeven Analysis and Methods of Pricing can be asked).

Unit III: Banking & Finance:

RBI and its role - Commercial Banks - Functions - Capital Budgeting - Discounting and Non discounting Techniques - Working Capital Management - Concepts and Components of Working Capital - Operating Cycle.

UNIT IV: Understanding Financial Statements:

Financial Statements - Meaning - Types - Purpose - Ratios (Liquidity, Solvency & Profitability Ratios) (Problems can be asked on Ratios)

Unit V: Direct & Indirect Taxes:

Heads of Income - Income from Salaries - Income from House Property - Income from Business - Income from Capital Gains - Income from Other Sources - Latest Tax Rates - GST - CGST - SGST - IGST - GST network.

Learning Resources :

- 1. S.P.Jain and K.L Narang., "Cost Accounting", Kalyani Publishers, Twentieth Edition Revised 2008.
- 2. S.P.Jain and K.L Narang., "Financial Accounting", Kalyani Publishers 2002.
- 3. Mehta P.L., "Managerial Economics: Analysis, Problems and Cases", Thirteenth Edition, Sultan Chand and Sons, Nineteenth Edition 2013.
- 4. M.Y.Khan and P.K. Jain., "Financial Management Text, Problems and Cases", Mc Graw Hill Education Private Limited, New Delhi.
- 5. Vinod K Singhania and Kapil Singhania., "Direct Taxes Law and Practice", Taxmann Publications, Sixtieth Edition 2018.
- 6. Dr, Vinod K Singhania., "Students' Guide to GST and Customs Law", Taxmann Publications, Edition 2018.
- 7. Muralidharan., "Modern Banking", Prentice Hall of India.

Reference Books:

- 1. M. L. Seth., "Micro Economics", Lakshmi Narain Agarwal.
- 2. Dr. R.P. Rustagi., "Fundamentals of Financial Management" Taxmann Publications.
- 3. Dr. D.M. Mithani, "Money Banking International Trade & Public Finance", Himalaya Publishing House 2014.
- 4. Rajesh., "Banking Theory and Practice", Tata Mc Graw Hill Publishing

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER HUMAN VALUES AND PROFESSIONAL ETHICS – II

Instruction: 1 Hrs /week	SEE Marks :50	Course Code: MC500EH	
Credits : 1	CIE Marks: 30	Duration of SEE : 2 Hrs	

	Course Objectives		Course Outcomes
1.	Get a holistic perspective of		he end of the course, students will
1. 2. 3. 4. 5.	-	be a 1. 2. 3. 4. 5.	he end of the course, students will ble to: Gain a world view of the self, the society and the profession. Make informed decisions. Start exploring themselves in relation to others and their work –constantly evolving into better human beings and professionals Inculcate Human values into their profession. Validate their aspirations through right understanding of human relationship and see the co-relation between the human values and prevailing problems.
			Strike a balance between physical, mental, emotional and spiritual parts their being.
		7.	Obtain a holistic vision about value- based education and professional ethics.

UNIT-I

A. DISTINCTION BETWEEN NEED AND GREED

Exercising the wisdom to distinguish need from greed.

B. IDEAL SELF-REAL SELF-

How to define the ideal-idealism at various levels- is it possible to reach idealism –Man as a pilgrim on a journey to idealism.

UNIT - II

- A. **RIGHTS AND RESPONSIBILITIES**-Educating an individual about rights and responsibilities –Safeguards-Stimulants-Social Justice-The three catalysts for deciding rights and responsibilities.
- B. **IMBIBING AND INCULCATING CIVIC SENSE AND CIVIC-VIRTUES**, The true meaning of Integrity -Honesty, Humility,

Openness, Transparency, Dedication, Reliability, Confidentiality, accountability, Collegiality, Sympathy, Trustworthiness, Co-operation, Courage.

- a. The moral dilemma of the Modern world, Respect for Self, Others and Work
- b. Respect for women at the workplace.

UNIT - III

MANAGING FAILURE-Identifying causes for failure and learning lessons-Using failure to score success-Role of self-confidence and personal ethics in coping with failure.

•	Anger/ Depression	•	Cruelty
•	Fear	•	Jealousy
•	Agitation	•	Desire
•	Failure	•	Cheating
•	Lethargy	•	Pride
•	Dishonesty	•	Greed
	•	•	Lying

UNIT-IV

STRESS MANAGEMENT- Identifying sources and levels of stress – Tackling stress and its associated negativity-Positive aspect of coping with stress- Some techniques to manage stress.

UNIT - V DEVELOPING EMOTIONAL INTELLIGENCE

Self-Awareness
Handling Emotions
Motivation
Empathy
Social skills

Suggested Readings:

- 1. B.L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 2. A.N Tripathy, 2003 Human values, New Age International Publishers.
- 3. EG Seebauer & Robert L. Berry,2000,Fundamentals of Ethics for Scientists and Engineers, Oxford University Press.
- 4. Mike Martin and Ronald Schinzinger "Ethics in Engineering "McGraw Hill

- 5. Charles E Haris, Micheal J Rabins, " Engineering Ethics "Cengage Learning
- 6. Caroline whitback, Ethics in Engineering Practice and Research, Cambridge University Press
- 7. Georgs Reynolds, Ethics in Information Technology", Cengage Learning
- 8. Charles D.Fleddermann, "Engineering Ethics", Pearson Education /Prentice Hall, New Jersey, 2004 (Indian Reprint)

Online Resources

- 1. Value Education website, Http://www.universalhumanvalues.info
- 2. UPTU website, Http://www.uptu.ac.in
- 3. story of stuff, Http://www.storyofstuff.com
- 4. AlGore, As Inconvenient Truth, Paramount Classics, USA
- 5. Charlie Chaplin, Modern Times, United Artists, USA
- 6. IIT Delhi, Modern Technology-The Untold story
- 7. Anand Gandhi, Right Here Right Now, Cyclewala production

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER FINISHING SCHOOL – IV: SOFT SKILLS

Instruction: 1+1 Hrs /week	SEE Marks :35	Course Code : HS610EH
Credits : 1	CIE Marks: 15	Duration of SEE : 1.5 Hrs

	Course Objectives	Course Outcomes
1.	This course aims at enhancing the	At the end of the course,
	employability skills. Students will be	students will be able to:
	trained in higher order thinking skills	 Understand the fundamentals
	including analytical skills, problem	concepts of Aptitude and verbal
	solving skills and critical & logical	skills
	reasoning skills. Students will be	Solve questions using short cuts
	trained to work systematically and	and smart methods
develop logical and analytical		Perform calculations with speed
	thinking.	and accuracy
2.	Students will be trained in the	4. Develop Analytical thinking and
	following areas	problem solving skills
	 Critical and Non-verbal reasoning 	
	2. Pure Maths	
	Verbal ability	
	4. Logical reasoning	
	5. Data Interpretation and Analysis	

UNIT I: VERBAL ABILITY

- Finding errors
- Vocabulary
- o Synonyms
- Antonyms
- Idioms and Phrases
- Fill in the blanks and sentence Jumbles
- o Reading comprehension

UNIT II: LOGICAL REASONING

- Logical Reasoning
- o Assignments
- Puzzles
- Blood relations
- o Syllogisms

UNIT III: CRITICAL AND NON VERBAL REASONING

- Critical Reasoning
- Nonverbal reasoning
- Figure series and completions

UNIT IV: QUANTITATIVE APTITUDE - PURE MATHS

- o Pure maths
- o Algebra
- o Probability
- Permutations and combinations

UNIT V: DATA INTERPRETATION AND ANALYSIS

- o Data Interpretation
- o Line graph
- o Pie chart
- o Bar Graph
- Tabulations

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER FINISHING SCHOOL – IV: TECHNICAL SKILLS APPLICATIONS OF JAVA

Instruction: 1+1 Hrs /week	SEE Marks :35	Course Code : MC610EC
Credits : 1	CIE Marks: 15	Duration of SEE: 1.5 Hrs

Course Objective	Course Outcomes
1. To familiarize the students with	At the end of the course, students
advanced Java programming	will be able to:
concepts, simple graphical user	 Write good java programs in GUI
interfaces, examine case studies	using SWING and handling different
and have practice in developing	kinds of event on it including
small-scale programs ,which is	applying the concepts of
done using Object Oriented	multithreading.
Programming techniques to develop	Update and retrieve the data from
Java applications in a Windows	the databases using SQL
based environment	Implements a data tier based on
	JDBC.
	4. Analyze business tier and business
	logic based on EJB
	5. Ability to implements a web tier
	using Java Servlets and JSP
	supporting Java Beans and RMI.

UNIT - I

Working with Databases: Introduction to SQL and Relational Databases, Using java with databases: Java and CGI calls, JDBC API, Server side database Access. IO streams, IO exceptions.

UNIT - II

Files - streams - byte streams, character streams, text input/output, binary input/output, random access file operations, File management using File class.

Connecting to Database - JDBC Type 1 to 4 drives, connecting to a database, querying a database and processing the results, updating data with JDBC.

UNIT - III

Package Java. net: Datagram Packet, Datagram socket, Inet Address, Server Socket, Socket, URL, and URL Connection.

UNIT - IV

Introduction to CGI, PERL, SERVELETS, RMI, SWINGS, CORBA, EJB, activeX.

Suggested Reading

- 1. Thomas. A. Powell, HTML- The Complete Reference, TMH, 2002.
- 2. Herbert Schildt, JAVA The Complete Reference, TMH, 2014, 9th Ed
- 3. Robert Orfali and Donharkey, Client Server Programming with JAVA and CORBA, John Wiley, 2nd ed., 1998.
- 4. Comer, Internet Book everything you need to know about computer networking & How Internet Works, 3rd PHI, 2002

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER FINISHING SCHOOL – IV: TECHNICAL SKILLS CUSTOMER RELATIONSHIP MANAGEMENT (CRM), BUSINESS PROCESS MANAGEMENT (BPM)

Instruction: 1+1 Hrs /week	SEE Marks :35	Course Code : MC620EC
Credits : 1	CIE Marks: 15	Duration of SEE: 1.5 Hrs

Course Objective	Course Outcomes
1. This Course is intended for	At the end of the course student will be
System Architect candidates	able to:
who want to create Pega 7.2	1. Use Pega 7.2 tool and technology to
Case-Management solutions.	rapidly prototype a simple case-
	management application.
	2. Create case stages and steps,
	implement processes, define properties,
	create a user interface, and create
	business rules and processes.
	3. Use and create Declare Expression Rules
	and use Declarative Rules Inspector.
	4. Implement business policies with
	decision rules.
	5. Define best practices and design
	patterns for implementing case-based
	business applications.

UNIT - I

Pega's Business Application Platform: The Pega Platform, Principles of application development, Best practices and guardrails Prototyping an Application using Pega Express: Designing a case life cycle, Assigning work, Enforcing service levels, Creating user views. Case Design using Designer Studio: Requirements management, Managing case life cycle exceptions, Adding optional business process events, Sending correspondence, Guiding users through a business process, Designing complex process flows.

UNIT - II

Report Planning and Design: Process visibility through business reporting Application Design: The role of the system architect, The building blocks of a Pega application, Accessing applications, Assessing guardrail compliance Case Design: Creating cases and child cases

UNIT - III

Dta Model Design: Data elements in Pega applications, Setting property values automatically, Setting property values declaratively, Passing data to another case, Reviewing application data Process Design: Activities, Configuring a work party, Configuring a service level agreement, Routing assignments, Configuring correspondence, Circumstancing rules.

UNIT - IV

Decision Design: Automated decisions in Pega applications, Configuring when rules, Configuring decision tables and decision trees UI Design: Designing a UI form, Reusing text with paragraph rules, Configuring responsive UI behavior, Designing a dynamic UI, Validating user data

UNIT - V

Report Design: Creating reports, Optimizing report data, Data Management: Caching data with data pages, Managing reference data, Integration in Pega applications, Creating a connector.

Application Debugging: Debugging Pega applications

Reference:

https://pdn.pega.com/

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER ANALOG AND DIGITAL COMMUNICATION LAB

Instruction: 2 Hrs /week	SEE Marks :50	Course Code : PC651EC
Credits : 1	CIE Marks: 25	Duration of SEE: 3 Hrs

	Course Objectives	Course Outcomes
1.	To apply the knowledge	At the end of the course student will be able
	of Analog communication	to:
	to perform different	1. Apply the knowledge of modulation &
	Analog modulation	demodulation to different modulation
	schemes and calculate	techniques
	modulation index.	2. Analyze modulation & demodulation of PCM
2.	To analyse the various	3. Analyze modulation & demodulation of Delta
	digital modulation	modulation
	techniques.	4. Estimate the modulation & demodulated
3.	To study different Analog	output of ASK, FSK, PSK.
	and digital multiplexing	5. Study the working of modem. Measure
	techniques.	attenuation, NA, losses of optical fiber cable.

(A) Experiments on Analog Communication

- 1. AM, FM generation and detection
- 2. Balanced Modulator
- 3. Pre emphasis and De-emphasis circuits
- 4. Radio Receiver Measurements: Sensitivity, Selectivity and Fidelity
- 5. Sampling and reconstruction
- 6. PAM, PWM, and PPM generation and detection
- 7. Time Division, Frequency Division Multiplexing and De-multiplexing
- 8. PLL Characteristics
- 9. Spectral Analysis of Video signals generated by TV demonstrator Kit and Pattern Generator using Spectrum analyzer
- 10. Mixer Characteristics

(B) Experiments on Digital Communication

- 1. PCM generation and detection
- 2. Error control coding
- 3. Data formats / channel encoding and decoding.
- 4. Linear Delta, Adaptive Delta Modulation and Demodulation.
- 5. ASK, FSK, BPSK & QPSK generation and Detection.
- 6. Minimum Shift Keying generation & detection
- 7. Optical Fibre measurements: Numerical aperture, Attenuation, E-O and O-E characteristics
- 8. Digital Fibre Optic Multiplexed Link
- 9. Modem characteristics.
- 10. Wavelength Division Multiplexing

Note:

1. Minimum of **5** from Part A and **5** from Part B is mandatory.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER MICROCONTROLLER LAB

Instruction: 2 Hrs /week	SEE Marks :50	Course Code : PC661EC
Credits : 1	CIE Marks: 25	Duration of SEE: 3 Hrs

Course Objective	Course Outcomes
1. To familiarize students	At the end of the course student will be
with the programming	able to:
aspects of assembly	1. Apply knowledge in writing the programs
language and C	using keilµVision4 software for
programming with 8086μp	microcontroller and Masm assembler tool for
and 8051μc in interfacing	Microprocessor.
with real world using X86	2. Generate a suitable Interface with onchip
kits and perform virtual	peripherals of 8051µc.
design simulation on	3. Interface off chip peripherals by
proteus 7.2 for 8051	programming the interrupts to meet the
microcontroller in	design solution
embedded 'C' with (μ	4. Design and execute a mini project based on
vision-4) IDE.	given specifications using modern software
	tools.

PART – A

[Experiments on assembly language programming for 8086 μP using Assembler]

- 1. Execution of basic programs on 8086 microprocessor (8 bit and 16 bit arithmetic operations).
- 2. Programs using different addressing modes.
- 3. Single byte, multi byte binary and BCD addition and Subtraction.
- 4. Code conversions.
- 5. String Searching and Sorting
- 6. Generation of waveforms and gating applications using 8253/8254 timers.
- 7. Generation of waveforms using DAC interface.
- 8. Monitor utilities of 8086 kit for Keypad/displaying results.

PART - B

[Experiments on Embedded C programming for 8051 μ C using Keil IDE]

- 1. LED toggle, Switch control logics in polling mode.
- 2. Timer and counter programming.

- 3. Square wave generation with variable duty cycle (PWM).
- 4. Interrupt programming
- 5. Serial communication using RS 232 UART protocols.
- 6. Interfacing for A/D applications.
- 7. Program to control stepper motor and DC motor.
- 8. LCD display interfacing (4-bit and 8-bit mode).
- 9. Keypad interfacing.

General Note:

- 1. At least 7 experiments from each part.
- 2. A total of not less than 14 experiments must be carried out during the semester.
- 3. Analysis and design of circuits, wherever possible should be carried out using SPICE tools.

Special Note:

- Sessional marks are to be awarded as per the following breakup.
- 20 marks for the regular lab exercises and internal exam.
- 5 marks for the mini project-cum-design exercise(s).

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING SYLLABUS FOR B.E.- VI SEMESTER COMPUTER NETWORKS LAB

Instruction: 2 Hrs /week	SEE Marks :50	Course Code : PC671EC
Credits : 1	CIE Marks: 25	Duration of SEE : 3 Hrs

Course Objective	Course Outcomes
1. To provide comprehensive	At the end of the course student will be
knowledge of networking	able to:
devices, tools and skills	1. Implement IP addressing schemes and
required to implement, test	different subnetting scenarios.
and trouble computer	2. Perform basic configurations of networking
networks.	devices like switches and routers
	3. Build and implement simple networking
	topologies and troubleshooting the
	networks.
	4. Implement and troubleshoot virtual LANs
	and inter-VLAN routing.
	5. Implement and test routing protocols like
	RIPv1, RIPv2, single-area and multi-area
	OSPF.

Experiments

- Getting started with Packet Tracer tool and Internetworking Operating System.
- 2. Implementation of different subnetting scenarios and IP addressing schemes
- 3. Basic configuration of networking devices
- 4. Building and troubleshooting different networking topologies
- 5. Building and testing Wired Local Area Networks
- 6. Building and testing Wireless Local Area Networks
- 7. Implementation and understanding of different servers like HTTP,TFP,TFTP,DNS
- 8. Creating and testing Wide Area Networks
- 9. Implementation of routing protocols
- 10. Implementation of Virtual Local Area Networks(VLAN) and inter VLAN routing
- 11. Testing and troubleshooting networks with Protocol Data Units
- 12. Implementation of access lists for traffic control in networking
- 13. Implementation of Gateway protocols (Boarder Gateway Protocols)
- 14. Experiments on DATA LINK LAYER

OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS IN B.E- VI SEMESTER (2018-19) Engineering Branches

Dept.	Title	Code	credits	
	Open Elective VI (Semester - VI)			
Civil	Intelligent Transportation System	OE610CE	1	
CSE	Introduction to Operating Systems	OE610CS	1	
ECE	Consumer Electronics	OE610EC	1	
EEE	Solar Power and Applications	OE610EE	1	
IT	Introduction to Web Technologies	OE610IT	1	
Mech.	Basics of Mechatronics	OE600ME	1	
	Open Elective VII (Semester - VI)			
Civil	Integrated Solid Waste Management	OE620CE	2	
CSE	Introduction to Databases	OE620CS	2	
ECE	Electronics for Automotive Applications	OE620EC	2	
EEE	Programming For Engineers	OE620EE	2	
IT	Statistical Programming using R	OE620IT	2	
Mech.	Optimization Methods for Engineers	OE610ME	2	

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR B.E. VI SEMESTER INTELLIGENT TRANSPORTATION SYSTEMS (OPEN ELECTIVE – VI)

Instruction:	1 hr/ Week	SEE marks:50	Course Code	:	OE610CE
Credits:	1	CIE marks:30	Duration of SEE	:	2 hrs

COURSE OBJECTIVES	COURSE OUTCOMES	
Objectives of this course are to:	Upon the completion of this course the students will be expected to:	
Impart knowledge on advanced transportation concepts in the field of ITS.	 Explain the concepts of ITS data collection techniques and its architectural framework. Characterize ITS functional areas for transportation planning. Describe the range of technologies involved in the delivery of ITS systems Investigate and analyse the current applications and trends in the context of ITS Present practical examples of ITS 	

UNIT 1:

Introduction to Intelligent Transportation Systems (ITS): Definition of ITS and Identification of ITS Objectives, Historical Background, Benefits of ITS - ITS Data collection techniques - Detectors, Automatic Vehicle Location (AVL), Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection, ITS architecture framework.

UNIT 2:

ITS functional areas – Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial Vehicle Operations (CVO), Advanced Vehicle Control Systems (AVCS), Advanced Public Transportation Systems (APTS), Advanced Rural Transportation Systems (ARTS)

Suggested Books:

- 1. ITS Hand Book 2000: Recommendations for World Road Association (PIARC) by Kan Paul Chen, John Miles.
- 2. Sussman, J. M., Perspective on ITS, Artech House Publishers, 2005.

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR BE VI-SEMESTER INTEGRATED SOLID WASTE MANAGEMENT (Open Elective – VII)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code: OE620CE
Credits : 2	CIE Marks: 30	Duration of SEE : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES	
The objectives of the	Upon the completion of the course, students are	
course are to	expected to	
1. Integrate technical	1. Assess the implications of production,	
solid waste	characteristic and environmental impact of Solid	
management options	Waste Management based on its sources.	
and imposed	2.Assess the components of Biomedical and	
environmental	Radioactive wastes.	
legislation for the	3.Narrate the management methods based on	
guidance to the safe	standards.	
solutions.	4. Outline the phases of generation to disposal of	
	E-waste with the global strategic terms of	
	Recycling	

UNIT-I

Solid Waste and their Handling: Definition of solid wastes — types of solid wastes — Sources — Industrial, mining, agricultural and domestic — Characteristics. Solid waste Problems – impact on environmental health

UNIT-II

Biomedical Waste Management: Classification, collection, segregation Treatment and disposal.

UNIT-III

Radioactive waste: Definition, Low level and high level radioactive wastes and their management, Radiation standards.

UNIT-IV

E-Waste Management: Waste characteristics, generation, collection, transport and disposal, regulatory aspects of e waste, global strategy, recycling.

Learning Resources:

- 1. Hazardous waste management by Prof. Anjaneyulu.
- 2. Standard handbook of Hazardous waste treatment and disposal by Harry M. Freeman, McGraw Hill 1997.
- 3. Management of Solid waste in developing countries by Frank Flintoff, WHO regional publications 1976.
- 4. http://nptel.ac.in/courses/

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR B.E VI SEMESTER INTRODUCTION TO OPERATING SYSTEMS (Open Elective-VI)

Instruction: 1 Hr /week	SEE Marks :50	Course Code :OE610CS
Credits : 1	CIE Marks: 30	Duration of SEE : 2 Hrs

Course objective	Course outcomes
At the end of the Course students should be able to:	At the end of the Course students will be able to:
 Understand different Operating system Structures, Services and threading models 	 Differentiate Operating system structures to show the evaluation of an operating system Analyze the role of an Operating system in executing tasks on a system Distinguish single threaded and multi threaded models of execution Compare CPU scheduling algorithms to find effective algorithm for a given instance of process

UNIT-I

Introduction to operating systems: Definition, Mainframe, Multiprocessor, Clustered and Real time systems, Distributed, OS System structure, Unikernel, OS Services, Virtual machines, Containers, System calls.

UNIT-II

Process: Process concept, Process Scheduling, Inter-process communication, Threads, Multithreading Models.

CPU Scheduling: Scheduling Criteria, Scheduling Algorithms, Multiprocessor scheduling.

Suggested Books:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, 9th Edition (2016), Wiley India.

Reference Books:

- Andrew S. Tanenbaum, Modern Operating Systems, 2nd Edition (2001), Pearson Education, Asia.
- 2. Dhananjay, Dhamdhere.M, Operating System-concept based approach, 3rd edition (2009), Tata McGraw Hill, Asia
- 3. Robet Love, Linux Kernel Development, (2004)Pearson Education
- 4. Richard Stevens, Stephen Rago, Advanced Programming in the UNIX Environment, 3rd Edition (2013), Pearson Education

Online Resources:

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-828-operating-system-engineering-fall-2012/

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SYLLABUS FOR BE VI SEMESTER INTRODUCTION TO DATABASES (Open Elective-VII)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code: OE620CS
Credits : 2	CIE Marks: 30	Duration of SEE: 3 Hrs

Course Objectives	Course Outcomes	
Students should be able	At the end of the course, students will be able to	
to		
 Identify different issues involved in the design and implementation of a database system. Understand transaction processing. 	 Identify the functional components of database management system. Create conceptual data model using Entity Relationship Diagram Transform a conceptual data model into a relational model Design database using normalization techniques 	
	4. Apply indexing and hashing techniques for effective data retrieval	

UNIT-I

Introduction: Database System Application, Purpose of Database Systems, View of Data, Database Languages, Relational Database, Database Architecture, Database Users and Administrators.

Database Design and E-R Model: Overview of the Design Process, the E-R Model, Constraints, E-R Diagrams.

UNIT-II

Relational Model: Structure of Relation Database, Relational Algebra Operations, Modification of the Database.

Structured Query Language: Introduction, Basic Structure of SQL Queries, Set Operations, Aggregate Functions, Null Values, Nested Sub queries, Views, Join Expressions.

UNIT-III

Relational Database Design: Features of Good Relational Designs, Atomic Domains and first Normal form, Decomposition Using Functional Dependencies, Functional Dependency Theory.

UNIT-IV

Indexing and Hashing: Basic Concepts, Ordered Indices, B+ Tree Index Files, B-Tree Files, Multiple – Key Access, Static Hashing, Dynamic Hashing.

Transaction Management: Transaction concept, Storage Structure, Transaction Atomicity and Durability, Transaction Isolation and Atomicity, Serializability, Recoverability.

Suggested books:

1. Abraham Silberschatz, Henry F Korth, Sudharshan S, Database System Concepts, 6th Edition(2011), McGraw-Hill International Edition.

Reference Books:

- 1. Date CJ, Kannan A, Swamynathan S, An Introduction to Database System, 8th Edition(2006) Pearson Education.
- 2. Raghu Ramakrishna, and Johannes Gehrke, Database Management Systems, 3rd Edition(2003), McGraw Hill.
- 3. RamezElmasri, Durvasul VLN Somyazulu, Shamkant B Navathe, Shyam K Gupta, Fundamentals of Database Systems, 4th Edition(2006), Pearson Education.
- 4. Peter rob, Carlos coronel, Database Systems, (2007), Thomoson.

Online resources:

1. http://nptel.ac.in/courses/106106093/

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS FOR B.E. VI-SEMESTER CONSUMER ELECTRONICS (Open Elective -VI)

(for other Departments)

Instruction: 1 Hrs /week	SEE Marks : 50	Course Code : OE610EC
Credits : 1	CIE Marks: 30	Duration of SEE : 2 Hrs

Course Objective	Course Outcomes
1. Upon completion of the	At the end of the course, students will be
subject, the student	able to:
shall know the basics of	1. List technical specification of electronics
Electronics, operations	Audio / Video systems.
of various Audio & Video	2. Understand the working of microphones
Systems, Office & Home	and speakers and their application in Audio
appliances and advance	systems.
consumer electronic	3. Understand the basic functions of
gadgets used in our	consumer electronic goods like cell phones,
day-to-day actives.	ATMs.
	4. Troubleshoot consumer electronic products
	like TV, Washing machine and AC.

UNIT - I

Brief history and development of Electronics – Basic Electronic Components - DC & AC –Sources, Kirchoff's Laws, ADCs, Frequency spectra - Ranges (Audio, Video, RF UHF, VHF, Microwave), Audio System - working principles, components - Microphones and Speakers, Principles of Video Processing and Displays (LCD, LED displays), Analog and Digital Video standards.

UNIT - II

Telecommunication Systems: Basics of Telephone system, Caller ID Telephone, Intercoms, Cordless Telephones, Cellular mobile systems, Basics of satellite communication.

Office Electronics: Automatic Teller Machines, Facsimile machines, Digital Diaries, Safety and security systems.

Home Electronics: Digital Camera system, Microwave ovens, Washing Machines, Air Conditioners and Refrigerators, Troubleshooting.

- Mitchel Schultz 'Grob's Basic Electronics', Mc Graw Hill Publishers, 12/e, 2016.
- 2. A.M. Dhake 'Television and Video Engineering', McGraw Hill Education, 2/e, 2014.
- 3. B.R. Gupta and V. Singhal, "Consumer Electronics", S.K. Kataria& Sons, 2013.
- R.R.Gulati. 'Monochrome and Color Television' New Age International Publisher, 2/e, 2010.
- 5. S.P. Bali, 'Consumer Electronics', Pearson Education, 2008.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SYLLABUS FOR B.E. VI-SEMESTER ELECTRONICS FOR AUTOMOTIVE APPLICATIONS (Open Elective-VII)

(for other Departments)

Instruction: 2 Hrs /week	SEE Marks: 70	Course Code : OE620EC
Credits : 2	CIE Marks: 30	Duration of SEE: 3 Hrs

	Course Objectives		C	ourse	Out	comes	3
1.	The student shall know the basics	At	the	end	of	the	course,
	of Electronics for Automotive	stu	dents	will be	e abl	e to:	
	Applications, operation of various	1.	Appre	ciate th	ie ope	eration	of
	electronics modules		variou	s electr	onic	modul	es, their
2.	The student shall know the		function	onality			
	various transducers and sensors	2.	Under	stand v	ariou	is func	tions of
	used in automotive environment		modul	es like	EBD,	ABS, o	cruise
3.	The student shall acquire good		contro	l etc			
	knowledge about various	3.	Under	stand t	he Ad	dvance	d Driver
	electronic modules		Monito	oring Sy	ystem	ıs (ADI	MS) and
			safety	sensor	s in a	automo	otive
			enviro	nment			
		4.	Appre	ciate th	ie adv	vances	in
			autom	otive e	lectro	onic sy	stems like
			driverl	ess car	s, co	llision a	avoidance
			systen	ns etc.			

UNIT - I

Introduction to sensors and transducers: displacement, position, proximity, acceleration, velocity, motion, rotation, force, fluid pressure, liquid flow, liquid level, temperature, light, smoke, and gas sensors. Selection of sensor.

UNIT - II

Data acquisition and Signal conditioning: various signal conditioning modules. Use of data acquisition. Fundamentals of Analog to digital conversion, sampling, amplifying, filtering, noise reduction. Criteria to choose suitable data acquisition equipment.

UNIT - III

Introduction to systems: Measurement and control. Basic system models. Mathematical models. Mechanical system building blocks, Electrical system building blocks, Fluid system building blocks and Thermal system building blocks. Engineering systems: Rotational – translational, Electromechanical, hydraulic-mechanical.

UNIT - IV

Engine management systems – Various sensors used in system – Electronic transmission control vehicle safety system – Electronic control of braking and traction.

Body electronics – Infotainment systems – Navigation systems – Application of Control elements and control methodology in automotive System.

- Tom Denton "Automobile Electrical and Electronic Systems" 5/e, Routledge, 2017.
- De Silva, "Mechatronics", First Indian Reprint, (Taylor & Francis), Yesdee Publications, 2013.
- 3. William B. Ribbens, "Understanding Automotive Electronics: An Engineering Perspective" 7/e, Butterworth–Heinemann, 2012.
 - 4. W. Bolton, "Mechatronics: Electronic control systems in mechanical and electrical Engineering", 3/e, Pearson Education, 2008.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SYLLABUS OF B.E VI- SEMESTER SOLAR POWER AND APPLICATIONS (Open Elective – VI)

Instruction: 1 Hr /week	SEE Marks :50	Course Code :OE610EE
Credits : 1	CIE Marks: 30	Duration of SEE: 2 Hrs

Course objective:	Course Outcomes:	
To impart the basics of solar	A student will be able to	
energy harnessing and solar	 Identify and choose proper type of 	
panel and array.	meter for solar radiation measurement.	
	2. Use proper solar PV system according	
	to the load requirements.	
	Categorize and compare photovoltaic	
	cells.	
	Apply the knowledge of solar energy.	

Unit - I

Solar Energy Basics: Sun as a source of energy, the Earth, Radiation Spectrums, Extraterrestrial and Terrestrial Radiations, Depletion of solar Radiation, Pyranometer, Pyrheliometer, Sunshine Recorder, Solar Collectors, Solar Water Heater, Solar Cookers and Solar Thermo-Mechanical Systems.

Unit - II

Solar Photovoltaic Systems: Solar Cell fundamentals, Cell characteristics, Cell classification, Module, Panel and Array, Maximizing the Solar PV output and load matching, MPPT, Stand-Alone Solar PV system, Grid-Interactive Solar PV system, Water Pumping and lighting.

Suggested Reading:

- 1. B H Khan, Non-Conventional Energy Resources, 2nd Edition, Tata McGraw Hill.
- 2. G. D. Rai, Non-Conventional Energy Sources, 13th Reprint 2014, Khanna Publications.

Online Resource:

- 1. https://drive.google.com/file/d/
- 2. <u>www.pdfdrive.net</u>
- www.edx.org

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SYLLABUS OF B.E VI- SEMESTER PROGRAMMING FOR ENGINEERS (Open Elective – VII)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code : OE620EE
Credits : 2	CIE Marks: 30	Duration of SEE : 3 Hrs

Course objective:	Course Outcomes:
To provide fundamental	A student will be able to
knowledge of programming	1. Use arrays and matrices for numerical
language for solving	problems solving.
problems.	2. Represent data and solution in graphical
	display.
	3. Create easily programmable graphical user
	interface.
	4. Write scripts and functions to easily execute
	series of tasks in problem solving.

Unit - I

Working with matrices and arrays:

Generating matrices, load functions, M-files, Concatenation, deleting rows and columns, linear algebra, arrays, multivariate data, scalar expansion and logic scripting.

Unit - II

MATLAB Plotting:

Plotting process, graph components, figure tools, arranging graphs, select plot types, editing plots and basic plotting functions.

Unit - III

Graphics:

Printing Graphics, Handle Graphics and animations.

Creating GUI:

Layout of GUI and programming a GUI.

Unit - IV

Programming:

Flow control, other data structures, scripts and functions.

- 1. Getting started with MATLAB (Version 7) The Math works.
- 2. Getting started with MATLAB "A quick introduction for scientist and engineers by RudraPratap, Oxford publications.

DEPARTMENT OF INFORMATION TECHNOLOGY SYLLABUS OF B.E VI- SEMESTER INTRODUCTION TO WEB TECHNOLOGIES (Open Elective-VI)

Instruction: 1 Hrs /week	SEE Marks :50	Course Code :OE610IT
Credits : 1	CIE Marks: 30	Duration of SEE: 2 Hrs

Course Objectives	Course Outcomes	
The course will enable the	At the end of the course student will	
students to:	be able to:	
Acquire basic skills for	1. Develop and publish Web pages using	
designing static and dynamic	Hypertext Markup Language .	
Web Applications using	2. Optimize page styles and layout with	
HTML, CSS and Javascript.	Cascading Style Sheets.	
	3. Make use of concepts in Java script	
	for creating a dynamic web	
	applications.	
	4. Implement event handlers to respond	
	to various events.	

UNIT-I:

Introduction: World Wide Web, Web Browsers, Web Servers, URL, HTTP. HTML: Standard HTML document structure, Basic Tags, Images, Hypertext Links, Lists, Tables, Frames. CSS: In-line style sheets, Internal Style sheets and External Style sheets.

UNIT-II

JavaScript: Introduction, Basics of java script-variables, data types and operators, Control Structures, Arrays, Functions, HTML Forms, Events and event handling.

- 1. "Web Technologies", 7th Edition, Uttam K.Roy,2012.
- 2. "Internet & World Wide Web How to Program", 5/e, Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, 2012.

DEPARTMENT OF INFORMATION TECHNOLOGY SYLLABUS OF B.E VI- SEMESTER STATISTICAL PROGRAMMING USING R (Open Elective-VI)

Instruction: 2 Hrs /week	SEE Marks :70	Course Code :OE620IT
Credits : 2	CIE Marks: 30	Duration of SEE: 3 Hrs

Course Objectives	Course Outcomes	
The course will enable	At the end of the course student will be	
the students to:	able to:	
The course will enable the students to apply the R programming language in the analysis of Statistical data.	 Write simple programs in R language to manipulate and visualize the data. Write complex program using different constructs of R language to solve simple problems. Use R programming language in the simulation of different types of random variables. 	
	4. Write programs using R language in the analysis and computation of different matrix operations.	

Unit I: Introduction to R Language

Basic features of R, Built-in functions, logical vectors and relational operators, Data input and output, programming statistical graphs- High-level plots, low level graphic functions.

Unit II: Programming with R

Flow control, Managing complexity through functions, Miscellaneous programming tips, Debugging and maintenance, Efficient programming.

Unit III: Simulation

Montecarlo simulation, Generation of pseudo random numbers, Simulation of other random variables-Bernouli, Binomial, Poisson, Exponential and Normal random variables.

Unit IV: Computational Linear Algebra

Vectors and matrices in R, Matrix multiplication and inversion, Eigen values and Eigen vectors

- 1. A first Course in Statistical Programming with R, W. John Braun, Duncan J. Murdoch, Cambridge University Press, 2007.
- 2. https://cran.r-project.org/manuals.htm

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E. VI-SEMESTER BASICS OF MECHATRONICS (OPEN ELECTIVE -VI)

Instruction:1Hrs /week	SEE Marks: 50	Course Code : OE600ME
Credits : 1	CIE Marks: : 30	Duration of SEE : 2Hrs

Course objectives	Course Outcomes
The objectives of this course are	On completion of the course, the student will
to:	be able to:
1. identify the need for	1. interpret the importance of mechatronics
mechatronics and its	and elements involved
applications	2. design various fluid power systems for
2. study various fluid power	mechatronics applications.
systems	3. Study various industrial electronic devices
3. access various electronic	and integrated circuits.
components and devices	4. analyze various measurement systems
and design mechatronic	and and to study micro controller based
systems	CNC machines.

UNIT - I

Introduction to mechanization & automation.

Concept of Mechatronics: Flow chart of mechatronics systems, Actuators and control system, Application in industries.

Introduction to drive mechanisms and electrical actuators: servo motors and stepper motors.

Introduction to fluid power systems: Industrial pneumatics and hydraulics, Merits of fluid power systems, Pneumatic and hydraulic elements and their symbols, Study of hydraulic control values, pumps & accessories, Hydraulic circuits and electro – hydraulic circuits.

UNIT - II

Introduction to industrial electronic devices: Diodes, Transistors, Silicon controlled Rectifiers (SCR), Integrated Circuits (IC)

Measurement systems: sensors, digital-to-analog and analog-to-digital conversion.

Introduction to microprocessor & micro controller: Applications of mechatronics in the design of modern CNC machines.

- 1. W. Bolton, "Mechatronics", 3rd Ed., Pearson Education, India, 2007
- 2. HMT Limited, "Mechatronics, Tata Mc.Graw– Hill Publishing Company Limited; New Delhi, 1998.
- Michael B Histand& David G. Alciatore, "Introduction to Mechatronics and Measurement systems", 4th Ed., Tata McGraw-Hill International edition, 2012

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E. VI-SEMESTER OPTIMIZATION METHODS FOR ENGINEERS (OPEN ELECTIVE -VII)

Instruction: 2 Hours /week	SEE Marks : 70	Course Code :	OE610ME
Credits : 2	CIE Marks: 30	Duration of SEE	: 3 Hours

Course objectives	Course Outcomes	
The objective of this course	On completion of the course, the student will	
is to:	be able to:	
understand Linear & non- linear programming, transportation modeling , CPM & PERT for project scheduling and control.	 explain simplex, dual simplex, revised simplex and sensitivity analysis for shop floor problems. Solve transportation model problems and their optimization using Modi method. apply unconstrained and constrained methods like Univariate, steepest descent, Newton etc. for Non linear 	
	programming. 4. apply the techniques like CPM and PERT for project management.	

Unit-I

Optimization-An overview

Meaning of Optimization-Origin of Optimization-Introduction to Linear programming problems (LPP) -Formulation of LPP- Graphical method, simplex method

Unit-II

Advanced topics in Linear programming

Duality in LPP, Differences between primal and dual, Dual simplex method, Revised simplex method, sensitivity analysis

Unit-III

Transportation Model

Definition of the transportation model-matrix of Transportation model-Formulation and solution of transportation models- Methods for calculating Initial basic feasible solution-Optimization of transportation model using MODI method.

Unit-IV

Non linear programming problems

Optimization methods for single variable, multivariable functions, Maxima-Minima; Non linear programming unconstrained optimization: Random search,

Univariate model; Non linear programming constrained optimization: Steepest descent, Conjugate Gradient, Newton.

Project Scheduling

Introduction to network analysis, Rules to draw network diagram, Fulkerson rule for numbering events, Critical path method, PERT.

- 1. ErPrem Kumar Gupta and Dr. DS Hira, "Operations Research", S.Chand& Company Pvt. Ltd., 2014.
- 2. NVS Raju, "Optimization methods for Engineers", PHI Learning Pvt. Ltd. ., 2014
- 3. SingiresuS.Rao, "Engineering optimization- Theory and Practice", 4th Edition, John Wiley and Sons, 2009.
- 4. R. Paneerselvam, "Operations Research", PHI Learning Pvt Ltd., 2009.

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E. VI-SEMESTER ADVANCES IN ENTREPRENEURSHIP (OPEN ELECTIVE -VII)

Instruction: 2 Hrs/week	SEE Marks: 70	Course Code: OE620ME
Credits : 2	CIE Marks: 30	Duration of SEE: 3 Hours

Course Objectives	Course Outcomes
The objectives of the course is to	After completion of the course, the
1. understand how to expand	student will be able to
business and increase	1. understand growth strategies of a
revenues.	start-up & to identify ways and
2. understand various aspects	means of expanding customer base.
of finance.	understand customer retention
3. understand legalities of	strategies.
running a business.	3. develop ways and means of growing
	revenues and develop financial
	modelling.
	4. understand legal formalities and
	IPR.

UNIT-I

Orientation to Growth: Stages of a Start-up Company, Infant Mortality of Start-up's, Sustaining the Phase of Launching, Growth Opportunities, Diversification and Expansion of Business, Growth Assessment, SWOT Analysis, Growth strategies adopted by Ideal Start-up, Ansoff Growth Matrix, Six ways of Adjacencies for Growth. Case Study of Nike.

Expanding Customer Base: Customer Segmentation: Division of market into segments, Evaluating the Profitability of Segments. Developing Business Model in relation to the current customers. Changing customer segments and revisit of Business Models. Evaluation of Business Models for new customer segments. Critical evaluation of Business Models Old Vs New. Risk of changing the Business Models. Analyzing the scalability of business model using Break Even Analysis.

UNIT-II

Traction and Business: Meaning of Business Traction Process, and Metrics to Measure Business Traction, Customer Retention, Customer Churning, Relationship Business, Customer Life Time Value. Identifying the unnecessary moves in business traction. Traction of business model using Bull's-eye framework. Measuring the effectiveness of selected channels. Budgeting and Planning.

UNIT-III

Growing Revenues: Identifying Growing Revenues, Stabilising growing revenues, Developing additional revenues (licensing and franchising). Exploring New channels and Partnerships for growth revenues. Evaluating the Growth streams based on longevity. Lean Start-up Canvas.

Sales Planning & Financial Modelling: Understanding the customer buying decision behaviour, setting sales plans, sales targets, Art of Pitching the sales, Selling Process, Building a professional sales team, Sales management. Price Sensitivity of Market. Optimisation of cost and operational expenses. Financial modelling of the Venture, Assessment of competitors and Peer's financial models.

UNIT-IV

Support System: Legal Management in Start-ups: Issues and Legal constraints effecting the business. Need for professional services: Legal consultancy and Accounting. Need for proper documentation for fool-proof administration of business. Intellectual Property rights and their importance. Business Mentoring, role of experts in managing business.

- 1. Entrepreneurship Rajeev Roy ""oxford,2012
- 2. Fundamentals of Entrepreneurship Nandan H,PHI,2013
- Robert D Hisrich, Michael P Peters , Dean A Shepherd, Entrepreneurship , Sixth Edition, New Delhi, 2006.
- S.S.Khanka, Entrepreneurial Development, S.Chand and Company Limited, New Delhi, 2001