VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Ibrahimbagh, Hyderabad-31 Approved by A.I.C.T.E., New Delhi and Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR M.E. (ECE) COMMUNICATION ENGINEERING AND SIGNAL PROCESSING (CE&SP)

I TO IV SEMESTERS
With effect from 2019-21
(For the batch admitted in 2019-20)

(R-19)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Phones: +91-40-23146040, 23146041

Fax: +91-40-23146090

Institute Vision

Striving for a symbiosis of technological excellence and human values

Institute Mission

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow

Department Vision

Striving for excellence in teaching, training and research in the areas of Electronics and Communication Engineering

Department Mission

To inculcate a spirit of scientific temper and analytical thinking, and train the students in contemporary technologies in Electronics & Communication Engineering to meet the needs of the industry and society with ethical values.

Program Educational Objectives (PEO):

PG - M.E (CE&SP): Communication Engineering and Signal Processing

- **PEO1:** Graduates will be able to acquire indepth knowledge in the field of Communication Engineering and Signal Processing for designing and implementing systems employing latest techniques and tools
- **PEO2:** Graduates will be able to carry out research independently and write & present a substantial research report
- **PEO3:** Graduates will be able to demonstrate effective communication skills and leadership qualities with ethical attitude in broad societal context while working in a multiple disciplinary environment

Program Outcomes (PO):

PG – M.E (CE&SP) : Communication Engineering and Signal Processing: Graduates will have

- **PO1:** An ability to independently carry out research /investigation and development work to solve practical problems
- **PO2:** An ability to write and present a substantial technical report/document
- **PO3:** An ability to demonstrate a degree of mastery over the area of Advanced Communication Engineering and Signal Processing.
- **PO4:** An ability to apply appropriate techniques and modern engineering tools in the design and implementation of Communication and signal processing systems
- **PO5:** An ability to apply engineering and Management principles as a member and leader in a team, to manage projects in multi-disciplinary environment with lifelong learning capabilities

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION FOR

M.E - ECE (CE&SP) COMMUNICATION ENGINEERING AND SIGNAL PROCESSING

I-SEMESTER under CBCS Scheme for 2019-20 Batch

	M.E - ECE (CE&SP) I-Semester								
٥.					e of tion	Scheme	of Exa	aminati	on
S.No.	Course Code	Name of the Course		ours	-	Duration	Maximum		Credits
			Week T P/D		in Hrs	Marks SEE CII 40 30 60 40 60 40 60 40 60 40 60 40 60 40	CIE	Crec	
		THEORY			יון		JLL	CIL	
1	PII19HS110EH	Skill Development Course-I:Communication Skills in English	1	-	-	3	40	30	1
2	PII19PC110EC	PC-I : Advanced Digital Signal Processing	3	-	-	3	60	40	3
3	PII19PC120EC	PC-II : Advanced Digital Modulation Techniques	3	-	-	3	60	40	3
4	PII19PC130EC	PC-III: Image and Video Processing	3	-	1	3	60	40	3
5	PII19PE1X0EC	PE-I	3	-	-	3	60	40	3
6	PII19PE1X0EC	EC PE-II			-	3	60	40	3
7	7 PII19PE1XXEC Skill Development Course -I: Technical Skills				-	3	60	40	2
8	PII19AC110EH	AC-I: English for Research Paper Writing	2	-	-	3	60	40	-
		LABORATORY							
9	PII19PC111EC	Advanced Signal Processing Laboratory	-	-	3	-	-	50	1.5
10	PII19PC121EC	Embedded Systems Laboratory	-	-	3	-	-	50	1.5
11	11 PII19PC138EC Seminar				2	-	-	50	1
Total 20 - 8 -						-	460	460	22
	Grand Total 28 920								
Left	Left over hours will be allocated for : Library/ Proctorial Interaction / FC /CCA								

S. No.	Course Code	Course	Hours per week			
Professional Core Courses (R – 19)						
1	PII19PC240ME	Research Methodology and IPR	2			
2	PII19PC110EC	Core – I: Advanced Digital Signal Processing	3			
3	PII19PC120EC	Core – II: Advanced Digital Modulation Techniques	3			
4	PII19PC130EC	Core – III: Image and Video Processing	3			
5	PII19PC210EC	Core — IV: Coding Theory and Techniques	3			
6	PII19PC220EC	Core – V: Wireless Communications and Networking	3			
7	PII19PC230EC	Core – VI: Microcontrollers and DSP Processors Architecture	3			
8	PII19PC111EC	Advanced Signal Processing Laboratory	3			
9	PII19PC121EC	Embedded Systems Laboratory	3			
10	PII19PC211EC	Communication Systems Simulation Laboratory	3			
11	PII19PC221EC	DSP Processors Applications Laboratory	3			
12	PII19PW219EC	Mini Project	2			
13	PII19HS110EH	Skill Development Course –I : Communication Skills in English	3			
14	PII19HS210EH	Skill Development Course –II : Soft Skills	3			
15	PII19PC138EC	Seminar	2			
16	PII19PW319EC	Dissertation-Phase-I / Internship	8			
17	PII19PW419EC	Dissertation-Phase-II / Internship	24			

S. No.	Course Code	Course	Hours per week			
Profe	Professional Electives (R – 19)					
Elective - I						
1	PII19PE110EC	Data and Computer Communication Networks	3			
2	PII19PE120EC	Global Navigation Satellite Systems	3			
3	PII19PE130EC	Spread Spectrum and CDMA Systems	3			
Elect	ive – II					
4	PII19PE140EC	Audio and Speech Signal Processing	3			
5	PII19PE150EC	Bio-Medical Signal Processing	3			
6	PII19PE160EC	Wavelets & Applications	3			
Elect	ive – III					
7	PII19PE210EC	Adaptive Signal Processing	3			
8	PII19PE220EC	Detection and Estimation Theory	3			
9	PII19PE230EC	CODECS for Multimedia Applications	3			
Elect	ive – IV					
10	PII19PE240EC	Network Security and Cryptography	3			
11	PII19PE250EC	Data Compression Methods	3			
12	PII19PE260EC	Smart Antennas for Mobile Communications	3			
Elect	ive – V					
13	PII19PE310EC	MIMO Communication Systems	3			
14	PII19PE320EC	Voice and Data Networks	3			
15	PII19PE330EC	Software Defined and Cognitive Radio Networks	3			
Tech	nical Skills					
16	PII19PE1XXEC	Skill Development Course -I: Technical Skills	2			
17	PII19PE2XXEC	Skill Development Course - II : Technical Skills	2			

S. No.	Course Code	Course	Hours per week		
Audit Course – I (R – 19)					
1	PII19AC110EH	English for Research Paper Writing	2		
2	PII19AC120XX	Value Education	2		
3	PII19AC130XX	Stress Management by Yoga	2		
4	PII19AC140XX	Sanskrit for Technical Knowledge	2		
Audi	t Course -II				
1	PII19AC210EH	Pedagogy Studies	2		
2	PII19AC220XX	Personality Development through Life Enlightenment Skills.	2		
3	PII19AC230XX	Constitution of India	2		
4	PII19AC240XX	Disaster Management	2		
Oper	1 Electives				
1	PX190E310CS	Fundamentals of Python Programming	3		
2	PX19OE320XX	Industrial Safety	3		
3	PX19OE330ME	Advanced Operations Research	3		
4	PX19OE340XX	Cost Management of Engineering Projects	3		
5	PX19OE350XX	Composite Materials	3		
6	PX19OE360XX	Waste to Energy	3		
7	PX19OE370XX	Business Analytics	3		

DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

Skill Development Course-I: Communication Skills in English

SYLLABUS FOR M.E. - I SEMESTER

L:T:P (Hrs./week): 1:0:0	SEE Marks: 40	Course Code: PII19HS110EH
Credits: 1	CIE Marks: 30	Duration of SEE: 2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
This course will enable the students to:	On completion of the course the
1. involve in the content for all the	students will be able to:
above mentioned four skills in	Make effective presentations
teaching English and to get students	2. Successfully attempt versant,
proficient in both receptive and	AMCAT and secure better
productive skills	placements
	3. Perform better in Interviews

UNIT – I: Remedial English: Delightful Descriptions

Describing Past, Present and Future Events.

UNIT - II: Developing Conversational Skills

Exchange of pleasantries, Exchange facts and opinions, Using relevant vocabulary.

UNIT - III: Contextual Conversations:

Ask for Information, Give Information, Convey bad news, show appreciation

UNIT - IV: Business English: Professional Communication:

Concise Cogent Communication, Active Listening, Interact, Interpret and Respond. **Expositions and Discussions:** Organization, Key Points, Differing Opinions, Logical conclusions. **Effective Writing Skills:** Structure, Rough Draft, Improvisations and Final Draft for Emails, paragraphs and Essays. **High Impact Presentations:** Structure, Content, Review, Delivery

UNIT - V: Industry Orientation and Interview Preparation

Interview Preparation—Fundamental Principles of Interviewing, Resume Preparation, Types of Interviews, General Preparations for an Interview. Corporate Survival skills: Personal accountability, Goal Setting, Business Etiquette, Team Work

Learning Resources:

- 1. Business Communication, by Hory Shankar Mukerjee, Oxford/2013
- Managing Soft Skills for Personality Development by B.N.Gosh, Tata McGraw-Hill/ 2012
- 3. Personality Development & Soft Skills by Barun K Mitra, Oxford/2011
- 4. Murphy, Herta A., Hildebrandt, Herbert W., & Thomas, Jane P., (2008) "Effective Business Communication", Seventh Edition, Tata McGraw Hill, New Delhi
- 5. Locker, Kitty O., Kaczmarek, Stephen Kyo, (2007), "Business Communication Building Critical Skills", Tata McGraw Hill, New Delhi
- 6. Lesikar, Raymond V., &Flatley, Marie E., (2005)"Basic Business Communication – Skills for Empowering the Internet Generation", Tenth Edition, Tata McGraw Hill, New Delhi
- 7. Raman M., & Singh, P., (2006) "Business Communication", Oxford University Press, New Delhi.

Journals / Magazines:

- 1. Journal of Business Communication, Sage publications
- 2. Management Education, Mumbai

Websites:

www.mindtools.com www.bcr.com

The	The break-up of CIE: Internal Tests + Assignments + Quizzes					
1.	No. of Internal Tests	:[1	Max. Marks for each Internal Tests	:	20
2.	No. of Assignments	:[2	Max. Marks for each Assignment	:	5

3. No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Advanced Digital Signal Processing

Professional Core - I

SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PC110EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Review of discrete time signals and	On completion of the course, students
	systems	will be able to
2.	Design of optimal FIR filters, and IIR	design FIR and IIR filters
	filters	2. understand theory of multirate DSP,
3.	Multirate Signal Processing	
	fundamentals and design of	
	practical sampling rate converters,	
	and applications	4. design prediction filters and
4.	Analysis of multirate filter banks	understand solution of normal
	and their applications	equations
5.	wavelet transforms and digital filter	5. estimate power spectrum of signals
	implementation of wavelets and	using different methods
	applications	6. know applications of DSP
6.	Adaptive Filters, LMS and RLS	
	algorithms and Linear Prediction	
	Filters.	
7.	Different Methods for power	
	Spectrum estimation of signals.	

UNIT - I

Review of discrete time signals and systems: LTI systems, Discrete convolution, DFT computation using the Goertzel Algorithm, Z-transform, Rational transfer function, Frequency response from poles and zeros of the transfer function.

Digital filters design: Design of Optimal FIR filters, IIR Filters Design using bilinear transformation method, Cascaded and lattice structures of FIR and IIR filters, Finite word length effects in IIR filter, Application examples.

UNIT - II

Multirate DSP: Down sampling, Up sampling, Relation between the Fourier transform of the input and output of the down sampling and up sampling, Representation of decimator and interpolator, Changing the

sampling rate by noninteger factor, Multistage approach to sampling rate conversion, Design of practical sampling rate converters, Polyphase decomposition of decimator and interpolator, Oversampling ADC analysis, Two channel QMF bank structure, Analysis of Two-Channel QMF Bank. Design of perfect reconstruction M-channel filter banks, Tree structured filter banks, Application examples.

UNIT - III

Wavelet transforms: Time frequency representation of signals, short-time Fourier transform (STFT), Scaling functions and wavelets, Discrete wavelet transform (DWT), Multi-resolution analysis (MRA), Wavelet reconstruction, design of decomposition and reconstruction filters for Haar, Daubechies and biorthogonal wavelets, Digital filter implementation of wavelets, Application examples.

UNIT-IV

Adaptive Digital Filters: Adaptive Filter Structures, Minimum mean square criterion, LMS algorithm, Recursive Least Square algorithm, Application Examples.

Linear Prediction & Optimum Linear Filters: Linear prediction, forward-backward linear prediction filters, solution of normal equations, Wiener Filters.

UNIT - V

Power Spectrum Estimation: Nonparametric Methods and parametric Methods for Power Spectrum Estimation, Minimum-variance spectral estimation, Eigen analysis Algorithms for Spectrum Estimation.

Learning Resources:

- 1. K. Deergha Rao and MNS Swamy, "Digital Signal Processing Theory and Practice", Springer, 2018.
- 2. Sanjit K. Mitra, "Digital Signal Processing", 3/e, Tata McGraw-Hill Edition, 2006.
- 3. J.G.Proakis and D.G. Manolakis," Digital signal processing: Principles, Algorithm and Applications", 4th Edition, Prentice Hall, 2007..
- 4. S. Haykin, "Adaptive Filter Theory", 4th Edition, Prentice Hall, 2001.
- 5. Steven M Kay, "Modern Spectral Estimation Theory and Application", Prentice Hall, 1988.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Advanced Digital Modulation Techniques

Professional Core - II SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week): 3:0:0 SEE Marks: 60 Course Code: **PII19PC120EC**Credits: 3 CIE Marks: 40 Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Analyze the properties of basic	On completion of the course, students
	Modulation techniques and apply them to Digital Communication.	will be able to 1. Explain merits and demerits of
2.	7, 7	different modulation techniques &
	techniques to design the optimum receiver for channels with ISI and	coding techniques, spread spectrum signals and channel behaviors.
	AWGN.	2. Analyze various modulation,
3.	Design and develop the different types of modulation techniques,	equalization, diversity and coding techniques for communication
	equalizer to improve the	systems.
	performance under fading channels	3. Compare performance of different
4.	for various applications. Understand and appreciate the need	types of modulation on different wireless application fading channels.
	of various modulations and spread	4. Design and demonstrate various
5.	spectrum techniques. Analyze the performance of spread	modulation/coding equalization techniques and measure their
٥.	spectrum systems in the presence of	performance.
	interference.	5. Apply spread spectrum techniques
		to the baseband signal in the presence of interference to reduce
		the occurrence of error.

UNIT - I

Review of fundamental concepts and parameters in Digital Communication. Digital modulation schemes, Power spectra of digital modulation signals.

UNIT - II

Performance of carrier modulation schemes: Performance of BPSK and QPSK in AWGN Channel, Performance of Binary FSIC in M-ary PSK in AWGN Channel, Minimum Shift keying (MSK) Modulation, GMSK continuous phase modulation(CPM) schemes.

UNIT - III

Channel characterization and modeling: Optimum receivers for AWGN Channels, Equalization techniques, Orthogonal Frequency Division Multiplexing (OFDM). Carrier Synchronization, Timing synchronization.

UNIT - IV

Introduction to spread spectrum modulation, Direct Sequence modulation, spreading codes, Advantage of CDMA for wireless, Code Synchronization, Code Acquisition and tracking. Channel estimation, Power control, the near-far problem, FEC coding and CDMA, Frequency Hopping spread spectrum, Complex baseband representation of FHSS, slow and fast frequency hopping, Processing gain.

UNIT - V

Spread spectrum as a Multiple access technique: Multi channel and Multi carrier systems; Digital Communication through fading multipath channels; Multi user communications. 'Space diversity on Receiver' technique, MIMO antenna systems, Space time codes for MIMO wireless Communication, Differential space time block codes, SDMA, Smart antennas.

Learning Resources:

- John G. Proakis and Masoud Salehi, "Digital Communications," McGraw Hill, 5/e, 2008.
- 2. Stephen G. Wilson, "Digital Modulation and coding," Pearson Education, 2010.
- Simon Haykin and Michael Moher, "Modern Wireless Communications," Pearson Education, 2005.
- 4. Marvin K. Simon, Sami M. Hinedi and W. C. Lindsay, "Digital Communication Techniques," Eastern Economy Edition, 2010.
- 5. Andrew J Viterbi, "CDMA principles spread spectrum communications," Adison Wesley, 1995.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Image and Video Processing

Professional Core - III SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PC130EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
	Understand the basics of image processing system and the concepts of image transforms. Gain knowledge in applying image	On completion of the course, students will be able to 1. Analyze relationship between pixels in images and able to apply proper
3.	processing algorithms to enhance images. Gain complete knowledge about image compression and segmentation used in digital image	image transform on digital images for the intended application.2. Apply filtering operations to remove noise in images and to segment the digital images.
	processing Understand representation of digital video in the spatial domain and knowledge about time varying image formation models. Understand principles and methods of 2-D motion estimation for digital	 Apply proper compression techniques on images to save storage space and to reduce transmission time. Analyze video signals and time-varying image formation models. Analyze 2-D motion estimation of
	video	video and video filtering operations.

UNIT - I

Fundamentals of Image Processing and Image Transforms: Basic steps of Image Processing System, Sampling and Quantization of an image, relationship between pixels. Image Transforms: 2 D- Discrete Fourier Transform, Discrete Cosine Transform (DCT), Wavelet Transforms: Continuous Wavelet Transform, Discrete Wavelet Transforms.

UNIT - II

Image Processing Techniques: Image Enhancement: Spatial domain methods: Histogram processing, Fundamentals of Spatial filtering, Smoothing spatial filters, Sharpening spatial filters. Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Selective filtering. Image Segmentation: Segmentation

concepts, Point, Line and Edge Detection. Thresholding, Region Based segmentation.

UNIT - III

Image Compression: Image compression fundamentals - Coding Redundancy, Spatial and Temporal redundancy, Compression models: Lossy & Lossless, Huffman coding, Arithmetic coding, LZW coding, Run length coding, Bit plane coding, Transform coding, Predictive coding, Wavelet coding, JPEG Standards.

UNIT - IV

Basic concepts of Video Processing: Analog Video, Digital Video. Time-Varying Image Formation models: Three-Dimensional Motion Models, Geometric Image Formation, Photometric Image Formation, Sampling of Video signals, Filtering operations.

UNIT - V

2-D Motion Estimation: Optical flow, General Methodologies, Pixel Based Motion Estimation, Block- Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

Learning Resources:

- 1. Gonzaleze and Woods, Digital Image Processing , 3rd ed., Pearson.
- 2. Yao Wang, Joem Ostermann and Ya—quin Zhang,Video processing and communication, 1st Ed., PH Int.
- 3. M. Tekalp, Digital Video Processing, Prentice Hall International.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Data and Computer Communication Networks

Professional Elective - I SYLLABUS FOR M.E. ECE (CE&SP) - I SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE110EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES		COURSE OUTCOMES
1.	Analyze the services and	On	completion of the course, students will be
	features of the various layers	ab	le to
	of data networks.	1.	Enumerate the layers of the OSI and
2.	Familiarize the student with the		TCP/IP models
	basic taxonomy and	2.	Illustrate how communication works in
	terminology of the computer		data networks and the Internet.
	networking area.	3.	Understand and build the skills of
3.	Identify the different types of		subnetting and routing mechanisms.
	network topologies and	4.	Able to understand the Historical
	protocols.		overviews of the land industry, evolution
4.	To understand the evolution of		of the wan industry, wireless home
	the WAN industry, wireless		networking IEEE 802.11 the physical
	home networking IEEE 802.11		layer, MAC , wireless ATM
	the PHY layer.	5.	Analyze the features and operations of
			various application layer protocols such as
			SNMP, SIP, and H.323 and security in
			internet.

UNIT - I

Data Communications and Networks Overview: Data Communications Model Communication Tasks, Basic concepts of Networking and Switching, Networking configurations, Protocols and Architecture, Key Elements of a Protocol, Protocols in Simplified Architecture, Protocol Data Units (PDU), Operation of a Protocol Architecture, Operation of a Protocol Architecture, Standardized Protocol Architectures, OSI and TCP/IP Architectures, Comparisons between OSI and TCP/IP, TCP/IP Addressing Concepts, concepts of Frequency, Spectrum and Bandwidth, Modem, Codec and Shannon Capacity.

UNIT - II

Line Configuration, Interfacing, Characteristics of Physical Layer Interface, Flow Control, Sliding Window Flow Control, Error control, CRC, ARQ Protocols, Data Link Control, Bit stuffing, HDLC Operation; Hierarchy of FDM schemes, WDM Operation, TDM Link Control, Hierarchy of TDM, DS-1 Transmission Format, SONET/SDH Frame Formats. Asymmetrical Digital Subscriber Line, xDSL.

UNIT - III

Circuit Switching and Packet Switching: Circuit Switching concepts, Circuit Switching applications, Circuit Switch Elements, Three Stage Space Division Switch, Blocking and Non-blocking switching, Time Division Switching, Control Signaling Functions, In Channel Signaling, Common Channel Signaling, Introduction to Signaling System Number 7 (SS7), Packet Switching Principles, Datagram and Virtual Circuit switching, Effects of variable packet size, X.25, X.25 Protocol Control Information. Routing: Routing in Circuit Switched Network, Routing in Packet Switched Network, Routing Strategies, Least Cost Algorithms, Bellman-Ford Algorithm.

UNIT - IV

LAN Architecture. Topologies, Choice of Topology, Ring and Star Usage, MAC and LLC, Generic MAC Frame Format, Bridge, Bridge Operation, Bridges and LANs with Alternative Routes, Spanning Tree, Loop resolution in bridges, Hubs, Two Level Star Topology, Layer 2 Switches, Wireless LAN, Multi cell Wireless LANs, IEEE 802.11 Architecture, IEEE 802.11 Medium Access Control logic.

UNIT - V

ATM, Architecture of ATM, Congestion Control and Quality of Service in ATM, Internetworking, IPv4, IPv6 comparison, Transport layer protocols, UDP Operation, TCP features, Flow Control, Error Control, Congestion Control, Network Management System, SNMP, SIP, and H.323 architectures, Security in the Internet, IP Security, Firewalls.

Learning Resources:

- 1. William Stallings, "Data and Computer Communications", Eight Edition, Pearson Prentice Hall, 2007.
- 2. Behrouz A. Forouzan, "Data Communications and Networking", Fourth Edition, Tata Mc Graw Hill, 2007.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Global Navigation Satellite Systems

Professional Elective - I SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE120EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	Course Objectives	Course Outcomes		
1.	To demonstrate different positioning	On completion of the course,	students	
	systems	vill be able to		
2.	To explain GPS operation,	Demonstrate the	different	
	architecture operating frequencies	positioning systems		
	and orbits.	Explain GPS operation are		
3.	To differentiate between GPS and	operating frequencies and o		
	UTC time.	3. Differentiate between GPS	and UTL	
	To explain the GPS signal structure	time.		
5.	To differentiate between various	 Explain the GPS signal structure 		
	coordinate system	5. Differential between var	ious co-	
	To estimate link budget	ordinate systems		
	To demonstrate different GPS errors	5. Estimation of Link budget.		
8.	To estimate total electron content	Demonstrate the difference	ent GPS	
_	(TEC) and VERE	errors.		
9.	To compare different DOPS (Dilution	3. Estimation of total electron	n content	
10	of precision)	(TEC) and UERE	. DODG	
10	. To demonstrate integration of GPS	Comparison of differen (Dilution of Dunation)	t DOPS	
11	with other systems . To demonstrate GPS data formats.	(Dilution of Precision)	.toountion	
		.0. Demonstration of GPS in	itegration	
	. To estimation user position To demonstrate DGPS principle and	with other systems 1. Demonstration of GPS data	formate	
13	errors	.2. Estimation of user position	TOTTIALS	
1/1	. To understand local and global	.3. Demonstration of DGPS pri	inciplos &	
14	satellite constellation	errors	incipies &	
15	. To differentiate between various	4. Understanding the local a	nd global	
	augmentation systems.	satellite constellation		
		.5. Differentiate between	various	
		augmentation systems.		

UNIT - I

GPS fundamentals: INS, Trilaiteration, Hyperbolic navigation, Transit, GPS principle of operation, architecture, operating frequencies, orbits, Keplerian elements. Solar and Siderial days, GPS and UTC Time

UNIT – II

GPS Signals: Signal structure, C/A and P-Code, ECEF and ECI coordinate systems and WGS 84 and Indian datums, Important components of receiver and specifications, link budget.

UNIT - III

GPS Error Models: Ionospheric error, Tropospheric error, Ephemeris error, Clock errors, Satellite and receiver instrumental biases, Antenna Phase center variation, multipath; estimation of Total Electron Content (TEC) using dual frequency measurements, Various DOPs, UERE. Spoofing and Anti-spoofing.: Future GPS satellites, new signals and their benefits GPS integration – GPS/GIS, GPS/INS, GPS/pseudolite, GPS/cellular.

UNIT - IV

GPS data processing, DGPS and Applications: RINEX Navigation and Observation formats, Code and carrier phase observables, linear combination and derived observables, Ambiguity resolution, cycle slips, Position estimation. principle of operation of DGPS, architecture and errors,

UNIT - V

Other Constellations and Augmentation systems Other satellite navigation constellations GLONASS and Galileo IRNS System. : Relative advantages of SBAS and GBAS, Wide area augmentation system (WAAS) architecture, GAGAN, EGNOS and MSAS. Local area augmentation system (LAAS) concept.

Learning Resources:

- 1. B.Hofmann Wollenhof, H.Lichtenegger, and J.Collins, "GPS Theory and Practice", Springer Wien, new York, 2000.
- 2. Pratap Misra and Per Enge, "Global Positioning System Signals, Measurements, and Performance," Ganga-Jamuna Press, Massachusetts, 2001.
- 3. Ahmed El-Rabbany, "Introduction to GPS," Artech House, Boston, 2002.
- 4. Bradford W. Parkinson and James J. Spilker, "Global Positioning System: Theory and Applications," Volume II, American Institute of Aeronautics and Astronautics, Inc., Washington, 1996.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 | Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Spread Spectrum and CDMA Systems

Professional Elective - I SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE130EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COLUDER ODJECTIVES		COURCE OUTCOMES
	COURSE OBJECTIVES		COURSE OUTCOMES
1.	Understand the concept of Spread	On	completion of the course, students will
	Spectrum and study various types of	be	able to
	Spread spectrum sequences and their	1.	Generate various types of Spread
	generation.		spectrum sequences and can simulate
2.	Understand the principles of Code		CDMA system (Both Transmitter &
	Division Multiple Access (CDMA) and		Receiver).
	use of Spread spectrum concept in	2.	Analyze the performance of spread
	CDMA		spectrum signals in the presence of
3.	Understand the procedure for		multiple access interference (CDMA
	synchronization of receiver for		context).
	receiving the Spread spectrum signal.	3.	
4.	Study the performance of spread		impact of interference on spread
	spectrum systems in Jamming		spectrum signals
	environment, systems with Forward	4.	
	Error Correction and Multiuser		IS-95 systems and its evolution to 3 rd
	detection in CDMA cellular radio.		generation system
		5.	
			impact of interference on spread
			spectrum signals.

UNIT - I

Fundamentals of Spread Spectrum: Introduction to spread spectrum communication, pulse noise jamming, low probability of detection, direct sequence spread spectrum, frequency-hopping and time-hopping spread spectrum systems, correlation functions, spreading sequences- maximal-length sequences, gold codes, Walsh orthogonal codes- properties and generation of sequences Synchronization and Tracking: delay lock and tau-dither loops, coarse synchronization- principles of serial search and match filter techniques.

UNIT - II

Performance Analysis of SS system: Performance of spread spectrum system under AWGN, multi-user Interference, jamming and narrow band interferences

Low probability of intercept methods, optimum intercept receiver for direct sequence spread spectrum, Error probability of DS-CDMA system under AWGN and fading channels, RAKE receiver

UNIT - III

Capacity & Coverage of Spread Spectrum Multiple Access Networks: Basics of spread spectrum multiple access in cellular environments, reverse Link power control, multiple cell pilot tracking, soft and hard handoffs, cell coverage issues with hard and soft handoff, spread spectrum.

UNIT - IV

Control of Spread Spectrum Multiple Access Networks: Multiple access outage, outage with imperfect power control, Erlang capacity of forward and reverse links. Multi-user Detection -MF detector, decorrelating detector, MMSE detector. Interference Cancellation: successive, Parallel Interference Cancellation, performance analysis of multiuser detectors and interference cancellers.

UNIT - V

CDMA Systems: General aspects of CDMA cellular systems, IS-95 standard, Downlink and uplink, Evolution to Third Generation systems, WCDMA and CDMA-2000 standards, Principles of Multicarrier communication, MCCDMA and MC-DS-CDMA.

Learning Resources:

- 1. R. L. Peterson, R. Ziemer and D. Borth, "Introduction to Spread Spectrum Communications," PHI, 1995.
- 2. J. Viterbi, "CDMA Principles of Spread Spectrum Communications," Addison-Wesley, 1997.
- 3. Vijay K. Garg, Kenneth Smolik, and Joseph E. Wilkes, "Applications of CDMA in Wireless/Personal Communications," PHI, 1995.
- 4. S. Verdu, "Multiuser Detection," Cambridge University Press, 1998
- 5. M. K. Simon, J. K. Omura, R. A. Scholts and B. K. Levitt, "Spread Spectrum Communications Handbook," McGraw- Hill, 1994.
- 6. G. R. Cooper and C. D. McGillem, "Modern Communications and Spread Spectrum," McGraw- Hill,1985.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Audio and Speech Signal Processing

Professional Elective - II SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PE140EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Understand the anatomy and	On completion of the course, students
	physiology of acoustic production	will be able to
	and perception model.	 Model an electrical equivalent of
2.	To analyze the speech in time	Speech Production System.
	domain and extract various	2. Extract the LPC coefficients that can
	parameters.	be used to synthesize or compress
3.	To study the concept of	the speech.
	Homomorphic system and analyze	3. Design a homomorphic vocoder for
	various audio coding techniques	coding and decoding of speech.
	with applications.	4. Extract the features for automatic
		speaker recognition systems
		5. Design basic audio coding methods.

UNIT - I

Fundamentals of Digital Speech Processing: Anatomy & Physiology of Speech Organs, The Process of Speech Production, The Acoustic theory of speech production- Uniform lossless tube model, effect of losses in vocal tract, effect of radiation at lips, Digital models for speech signals.

Perception: Anatomical pathways from the Ear to the Perception of Sound, The Peripheral Auditory system, Hair Cell and Auditory Nerve Functions, Properties of the Auditory Nerve. Block schematics of the Peripheral Auditory system.

UNIT - II

Time Domain models for Speech Processing: Introduction – Window considerations, Short time energy, average magnitude, average zero crossing rate, Speech vs Silence discrimination using energy and zero crossing, pitch period estimation using a parallel processing approach, the short time autocorrelation function, average magnitude difference function, pitch period estimation using the autocorrelation function. Linear Predictive Coding (LPC) Analysis: Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance method, Solution of LPC Equations: Cholesky Decomposition Solution for Covariance

Method, Durbin's Recursive Solution for the Autocorrelation Equations, comparison between the methods of solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT - III

Homomorphic Speech Processing: Introduction , Homomorphic Systems for Convolution : Properties of the Complex Cepstrum, Computational Considerations , The Complex Cepstrum of Speech, Pitch Detection , Formant Estimation, The Homomorphic Vocoder. Speech Enhancement: Speech enhancement techniques : Single Microphone Approach, Spectral Subtraction, Enhancement by re-synthesis, Comb filter, Wiener filter, Multi Microphone Approach.

UNIT - IV

Automatic Speech Recognition: Basic pattern recognition approaches, parametric representation of Speech, Evaluating the similarity of Speech patterns, Isolated digit Recognition System, Continuous word Recognition system. Elements of HMM, Training & Testing of Speech using HMM. Automatic Speaker Recognition: Recognition techniques, Features that distinguish speakers, MFCC, delta MFCC, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System, Performance Metrics.

UNIT - V

Audio Coding: Lossless Audio Coding, Lossy Audio coding, Psychoacoustics , ISO-MPEG-1 Audio coding , MPEG - 2 Audio coding, MPEG - 2 Advanced Audio Coding, MPEG - 4 Audio Coding.

Learning Resources:

- 1. Digital Processing of Speech Signals L.R. Rabiner and S. W. Schafer. Pearson Education.
- 2. Digital Audio Signal Processing Udo Zolzer, 2nd Edition, Wiley.
- 3. Speech & Audio Signal Processing- Ben Gold & Nelson Morgan, 1st Ed., Wiley
- Discrete Time Speech Signal Processing: Principles and Practice Thomas F. Quateri, 1st Ed., PE.
- $5. \quad \hbox{Digital Processing of Speech Signals. L.R Rabinar and R W Jhaung, 1978, PHI.}$

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Bio-Medical Signal Processing

Professional Elective - II SYLLABUS FOR M.E. ECE (CE&SP) — I SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE150EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	Course Objectives	Course Outcomes
1.	To introduce students the basic signal processing techniques in	On completion of the course, students will be able to
2.	analyzing biological signals. To develop the students mathematical, scientific &	1. Knowledgeable of the basic signal processing techniques in analyzing biological signals.
	computational skills related to the field of biomedical signal processing	2. To possess the basic mathematical & computational skills necessary to
3.	To enhance the ability in formulating problems & designing analysis tools for biological signals.	analyse biomedical signals. 3. Formulate and solve basic problems in biomedical signal analysis is enhanced
		4. Aware of the complexity of biological signal and the impact, promise of biomedical engineering in understanding these signals.
		Demonstrate to effectively communicate their ideas in terms of biomedical signal parameters.

UNIT - I

Random Processes: Stationary random process, Ergodicity, Power spectral density and autocorrelation function of random processes. Noise power spectral density analysis, Noise bandwidth and noise figure of systems.

UNIT - II

Data Compression Techniques: Lossy and Lossless data reduction Algorithms. ECG data compression using Turning point, AZTEC, CORTES, Huffman coding, vector quantisation, DICOM Standards

UNIT - III

Cardiological Signal Processing: Pre-processing, QRS Detection Methods, Rhythm analysis, Arrhythmia Detection Algorithms, Automated ECG Analysis, ECG Pattern Recognition. Adaptive Noise Cancelling: Principles of

Adaptive Noise Cancelling, Adaptive Noise Cancelling with the LMS Adaptation Algorithm, Noise Cancelling Method to Enhance ECG Monitoring, Fetal ECG Monitoring.

UNIT - IV

Signal Averaging, Polishing: Mean and trend removal, Prony's method, Prony's Method based on the Least Squares Estimate, Linear prediction, Yule – Walker (Y –W) equations, Analysis of Evoked Potentials.

UNIT - V

Neurological Signal Processing: Modelling of EEG Signals, Detection of spikes and spindles Detection of Alpha, Beta and Gamma Waves. Auto Regressive (A.R.) modelling of seizure EEG. Sleep Stage analysis, Inverse Filtering, Least squares and polynomial modelling.

Learning Resources:

- Probability, Random Variables & Random Signal Principles Peyton Z. Peebles, 4th Ed., 2009, TMH.
- Biomedical Signal Processing- Principles and Techniques D. C. Reddy, 2005, TMH.
- 3. Digital Bio Dignal Processing Weitkunat R, 1991, Elsevier.
- 4. Biomedical Signal Processing Akay M , IEEE Press.
- 5. Biomedical Signal Processing -Vol. I Time & Frequency Analysis Cohen.A, 1986, CRC Press.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Wavelets & Applications

Professional Elective - II SYLLABUS FOR M.E. ECE (CE&SP) — I SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE160EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	Course Objectives		Course Outcomes
1.	To establish the theory necessary to	On	completion of the course, students
	understand & use wavelets and	wil	I be able to
	related constructions.	1.	Understand the terminology that are
2.	Describe various continuous &		used in the wavelets literature.
	discrete wavelet transform.	2.	Explain the concepts, theory of
3.	Understand the multi resolution		algorithms behind wavelets from an
	analysis and its various applications.		inter disciplinary perspective that
			unities harmonic analysis, filter
		_	banks & multi resolution analysis
		3.	Understand how to use the modern
			signal processing tools using signal
			spaces, bases, operators & series
		١,	expansions.
		4.	Apply wavelets, filter banks and
			multi resolution techniques to a
			problem at hand & justify why
		_	wavelets provide the right tool.
		5.	Think critically ask question & apply
			problem solving techniques.

UNIT - I

Introduction: Stationary and non-stationary signals, Signal representation using basis and frames, Brief introduction to Fourier transform and Short time Fourier transform, Time-frequency analysis, Bases of time frequency: orthogonal, Filter banks, Multi resolution formulation: Wavelets from filters, Classes of wavelets: Haar, Daubechies, bi-orthogonal.

UNIT - II

Continuous Wavelet Transform: Continuous wavelet transform (CWT), Time and frequency resolution of the continuous wavelet transform, Construction of continuous wavelets: Spline, orthonormal, bi-orthonormal, Inverse continuous wavelet transform, Redundancy of CWT, Zoom

property of the continuous wavelet transform, Filtering in continuous wavelet transform domain.

UNIT - III

Discrete Wavelet Transform And Filterbanks: Orthogonal and biorthogonal two-channel filter banks, Design of two-channel filter banks, Tree-structured filter banks, Discrete wavelet transform, Non-linear approximation in the Wavelet domain, multi resolution analysis, Construction and Computation of the discrete wavelet transform, the redundant discrete wavelet transform.

UNIT - IV

Multi Resolution Analysis: Multirate discrete time systems, Parameterization of discrete wavelets, Bi-orthogonal wavelet bases, Two dimensional, wavelet transforms and Extensions to higher dimensions, wave packets

UNIT - V

Applications: Signal and Image compression, Detection of signal changes, analysis and classification of audio signals using CWT, Wavelet based signal de-noising and energy compaction, Wavelets in adaptive filtering, Adaptive wavelet techniques in signal acquisition, coding and lossy transmission, Digital Communication and Multicarrier Modulation, Trans multiplexers, Image fusion, Edge Detection and object isolation.

Learning Resources:

- A Wavelet Tour of Signal Processing, 2nd edition, S. Mallat, Academic Press, 1999.
- 2. Wavelet transforms: Introduction, Theory and applications, Raghuveer rao and Ajit S.Bopardikar, Pearson Education Asia, 2000.
- 3. Fundamentals of Wavelets: Theory, Algorithms, and Applications, J.C. Goswami and A.K. Chan, 2nd ed., Wiley, 2011.
- 4. Wavelets and their Applications, Michel Misiti, Yves Misiti, Georges Oppenheim, Jean-Michel Poggi, John Wiley & Sons, 2010.
- 5. Multirate Systems and Filter Banks, P. P. Vaidyanathan, Pearson Education, 2004.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

English for Research Paper Writing

Audit Course - I SYLLABUS FOR M.E. – I SEMESTER

L:T:P (Hrs./week): 2:0:0	SEE Marks: 60	Course Code: PII19AC110EH
Credits : -	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
This will enable the students should	On completion of the course, students will
be able to:	be able to
1. Understand, how to improve your	write research papers
writing skills and level of readability	write citations as per the MLA style sheet and APA format
Learn about what to write in each section	3. write concisely and clearly following the rules of simple grammar, diction
3. Understand the skills needed when writing a Title	and coherence.
4. Ensure the good quality of paper at very first-time submission	

UNIT-I:

Planning and Preparation, Word Order, Breaking up long sentences. Structuring Paragraphs and Sentences, Being concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

UNIT-II:

Clarifying Who Did What, Highlighting your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction

UNIT-III:

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

UNIT-IV:

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, useful phrases, how to ensure paper is as good as it could possibly be the first-time

submission.

UNIT-V:

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions.

Learning Resources:

- Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM Highman's book.
- Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Advanced Signal Processing Laboratory

SYLLABUS FOR M.E. ECE (CE&SP) - I SEMESTER

L:T:P (Hrs./week): 0:0:3	SEE Marks: -	Course Code: PII19PC111EC
Credits: 1.5	CIE Marks: 50	Duration of SEE : -

COURSE OBJECTIVES	COURSE OUTCOMES
1. To perform basic signal operations using simulink.	On completion of the course, students will be able to
2. To d sign a digital filter.	1. Develop Matlab files for the
3. Perform MAC operations using DSP processors.	verification of system response and design digital filters using various methods.
	2. Generate various musical effects with digital filter.
	3. Work with simulink environment.
	4. Perform various signal operations using DSP kit.
	5. Interfacing the DSP processor in real time.

Section - 1:

- Generating basic waveforms (impulse, step, ramp, exponential, sin, ...)
- 2. Digital FIR Filter implementation and realizations: with and without windows.
- 3. Design of IIR filters (Butterworth, Chebychev, IIR, ...).
- 4. Generation of musical effects using digital filters.
- 5. Using the Simulink generate the basic waveforms (impulse, step, ramp, exponential, sin, ...) observe the waveforms on the CRO.
- 6. Using Simulink generate the modulated waveforms.
- 7. Study and implementation of sigma delta modulator/ Transmultiplexer.

Section - 2:

 Declaring and initializing the variables and moving the data to and from

Memory (register to memory, memory to register).

- 2. Setting up Circular buffering , hardwared loops:
 - a. Adding the 10 consecutive numbers
 - b. Splitting he numbers
 - c. Bit level operations.
- 3. Underatsatding the DSP MAC capabilities.
 - a. Windowing, Convolution, FIR filtering
- 4. Underatsatding the DSP parallel instruction optimisation.
 - a. FFT without parallel instructions
 - b. FFT with parallel instructions
- Creation of periodic waveforms and noise sequences using the DSP kit.
- 6. Interfacing the DSP processor in real time.
- 7. Initialization of Audio codec.

Note: The experiments will be decided and modified if necessary and conducted by the lecturer concerned.

The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 12

3. Marks for assessment for day to day evaluation : 18

Duration of Internal Test: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Embedded Systems Laboratory

SYLLABUS FOR M.E. ECE (CE&SP) – I SEMESTER

L:T:P (Hrs./week): 0:0:3	SEE Marks: -	Course Code: PII19PC121EC
Credits: 1.5	CIE Marks: 50	Duration of SEE :

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Compare different cross compilers and install Keil v5 µVision IDE in x86 Windows 7 & above or Linux 2.6	On completion of the course, students will be able to 1. Implement embedded C constructs
2.	(Ubuntu 16.04 LTS) & above host. Develop programming constructs in	to configure built-in registers of C51 target.
_	embedded C for C51 targets to configure built-in peripherals.	2. Demonstrate the hardware emulation of the design on Proteus
3.	Simulate actual hardware environment by designing hardware in Proteus7.x & above.	7.x IDE.3. Design & Implement off-chip OS-less device drivers for C51 in Keil v5
4.	Implement Device Drivers for off-	μVision IDE
_	chip I/O & memories with C51 MCU.	4. Demonstrate efficient Interrupt
5.	Adopt debugging policies for validating the designed firmware.	Service Routine coding principles in C/C++.
		5. Analyze & suggest debugging
		methods for any given specifications with C51 target.

List of Experiments using Embedded C/Embedded C++:

- To toggle LEDs connected to GPIOs of AT89S52 with some intentional Delay.
- 2. To design & implement 4x3 matrix Keypad Device Driver for ASCII mapping.
- To design & implement 2x16 LCD Device Driver for displaying below text:

Line-1: "Welcome@ESD Lab!"

Line-2:"Enter to Proceed"

ATROCES .

- 4. To Configure Timer0 and Timer1 for intended delay without interrupts.
- 5. To design & demonstrate the UART drivers for data transmission and data reception at 9600bps full duplex baud.
- 6. To design & implement the concept of writing Interrupt Service Routine (ISR) for external interrupt INT0, INT1.
- 7. To design & implement the concept of mixing of external ISRs with Internal ISRs and understanding the ISR handling process.
- 8. To design & implement LED Seven Segment driver with adjustable delay.
- 9. To design & implement User Centric template Menu designs in Embedded C
- 10. To design and implement embedded C/C++ constructs for programming LPC2148 ARM powered MCU.

Suggested tools for use:

Hardware Target CDLI

1.	Hardware rarget CFO	_	A109332,
	LPC2148 (ARM7 TDMI-S)		
2.	Embedded Software Development	_	Keil µVision5 IDE
3.	Embedded Debugger	_	Keil µVision5
	Debugger		
4.	Hardware Simulator	_	Proteus

The break-up of CIE:

No. of Internal Test
 Max. Marks for each internal tests
 Marks for assessment for day to day evaluation
 18

Duration of Internal Test: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Seminar

SYLLABUS FOR M.E. ECE (CE&SP) - I SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: -	Course Code: PII19PC138EC
Credits: 1	CIE Marks: 50	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Prepare the student for a	On completion of the course, students will be able to
systematic and independent	1. Selection of a suitable topic / problem for investigation
study of the state of the art	and presentation.
topics in a broad area of his /	2. Carryout literature survey and prepare the presentation.
her specialization.	3. Formulating the problem, identify tools and techniques
	for solving the problems.
	4. Clear communication and presentation of the seminar
	topic.
	5. Apply ethical principles in preparation of seminar report.

Oral presentation and technical report writing are two important aspect of engineering education. The objective of the seminar is to prepare the student for a systematic and independent study of the state of the art topics in the advanced fields of Communication Engineering and related topics.

Seminar topics may be chosen by the students with advice from the faculty members. Students are to be exposed to the following aspects for a seminar presentation.

- Literature survey
- Organization of the material
- Presentation of OHP slides / LCD presentation
- Technical writing

Each student required to:

- 1. Submit a one page synopsis before the seminar talk for display on the notice board.
- 2. Give a 20 minutes time for presentation following by a 10 minutes discussion.
- 3. Submit a detailed technical report on the seminar topic with list of references and slides used.

Seminars are to be scheduled from the 3rd week to the last week of the semester and any change in schedule shall not be entertained.

For award of sessional marks, students are to be judged by at least two faculty members on the basis of an oral and technical report preparation as well as their involvement in the discussions.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION FOR

M.E – ECE (CE&SP) COMMUNICATION ENGINEERING AND SIGNAL PROCESSING

II-SEMESTER under CBCS Scheme for 2019-20 Batch (R – 19)

	M.E - ECE (CE&SP) II- Semester								
				Scheme of Instruction		Scheme of Examination			n
S.No.	Course Code	Name of the Course	Hours per Week		Duration in Hrs	Maximum Marks		Credits	
			L	T	P/D	1111113	SEE	CIE	Ü
		THEORY							
1	PII19HS210EH	Skill Development Course -II: Soft Skills	1	-	-	3	40	30	1
2	PII19PC240ME	Research Methodology and IPR	2	-	-	3	60	40	2
3	PII19PC210EC	PC – IV : Coding Theory and Techniques	3	-	-	3	60	40	3
4	PII19PC220EC	PC – V: Wireless Communications and Networking	3	-	-	3	60	40	3
5	PII19PC230EC	PC-VI: Microcontrollers and DSP Processors Architecture	3	-	-	3	60	40	3
6	PII19PE2X0EC	PE – III	3	-	-	3	60	40	3
7	PII19PE2X0EC	PE – IV	3	-	-	3	60	40	3
8	PII19PE2XXEC	Skill Development Course - II: Technical Skills	2	-	-	3	60	40	2
9	PII19AC210EH	AC - II : Pedagogy Studies	2	-	-	3	60	40	-
		LABORATORY							
10	PII19PC211EC	Communication Systems Simulation Laboratory	-	-	3	-	-	50	1.5
11	PII19PC221EC	DSP Processors Applications Laboratory	-	-	3	-	-	50	1.5
12	PII19PW219EC	Mini Project	-	-	2	-	-	50	1
		Total	22	-	8		520	500	24
	Grand Total 30 1020								
Left	Left over hours will be allocated for : Library/ Proctorial Interaction / FC /CCA								

DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

Skill Development Course - II : Soft Skills

SYLLABUS FOR M.E. - II SEMESTER

L:T:P (Hrs./week): 1:0:0	SEE Marks: 40	Course Code: PII19HS210EH
Credits: 1	CIE Marks: 30	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1.	On completion of the course, students will be able to
	1.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF MECHANICAL ENGINEERING

Research Methodology and IPR

SYLLABUS FOR M.E. ECE (CE&SP) - II SEMESTER

L:T:P (Hrs./week) : 2:0:0	SEE Marks: 60	Course Code: PII19PC240ME
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To impart knowledge on Research problem definition and IPR	 On completion of the course, students will be able to Understand research problem formulation. Analyze research related information and follow research ethics Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

UNIT-I

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

UNIT-II

Effective literature studies approaches, analysis Plagiarism, Research ethics, Effective technical writing, how to write report, Paper Developing

a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

UNIT-III

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-IV

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

UNIT-V

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

Leaning References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Coding Theory and Techniques

Professional Core - IV SYLLABUS FOR M.E. ECE (CE&SP) — II SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PC210EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	To study performance of	On completion of the course, students will be
	different communication	able to
	techniques in fading channels.	1. understand different communication
2.	To study theory of Galois fields	techniques and their performance in
	and design of block codes such	fading
	as BCH, RS, LDPC and polar	2. understand theory of block codes such as
	codes.	BCH, RS, LDPC, QC-LDPC and polar codes
3.	To get acquainted with the	3. design encoders and decoders for
	design of both convolution and	BCH,RS,LDPC and polar codes
	turbo encoders and decoders.	4. understand theory of conventional
4.	To study space time coding for	convolutional, and tail-biting convolutional
	MIMO systems.	codes and convolutional turbo, and tail-
5.	To get acquainted with	biting turbo codes and their encoders and
	applications of channel coding	decoders design
	and evolution of 5G channel	5. understand space time coding for MIMO
	codes.	systems
		6. know applications of channel coding and
		evolution of 5G channel codes

UNIT - I

Introduction: Digital communication system, Wireless channel statistical models, BER performance in AWGN and fading channels for different modulation schemes, BER performance of CDMA, FH — CDMA and OFDM in AWGN and fading channels, capacity of fading channels with CSI, Diversity reception, channel coding Theorem, Channel coding gain.

UNIT - II

Block Coding: Galois fields, polynomials over Galois fields, BCH codes, CRC codes, RS codes, Decoding Techniques for RS codes, LDPC and QC LDPC encoders and decoders, Performance analysis of RS, LDPC codes and QC LDPC codes.

Polar Codes: polar encoder and decoder, performance analysis of polar codes

UNIT - III

Convolution codes: Linear convolution encoders, Structural properties of Convolution codes, Viterbi decoding technique for convolution codes – Soft / Hard decision, tail biting convolutional codes, performance analysis of concatenation of block codes and convolutional codes. Concept of Trellis coded modulation.

UNIT-IV

Turbo Codes: Parallel concatenation, Turbo encoder, encoding tail biting codes with RSC (feedback) encoders. Enhanced turbo codes, Iterative decoding using BCJR algorithm, Performance analysis.

UNIT - V

Space – Time Coding: MIMO system, rate gain & diversity gain, transmit diversity, Alamouti scheme, OSTBC codes, Linear space – time codes, trellis space – time codes.

Learning Resources:

- K. Deergha Rao, Channel Coding Techniques for Wireless Communications, Springer, 2nd edition 2019.
- 2. E. Biglieri, Coding for Wireless Channels, Springer, 2007.
- S.B. Wicker, Error control systems for Digital communication and Storage, Prentice Hall, 1995.
- 4. K.L.Du & M.N.S.Swamy, Wireless Communication: From RF to 4G Enabling Technologies, Cambridge, 2010.
- 5. J.G. Proakis & M. Salehi, Digital Communications, Mc Graw-Hill, 2008.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Wireless Communications and Networking

Professional Core - V

SYLLABUS FOR M.E. ECE (CE&SP) - II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PC220EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURCE OBJECTIVES	COURCE OUTCOMES
COURSE OBJECTIVES	COURSE OUTCOMES
To provide design fundamental principles and concepts required to understand and solve problems in	On completion of the course, students will be able to 1. Demonstrate the fundamental
the area of wireless communication systems.	knowledge of wireless communication systems and
2. To apply concepts and techniques	standards.
for characterization and estimation of wireless channels.	2. Apply the knowledge acquired to formulate and solve problems in
3. To provide problem solving skills required to analyse and evaluate	the area of wireless communication and networking.
the performance of wireless communication and networking	3. Analyze different radio channel models, wireless communication
using modern tools.	system architectures, standards and evaluate the performance of
	the system.4. Carryout simulation using modern tools to understand different
	performance parameters of wireless communication systems.
	5. Become acquainted with recent
	advancements and developments in the area of wireless
	communications and networking.

UNIT - I

Modern wireless communication systems and standards: Comparison of 1G, 2G wireless communication systems, GSM Services and Features, GSM System architecture, Radio Sub systems of GSM, GSM Channel Types, Frame structure and Signal processing. CDMAone (IS-95) standard, CDMA Forward Channel, CDMAReverse Channel.

UNIT - II

Multipath Radio Propagation and Fading: Characterization of wireless channel, Basic propagation mechanisms, Free space propagation model,

Mobile radio propagation model, Multipath fading and factors influencing fading, Types of small-scale fading, Fading effects due to multipath time delay spread, Fading effects due to Doppler spread, Statistical models for multipath fading channel.

UNIT - III

Space-time Communication techniques to Mitigate Fading Effects: Introduction to space-time communication, Equalization techniques, Diversity and diversity combining techniques, RAKE receiver, Channel Coding techniques, Modeling and simulation of wireless communication systems.

UNIT - IV

Wireless networking: Wireless data networking devices, Wireless data in GSM networks, IS – 95 and GPRS networks, 3GPP standard and features, UMTS network architecture and Radio Interface, 3G data networks, Introduction to 4G networks

UNIT - V

Signaling and call control in wireless networks: Call admission control, Location management for cellular networks, Location update, Call setup and paging, Two-tiered architecture of IS-41, signal flow diagrams for IS-41, SS7 signaling Network model and Common channel signaling, An example of SS7-global cellular network interoperability.

Learning Resources:

- Theodore S. Rappaport, "Wireless Communications: Principles and Practice," Pearson Education, 2011.
- 2. Jon W. Mark and Weihua Zhuang, "Wireless Communications and Networking," PHI, 2005.
- 3. Vijay K. Garg, "Wireless Communications and Networking," Elsevier, 2011.
- 4. John G. Proakis and Masoud Salehi, "Digital Communications," McGraw Hill, 5/e, 2008.
- 5. William Stallings, "Wireless Communications and Networking," PHI, 2006.
- 6. C Sivarama Murthy and B S Manoj, "Ad-Hoc Wireless Networks: Architectures and Protocols," Pearson Education, 2011.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Microcontrollers and DSP Processors Architecture

Professional Core - VI SYLLABUS FOR M.E. ECE (CE&SP) – II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PC230EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
COURSE OBJECTIVES To give an exposure to the C51 microcontroller, various fixed point and floating point DSP architectures and to implement various signal processing algorithms using TI DSPs.	On completion of the course, students will be able to 1. Understand the architecture of C51
	 DSP processors. 4. Understand the architecture details of fixed point DSPs and floating point DSPs. 5. Illustrate the features of on-chip peripherals and its interfacing with DSP processors. 6. Design and implement signal processing algorithms on DSP processors.

UNIT - I

Review of Microcontrollers: Review of C51 Architecture & addressing modes, Programming on-chip peripherals: Timers and Counters, Serial communication, Interrupt programming in Embedded- C.

Introduction to DSP Processors: Differences between DSP and other micro processor architectures. Fixed point, Floating point and block Floating point formats, IEEE-754 Floating point, Dynamic range and precision, Q-notation.

UNIT - II

Architectural features of programmable Digital signal processing Devices: Introduction, Basic Architectural features, DSP computational

building blocks-Multipliers, shifter, MAC, ALU, Bus architecture and memory-on-chip memory, organization of on-chip memory, Data addressing capabilities, Address generation unit, Programmability and program execution, Speed issues.

UNIT - III

Programmable Digital signal processors: Introduction, Commercial Digital Signal Processing Devices, Overview of TMS320C54XX: Fixed point DSPs, Architecture of TMS320C54XX Processor, addressing modes, Instructions set, Interrupts of TMS320C54XX processors, Pipelining and on-chip peripherals.

UNIT - IV

Floating point DSPs, Architecture of TMS320C67XX Processor, addressing modes, Instructions set, Pipelining and on-chip peripherals.

UNIT - V

Implementation of algorithms on DSP processors - Convolution, FIR filter, IIR filter, Decimation and Interpolation of signals.

Learning Resources:

- Avtar Singh, S. Srinivasan "Digital Signal Processing Implementations: Using DSP Microprocessors--With Examples from TMS320C54xx", Cengage Learning (2004)
- 2. B.Venkataramani, M.Bhaskar, "Digital Signal Processors, Architecture Programming and Applications", Tata Mc Graw Hill, 2002.
- 3. Donald Reay(auth.)-Digital Signal Processing and Applications with the OMAP-L138 eXperimenter (2012)
- 4. Digital Signal Processing: A practical approach, Ifeachor E. C., Jervis B. W PearsonEducation, PHI/ 2002
- 5. RulphChassaing, "Digital Signal Processing and Applications with the C6713 and C6416 DSK", John wiley& sons, 2005.
- 6. "Architectures for Digital Signal Processing", Peter Pirsch John Weily, 2007.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Adaptive Signal Processing

Professional Elective - III SYLLABUS FOR M.E. ECE (CE&SP) – II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE210EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
	To introduce some practical aspects of signal processing, and in particular adaptive systems	will be able to 1. Understand basic concepts of
2.	The basic principles of adaptation which cover various adaptive signal processing algorithms (e.g., the LMS algorithm) and its applications, such as adaptive noise cancellation, interference canceling, system identification.	 adaptive signal processing. Derive & apply the principle of orthogonality Understand the convergence issues, computational complexities and optimality of Weiner & scalar & vector Kalman filters.
		 Derive the Least Means Squares (LMS) & Recursive Least Square (RLS) adaptive filter algorithms & apply them to problems in system identification & linear prediction. Develop adaptive systems for various applications.

UNIT - I

Approaches to the development of adaptive filter theory. Introduction to filtering, smoothing and prediction. Wiener filter theory, introduction; Error performance surface; Normal equation; Principle of orthogonality; Minimum mean squared error; example.

UNIT - II

Gradient algorithms; Learning curves; LMS gradient algorithm; LMS stochastic gradient algorithms; convergence of LMS algorithms.

UNIT - III

Applications of adaptive filter to adaptive noise canceling, Echo cancellation in telephone circuits and adaptive beam forming.

UNIT - IV

Kalman Filter theory; Introduction; recursive minimum mean square estimation for scalar random variables; statement of the Kalman filtering problem: the innovations process; Estimation of state using the innovations process; Filtering examples.

UNIT - V

Vector Kalman filter formulation. Examples. Application of Kalman filter to target tracking.

Learning Resources:

- Sophoclas, J. Orphanidies, "Optimum signal processing an introduction", McMillan, 1985.
- 2. Simon Haykins, "Adaptive signal processing", PHI, 1986.
- 3. Bernard Widrow, "Adaptive signal processing", PHI,1986.
- 4. Bozic. SM., Digital and kalman Filtering.

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Detection and Estimation Theory

Professional Elective - III SYLLABUS FOR M.E. ECE (CE&SP) – II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE220EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To a quick review of fundamental	On completion of the course, students
linear algebra and stochastic process	will be able to
concepts required in detection and	1. recollect basic concepts required in
estimation,.	detection and estimation
2. To provide the statistical decision	2. understand statistical decision theory
rules and performance metrics used	and the performance measures for
for detection of signals in noise.	most of the signal detection and
3. To apply decision rules in the	estimation problems .
detection of deterministic signals in	3. understand the detection of
noise.	deterministic signals
4. To apply decision rules in the	4. understand the detection of random
detection of random signals in noise.	signals
5. To derive and apply methods for	•
estimation of signal parameters in	signals
noise.	

UNIT - I

Review of Linear Algebra and Stochastic processes: Linear Algebra: vector and matrices properties, orthogonality, linear independence, Eigen values and eigenvectors. Stochastic Processes:wide sense stationary(WSS) process, auto correlation, cross correlation, Time averages, moments, ergodicity, power spectral density

UNIT - II

Statistical Decision Theory: Bayesian, minimax, and Neyman-Pearson decision rules, receiver operating characteristics, composite hypothesis testing, generalized likelihood ratio test, locally optimum tests, asymptotic relative efficiency.

UNIT – III

Detection of Deterministic Signals: Detection in white Gaussian noise, correlator, matched filter, multiple signals, linear model, Signal processing examples. Detection in colored Gaussian noise, Karhunen-Loeve expansions and whitening filters.

UNIT - IV

Detection of Random Signals: Estimator-correlator(energy detector), linear model, general Gaussian detection, detection of Gaussian random signal with unknown parameters, weak signal detection

UNIT - V

Estimation Theory: Minimum variance estimators, Cramer-Rao lower bound, Linear Models and Unbiased Estimators, Least squares estimation, ML estimation, Bayesian Estimation: MMSE, MAP; Kalman Filtering.

Suggested Reading:

- 1. Steven M. Kay, "Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory", Prentice Hall, 1993
- 2. Steven M. Kay, "Fundamentals of Statistical Signal Processing, Volume II: Detection Theory", 1st Edition, Prentice Hall, 1998
- 3. H. Vincent Poor, "An Introduction to Signal Detection and Estimation", 2nd Edition, Springer, 1998.
- 4. Harry L. Van Trees, "Detection, Estimation, and Modulation Theory", Part I,II,III,IV, John Wiley & Sons, Inc., 2001
- 5. A. Papoulis, Probability, random variables, and stochastic processes, McGraw-Hill,4th edition,2002.

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 | Max. Marks for each Internal Tests : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

CODECS for Multimedia Applications

Professional Elective - III
SYLLABUS FOR M.E. ECE (CE&SP) – II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE230EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To get acquainted with components of multimedia and understand	On completion of the course, students will be able to
fundamental concepts in video and basics of digital audio	1. Get familiarity with multimedia components and software tools and
2. To study digital audio compression techniques and different CODECS.	understand fundamental of multimedia.
3. To understand image transforms and different image compression standards	Compress digital audio using different techniques and compress speech signal using different
4. To study video compression	CODECS
techniques and standards 5. To get acquainted with current trends in digital signal processing.	Compress images using different standards such as JPEG, JPEG 2000 and SPIHT and EZW codes
	 Compress video signals using standards H261, H263 and MPEG4 and H264 CODECS
	5. Have knowledge on the current trends in digital signal processing.

UNIT - I

Introduction to multimedia: components of multimedia; overview of multimedia software tools;

Graphics and Image Data Representations: Graphics/image data types, popular file formats;

Fundamental Concepts in Video: analog and digital video.

Basics of Digital Audio – Storage requirements for multimedia applications; Need for Compression - Taxonomy of compression techniques

UNIT - II

Digital audio: audio compression techniques; μ -Law and A-Law, companding, ADPCM.

Speech compression: waveform codecs; source codecs; hybrid codecs; Shorten: lossless speech compressor, MPEG-1 audio layers

UNIT - III

Image Transforms – orthogonal transforms- DCT, JPEG, progressive image compression- JBIG, JBIG2 standards , Vector quantization, Differential lossless compression –DPCM Wavelet based compression- Filter banks, DWT, Multiresolution decomposition, SPIHT and EZW Coders, JPEG 2000 standard

UNIT - IV

Video signal components - Video compression techniques — MPEG Video Coding— Motion

Compensation – H.261, H.263 Standard, .MPEG4 and H.264 codecs.

UNIT - V

PLL, Image Processing, FSK modems, Voice detection and reverse play back, multi-rate filters, Current trends in digital signal processors.

Learning Resources:

- David Salomon, "Data Compression The Complete Reference," Springer Verlag New York Inc.,3rd Edition, 2008.
- 2. L. Hanzo, P. J. Cherriman and J. Streit, "Video Compression and Communications From Basics toH.261, H.263, H.264,MPEG4 for DVB and HSDPA-Style Adaptive Turbo Transceivers," Second Edition, IEEE Communications Society, John Wiley & Sons Ltd, 2007.
- 3. Peter Symes, "Digital Video Compression," McGraw Hill Pub., 2004.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Network Security and Cryptography

Professional Elective - IV SYLLABUS FOR M.E. ECE (CE&SP) – II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE240EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	To understand the fundamentals of	On completion of the course, students
	Cryptography	will be able to
2.	To acquire knowledge on standard	1. Analyze the vulnerabilities in any
	algorithms used to provide	computing system and hence be
	confidentiality, integrity and	able to design a security solution
	authenticity.	2. Identify the security issues in the
3. To understand the various key		network and resolve it.
distribution and management		3. Evaluate security mechanisms using
schemes.		rigorous approaches
4.	To understand how to deploy	4. Compare and Contrast different IEEE
encryption techniques to secure data		standards and electronic mail
	in transit across data networks	security

UNIT- I

Introduction: Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques. Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT-II

Encryption: Triple DES, International Data Encryption algorithm, Blowfish, RC5, Characteristics of Advanced Symmetric block cifers. Conventional Encryption: Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT - III

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy. Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat's and

Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT- IV:

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs. Hash and Mac Algorithms: MD File, Message digest Algorithm, Secure Hash Algorithm. Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards. Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, S/MIME.

UNIT - V:

IP Security: Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction. Intruders, Viruses and Worms: Intruders, Viruses and Related threats. Fire Walls: Fire wall Design Principles, Trusted systems.

Learning Resources:

- Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 3. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 4. Principles of Information Security, Whitman, Thomson.
- 5. Introduction to Cryptography, Buchmann, Springer.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Data Compression Methods

Professional Elective - IV SYLLABUS FOR M.E. ECE (CE&SP) — II SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PE250EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To provide students with contemporary knowledge in Data Compression	On completion of the course, students will be able to 1. Solve the problems associated
To equip students with skills to analyze and evaluate different mathematical aspects required for lossy and lossless Compression methods.	different source coding techniques. 2. Understand the operation of scalar and vector quantizer. 3. Implement the compression techniques to compress the
 To study methods for compression of symbolic data as well as audio and video data, and to gain an appreciation of the ubiquity and importance of compression technologies. 	different raw data. 4. Summarize the concepts associated textual, image and video compression. 5. understand the most common file formats for textual, audio and video.

UNIT - I

Review of Information Theory, The discrete memory less information source - Kraft inequality; optimal codes Source coding theorem. Compression Techniques - Lossless and Lossy Compression - Mathematical Preliminaries for Lossless Compression -Huffman Coding - Optimality of Huffman codes - Extended Huffman Coding - Adaptive Huffman Coding - Arithmetic Coding - Adaptive Arithmetic coding, Run Length Coding, Dictionary Techniques - Lempel-Ziv coding, Applications - Predictive Coding - Prediction with Partial Match - Burrows Wheeler Transform, Dynamic Markov Compression.

UNIT - II

Rate distortion theory: Rate distortion function R(D), Properties of R(D); Calculation of R(D) for the binary source and the Gaussian source, Rate distortion theorem, Converse of the Rate distortion theorem, Quantization - Uniform & Non-uniform - optimal and adaptive quantization, vector

quantization and structures for VQ, Optimality conditions for VQ, Predictive Coding - Differential Encoding Schemes.

UNIT - III

Mathematical Preliminaries for Transforms, Sub-bands and Wavelets, Karhunen Loeve Transform, Discrete Cosine and Sine Transforms, Discrete Walsh Hadamard Transform.

UNIT-IV

Transform coding – Sub-band coding – Wavelet transform based Compression.

UNIT - V

Basics of Compression standards: Audio Compression standards: MPEG, Dolby AC3; and Video Compression Standards: MPEG, H.261, H.263 and H.264.

Learning Resources:

- 1. Khalid Sayood, "Introduction to Data Compression," Morgan Kaufmann Publishers., 3/e, 2011.
- 2. David Salomon, "Data Compression: The Complete Reference," Springer Publications, 4/e, 2006.
- 3. Toby Berger, "Rate Distortion Theory: A Mathematical Basis for Data Compression," PHI, 1971.
- 4. S. Mallat, A wavelet Tour of Signal Processing, 2/e, Academic Press, 1999.
- Martin Vetterli and Jelena Kovacevic, "Wavelets and Subband Coding," PHI, 1995.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Smart Antennas for Mobile Communications

Professional Elective - IV SYLLABUS FOR M.E. ECE (CE&SP) — II SEMESTER

L:T:P (Hrs./week) : 3:0:0	SEE Marks: 60	Course Code: PII19PE260EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
COURSE OBJECTIVES Understand the cellular concepts and smart antennas.	COURSE OUTCOMES On completion of the course, students will be able to 1. Demonstration of various cellular CDMAs 2. Estimation of CDMA – 2000 3. Explain the various beam forming networks and systems 4. Demonstration of array calculations for digital radio receivers techniques. 5. Explanation of smart antenna techniques for non-coherent and coherent CDMA\
	Demonstration of radio link beam forming, range improvement and various filtering algorithms.

UNIT - I

Cellular Radio concepts – Spread Spectrum CDMA – Antenna Systems – Radio wave propagation – fading – Cellular CDMA – IS-95 CDMA system work – Reverse Traffic Transmission – Forward Channel Signal – Evaluation of CDMA 2000.

UNIT - II

Introduction to Smart Antennas – Spatial processing for wireless systems – Fixed beam forming networks – Switched beam systems – Adaptive Antenna Systems – Wide band Smart Antennas – Digital Radio Receiver techniques - Array calibrations.

UNIT - III

Smart Antennas Techniques for CDMA: Non Coherent CDMA – Coherent CDMA – Multi user spatial processing – Re sectoring using Smart Antennas – Down link beam forming for CDMA.

UNIT - IV

CDMA System Range and Improvements using Spatial Filtering – Range extensions in CDMA – Spatial filtering at IS-95 base station – Reverse channel performance – Spatial filtering at WLL subscriber unit – Range and Capacity Analysis.

UNIT - V

Optimal Spatial Filtering and Adaptive Algorithms – Array performance in Multipath – under loaded, over loaded adaptive arrays – Adaptive algorithms for CDMA – Multi Target Decision Directed Algorithms – Estimation Algorithms – RF position location systems.

Learning Resources:

- Joseph C. Liberti Jr., Theodore S Rappaport, "Smart Antennas for wireless communications IS-95 and third generation CDMA applications", PTR – PH publishers, 1st edition, 1989.
- 2. T.S Rappaport, "Smart Antennas Adaptive arrays algorithms and wireless position location", IEEE press 1998, PTR PH publishers 1999.
- 3. Garg, "IS-95 CDMA and CDMA 2000, "Cellular / PCs systems implementation", Pearson Education, 2002.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEAPRTMENT OF HUMANITIES AND SOCIAL SCIENCES

Pedagogy Studies

Audit Course - II SYLLABUS FOR M.E. - II SEMESTER

L:T:P (Hrs./week) : 2:0:0	SEE Marks: 60	Course Code:PII19AC210EH
Credits : -	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
This course will enable the students	On completion of the course, students will
to:	be able to
Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers. Identify critical evidence gaps to guide the development.	used by teachers in formal and informal

Units	Content		
1a.	Introduction and Methodology:		
	Theories of learning, Curriculum, Teacher education.		
	Conceptual framework, Research Questions.		
	Overview of methodology and Searching.		
	Pedagogic theory and pedagogical approaches.		
	Teachers' attitudes and beliefs and Pedagogic strategies.		
b.	Thematic overview:		
	Pedagogical practices that are being used by teachers.		
	Curriculum, Teacher education.		
	How can teacher education (curriculum and practicum) and		
	the curriculum and guidance materials best support effective		
	pedagogy.		
2	Research gaps and future directions		
	Research design – Lesson plans, Course plans		
	Teacher education		
	Curriculum and assessment		

Learning Resources:

- 1. Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2):245-261.
- 2. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
- 3. Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID.
- 4. Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
- 5. Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.
- 6. Chavan M (2003) Read India: A mass scale, rapid, 'learning to read' campaign.
- 7. www.pratham.org/images/resource%20working%20paper%202.pdf.

The break-up of CIE : Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
- 2. No. of Assignments : 2 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Communication Systems Simulation Laboratory

SYLLABUS FOR M.E. ECE (CE&SP) - II SEMESTER

L:T:P (Hrs./week): 0:0:3	SEE Marks: -	Course Code: PII19PC211EC
Credits: 1.5	CIE Marks: 50	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
This lab course complements EE341 as students conduct experiments with signals, systems, and communication systems. Systems are built with discrete components and also verified through matlab and analytically	On completion of the course, students will be able to 1. Study signal and linear time invariant system properties. 2. Study, design, and build amplitude modulation systems examining tradeoffs in different communication systems. 3. Study, design, and build angle modulation systems examining tradeoffs in different communication systems. 4. Perform experiments in converting analog information into digital data via sampling, quantization, and coding.

Section - 1:

- Simulation study of wavelength division multiplexing and demultiplexing.
- 2. Study of digital modulation schemes using Spectrum analyzer.
- 3. Study and implementation of different simulation techniques.
- 4. Error detection codes in data communications.
- 5. Analysis of error coding, parity check and hamming check.
- 6. Simulation of a communication channel using convolutional encoding and Viterbi decoding using MATLAB.
- 7. Simulation of Channel coding / decoding using MATLAB and SIMULINK.

Section – 2:

- Study of wireless LAN
- 2. Using Wireless digital communication trainer, study of:
 - a) Baseband digital communication link
 - b) Quadrature modulation schemes
 - c) Adaptive equalization techniques
 - d) GSM and Basics of DS-CDMA
 - f) Basics of OFDM.
- 3. Implementation of DPSK modulators and demodulators using MATLAB.
- 4. Simulation of software radio system using MATLAB.
- 5. Simulation study of collaborative transmission schemes for Multiuser wireless systems using MATLAB.

Note: The experiments will be decided and modified if necessary and conducted by the lecturer concerned.

The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 12

3. Marks for assessment for day to day evaluation : 18

Duration of Internal Test: 3 Hours

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

DSP Processors Applications Laboratory

SYLLABUS FOR M.E. ECE (CE&SP) - II SEMESTER

L:T:P (Hrs./week): 0:0:3	SEE Marks: -	Course Code: PII19PC221EC
Credits: 1.5	CIE Marks: 50	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To understand the architecture of a	On completion of the course, students
digital signal processor and	will be able to
programming issues in fixed-	1. Develop and Implement DSP
point/floating digital signal	algorithms in CCS software using a
processor.	computer language such as C with
2. To learn to design a real-time signal	
processing algorithms using the	
fixed-point processor.	2. Analyze and observe the magnitude
3. To implement signal processing	and phase characteristics of digital
projects on the processor.	IIR Butterworth, Chebyshev filters.
	3. Analyze and Observe Magnitude and
	phase characteristics of digital FIR
	filters using window techniques.
	4. Implement C code for fast fourier
	transform on fixed point processor.

List of Experiments:

- Introduction and Preview: Digital Signal Processing and Digital Signal Processors
- 2. Linear convolution of two given sequences
- 3. Circular convolution of two given sequences
- 4. Computation of N- Point DFT of a given sequence
- 5. Impulse response of first order and second order system
- 6. Design of FIR (LP/HP) using windows
- 7. Design of IIR (HP/LP) filters
- 8. Sine Wave Generation
- 9. Speech Processing-Noise supression in speech signal
- 10. Raster Example for Image Processing

- 11. Verification of data transfer instructions
- 12. Real-time concepts (interrupts, critical sections, threads of execution, etc.).
- 13. Vpif Video Processing (Video Loopback)

Note: The experiments will be decided and modified if necessary and conducted by the lecturer concerned.

Learning Resources:

- Donald Reay(auth.)-Digital Signal Processing and Applications with the OMAP-L138 eXperimenter (2012)
- Dahnoun, D. Digital Signal Processors TMS320C6000. Collection of the PowerPoint Shows. Bristol: University of Bristol, 2002, Copyrighted by the Texas Instruments, Inc.
- 3. Chassaing, R. DSP Applications Using C and the TMS320C6x. First Edition. New York: John Wiley & Sons, Inc., 2002.
- 4. Porat, B. A Course in Digital Signal Processing. New York: John Wiley & Sons, Inc., 1997

The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 12

3. Marks for assessment for day to day evaluation : 18

Duration of Internal Test: 3 Hours

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Mini Project

SYLLABUS FOR M.E. ECE (CE&SP) - II SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: -	Course Code: PII19PW219EC
Credits: 1	CIE Marks: 50	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Understand the real world problems and find the required solution.	 On completion of the course, students will be able to Understand of contemporary / emerging technology for various processes and systems. Create solutions to the real world problems. Share knowledge effectively in oral and written form and formulate documents.

The introduction of mini projects ensures preparedness of students to undertake major projects/dissertation.

The students are required to search / gather the material / information on a specific a topic comprehend it and present / discuss in the class.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION FOR

M.E – ECE (CE&SP) COMMUNICATION ENGINEERING AND SIGNAL PROCESSING

III-SEMESTER under CBCS Scheme for 2019-20 Batch (R – 19)

	M.E – ECE (CE&SP) III - SEMESTER								
		Scheme of Instruction			Scheme of Examination				
S. No. Course Code		Name of the Course	Hours per Week			Duration	Maximum Marks		Credits
			L	Т	P/D	in Hrs	SEE	CIE	Cre
1	PII19PE3X0EC	OEC Professional Elective - V		ı	-	3	60	40	3
2 PII19OE3XXXX Open Elective		3	ı	ı	3	60	40	3	
3	3 PII19PW319EC Dissertation-Phase-I / Internship			-	8	-	-	100	4
	TOTAL				8	6	120	180	10
	GRAND TOTAL 16 300								

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

MIMO Communication Systems

Professional Elective - V SYLLABUS FOR M.E. ECE (CE&SP) – III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PE310EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

		1
	COURSE OBJECTIVES	COURSE OUTCOMES
6.	To learn about the MIMO communication	On completion of the course,
	system and modelling the MIMO channel	students will be able to
	and evaluation of MIMO system capacity.	6. model MIMO channels and
7.	To know the significance of the diversity	evaluate MIMO channel capacity.
	scheme in improving the communication	7. Design space time codes to
	link reliability and to learn about different	alleviate the wireless channel
	diversity techniques with the usage of	fading effects and get the
	multiple antennas at transmitter and/or	
	receivers, space time codes, and receiver	MIMO spatial multiplexing.
	designs for MIMO spatial multiplexing.	8. understand the basics of OFDM,
8.	to come, and comment of comments	and able to design OFDM system,
	frequency division multiplexing (OFDM),	and MIMO OFDM system.
	and the design of OFDM system and MIMO	9. estimate MIMO channel
	OFDM system	coefficients and thereby CSI,
9.	To learn about the MIMO channel	which required for signal
	techniques and thereby CSI required for	detection in MIMO systems.
	signal detection in MIMO systems.	10. Develop beam forming and pre-
10	. To understand beam forming and Pre-	coding for MIMO systems
	coding techniques for MIMO systems	

UNIT - I

MIMO Channel modeling and MIMO capacity: Basics of wireless channel modeling, Classical i.i.d. random MIMO channel model, MIMO frequency selective channel model, extended channel models, and MIMO correlated channel model, Capacity of MIMO channels, Ergodic and Outage Capacity, Influence of channel properties on capacity, Capacity limits of MIMO channels.

UNIT - II

MIMO Diversity and Spatial Multiplexing: The concept of diversity, Receive diversity and transmit diversity, Common diversity performance metrics, Design criteria for space-time codes, Orthogonal space-time block codes(OSTBC), Spectral efficiency of a STBC, delay diversity, cyclic delay diversity, space frequency codes, concept of spatial multiplexing, MIMO zero forcing(ZF) receiver, MIMO MMSE receiver, MIMO ML receiver,

Nonlinear MIMO receiver (V-BLAST receiver), Diversity and multiplexing gains trade off in MIMO systems.

UNIT - III

Orthogonal frequency division multiplexing: Single carrier approach versus multi carrier approach for data transmission, Basic principle of OFDM,OFDM system configuration, choice of OFDM parameters, effect of frequency offset on OFDM, frequency offset estimation, impact of cyclic prefix on data rate, Peak to average power ratio, PAPR reduction techniques, BER of OFDM, MIMO OFDM.

UNIT - IV

MIMO channel estimation: Training symbol based LS and MMSE channel estimation, Correlative channel sounding, Relation between OFDM system measurement model and compressive sensing reconstruction model, Estimation of OFDM channel using OMP algorithm, MIMO OFDM channel estimation. Performance analysis of channel estimation techniques

UNIT - V

MIMO Beam forming: Beam forming principles, Digital Beam forming, Adaptive Beam forming, Beam forming with CSI known at the transmitter, Linear precoding structure, Precoding design criteria, Forced Zero (ZF) precoding method, MMSE precoding method, SVD precoding method, Codebooks for MIMO.

Learning Resources:

- J. R. Hampton "Introduction to MIMO Communications," Cambridge University Press, 2014.
- 7. Paulraj R. Nabar and D. Gore, "Introduction to Space Time Wireless Communications," Cambridge University Press, 2003.
- 8. Mohinder Jankiraman "Space-Time Codes and MIMO Systems," Artech House, 2004.
- 9. Y.S. Cho, Jackwon Kim, W.Y. Yang, and C.G. Kang, "MIMO OFDM Communications with MATLAB," John Wiley, IEEE Press, 2010.
- 10. John Litva, and Titus Kwok-Yeung Lo, "Digital Beamforming Wireless Communication," Artech House, 1996.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Voice and Data Networks

Professional Elective - V SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PE320EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Understand the concepts of voice networks, queuing models and data networks.	On completion of the course, students will be able to 1. Protocol, algorithms, trade-offs rationale. 2. Routing, transport, DNS resolutions 3. Network extensions and next
	generation architectures.

UNIT - I

Network Design Issues, Network Performance Issues, Network Terminology, centralized and distributed approaches for networks design, Issues in design of voice and data networks.

UNIT - II

Layered and Layer less Communication, Cross layer design of Networks, Voice Networks (wired and wireless) and Switching, Circuit Switching and Packet Switching, Statistical Multiplexing.

UNIT - III

Data Networks and their Design, Link layer design- Link adaptation, Link Layer Protocols, Retransmission. Mechanisms (ARQ), Hybrid ARQ (HARQ), Go Back N, Selective Repeat protocols and their analysis.

UNIT - IV

Queuing Models of Networks, Traffic Models , Little's Theorem, Markov chains, M/M/1 and other Markov systems, Multiple Access Protocols, Aloha System , Carrier Sensing, Examples of Local area networks,

UNIT - V

Inter-networking, Bridging, Global Internet, IP protocol and addressing, Sub netting, Classless Inter domain Routing (CIDR), IP address lookup,

Routing in Internet. End to End Protocols, TCP and UDP. Congestion Control, Additive Increase/Multiplicative Decrease, Slow Start, Fast Retransmit/ Fast Recovery, Congestion avoidance, RED TCP Throughput Analysis, Quality of Service in Packet

Networks. Network Calculus, Packet Scheduling Algorithms.

Learning Resources:

- D. Bertsekas and R. Gallager, "Data Networks", 2nd Edition, Prentice Hall, 1992.
- 2. L. Peterson and B. S. Davie, "Computer Networks: A Systems Approach",5th Edition, Morgan Kaufman, 2011.
- 3. Kumar, D. Manjunath and J. Kuri, "Communication Networking: An analytical approach", 1st Edition, Morgan Kaufman, 2004.
- 4. Walrand, "Communications Network: A First Course", 2nd Edition, McGraw Hill, 2002.
- 5. Leonard Kleinrock, "Queueing Systems, Volume I: Theory", 1st Edition, John Wiley and Sons, 1975.
- Aaron Kershenbaum, "Telecommunication Network Design Algorithms", McGraw Hill, 1993.
- Vijay Ahuja, "Design and Analysis of Computer Communication Networks", McGraw Hill, 1987

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Software Defined and Cognitive Radio Networks

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PII19PE330EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

C	OURSE OBJECTIVES	COURSE OUTCOMES	
1.	To understand basic	On completion of the course, students will be able to	
	architecture of	1. Gain knowledge on software defined radio and	
	software defined radio	cognitive radio.	
2.	To study signal	2. Describe about signal processing devices and	
	processing devices	architectures	
	and architectures	3. Discuss on software and hardware architecture of	
3.	To describe spectrum		
	sensing techniques of	4. Analyze spectrum sensing methods	
	cognitive radio	5. Implement CR and SDR applications on to FPGA	
		and ASICS.	

UNIT - I

Introduction to SDR: What is Software-Defined Radio, The Requirement for Software-Defined Radio, Legacy Systems, The Benefits of Multistandard Terminals, Economies of Scale, Global Roaming, Service Upgrading, Adaptive Modulation and Coding, Operational Requirements, Key Requirements, Reconfiguration Mechanisms, Handset Model, New Base-Station and Network, Architectures, Separation of Digital and RF, Tower-Top Mounting, BTS Hoteling, Smart Antenna Systems, Smart Antenna System Architectures, Power Consumption Issues, Calibration Issues, Projects and Sources of Information on Software Defined Radio,

UNIT - II

Basic Architecture of a Software Defined Radio: Software Defined Radio Architectures, Ideal Software Defined Radio Architecture, Required Hardware Specifications, Digital Aspects of a Software Defined Radio, Digital Hardware, Alternative Digital Processing Options for BTS Applications, Alternative Digital Processing Options for Handset Applications, Current Technology Limitations, A/D Signal-to-Noise Ratio and Power Consumption, Derivation of Minimum Power Consumption, Power Consumption Examples, ADC Performance Trends, Impact of Superconducting Technologies on Future SDR Systems.

UNIT - III

Signal Processing Devices and Architectures: General Purpose Processors, Digital Signal Processors, Field Programmable Gate Arrays,

Processing Units, Tilera Specialized Tile Processor, Application-Specific Integrated Circuits, Hybrid Solutions, Choosing a DSP Solution. GPP-Based SDR, Non real time Radios, High-Throughput GPP-Based SDR, FPGA-Based SDR, Separate Configurations, Multi-Waveform Configuration, Partial Reconfiguration, Host Interface, Memory-Mapped Interface to Hardware, Packet Interface, Architecture for FPGA- Based Configuration, Flow, Advanced Bus Architectures, Data Parallelizing for Higher Throughput, Hybrid and Multi-FPGA Architectures, Hardware Acceleration, Software Considerations, Multiple HA and Resource Sharing, Multi-Channel SDR.

UNIT - IV

Cognitive Radio: Techniques and signal processing History and background, Communication policy and Spectrum Management, Cognitive radio cycle, Cognitive radio architecture, SDR architecture for cognitive radio, Spectrum sensing Single node sensing: energy detection, cyclostationary and wavelet based sensing- problem formulation and performance analysis based on probability of detection Vs SNR. Cooperative sensing: different fusion rules, wideband spectrum sensing-problem formulation and performance analysis based on probability of detection Vs SNR.

UNIT V

Cognitive Radio: Hardware and applications: Spectrum allocation models. Spectrum handoff, Cognitive radio performance analysis. Hardware platforms for Cognitive radio (USRP, WARP), details of USRP board, Applications of Cognitive radio

Learning Resources:

- 1. "RF and Baseband Techniques for Software Defined Radio" Peter B. Kenington, ARTECH HOUSE, INC, 2005.
- 2. "Implementing Software Defined Radio", Eugene Grayver, Springer, New York Heidelberg Dordrecht London, ISBN 978-1-4419-9332-8 (eBook) 2013.
- 3. "Cognitive Radio Technology", by Bruce A. Fette, Elsevier, ISBN 10: 0-7506-7952-2, 2006.
- 4. "Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems", Hüseyin Arslan, Springer, ISBN 978-1-4020-5541-6 (HB), 2007.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 | Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Fundamentals of Python Programming

Open Elective

SYLLABUS FOR M.TECH. III-SEMESTER

L:T:P(Hrs./week): 2:0:0	SEE Marks: 60	Course Code: PX190E310CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES		COURSE OUTCOMES On completion of the course, students will be able to	
1	Acquire problem solving skills	Develop Python programs with conditional statements and loops.	
2	Write programs using	2 Write programs using functions,	
	Python language	3 Construct Python data structures programs us Strings Lists	
		4 Design programs using tuples, and set.	
		5	Develop programs using dictionaries

UNIT-I:

Basics of Python Programming: Features of Python, variables and identifiers, operators and expressions.

Decision control Statements: Selection/Conditional branching statements.

basic loop structures/iterative Statements, nested loops, break, continue, and pass Statements.

UNIT-II:

Functions and Modules: function definition, function call, more on defining functions, recursive functions, modules.

UNIT -III:

Data Structures: Strings: Introduction, built-in string methods and functions, slice operation, String Module. Regular Expressions.

Lists: Introduction, nested list, cloning lists, basic list operations, list methods. Functional programming-filter(),map(),reduce() function.

UNIT-IV:

Tuples: Introduction, basic tuple operations, tuple assignment, tuples for returning multiple values, nested tuples, tuple methods and functions.

Set: Introduction, Set operations.

UNIT-V:

Dictionaries: Basic operations, sorting items, looping over dictionary, nested dictionaries, built-in dictionary functions.

Learning Resources:

- Reema Thareja ,"Python programming using problem solving approach ", Oxford university press.
- 2. Allen Downey," Think Python: How to Think Like a Computer Scientist", O'Reilly publications, 2nd Edition.
- 3. Albert Lukaszewski, "Mysql for python", PACKT publishers
- 4. Mark Lutz , "Learning Python", O'Reilly Publications.
- 5. Stewart Venit and Elizabeth Drake, Prelude to Programming: Concepts and Design, 6th Edition(2015), Pearson India
- Mark J Guzdial, Introduction to Computing and programming in Python, 3rdEdition(2013), Pearson India
- 7. http://nptel.ac.in/courses/117106113/34
- 8. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/python-tutorial/
- 9. www.scipy-lectures.org/intro/language/python_language.html

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Industrial Safety

Open Elective

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PX190E320XX
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

UNIT - I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT-II

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment. Model Curriculum of Engineering & Technology PG Courses [Volume -II] 295

UNIT-III

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT-IV

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine,

v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT-V

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Learning Resources:

- Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF MECHANICAL ENGINEERING

Advanced Operations Research

Open Elective

SYLLABUS FOR M.E. III SEMESTER

L:T:P(Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PX190E330ME	
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours	

COURSE OBJECTIVES	COURSE OUTCOMES
The objective of this course is to: understand Linear & non- linear programming, transportation modelling , CPM & PERT for project scheduling and control, replacement, game theory and sequencing	 On completion of the course, the student will be able to: understand simplex, dual simplex, Sensitivity and transportation and their applications for shop floor problems. understand the importance of Sensitivity analysis and various advanced LPP techniques apply the techniques like CPM and PERT for project management. apply various replacement techniques to find optimum replacement time period for equipment. identify the best strategy to win the game and optimum sequence for minimum elapsed time.

UNIT-I: OPERATIONS RESEARCH-AN OVERVIEW

Meaning and Origin of Operations research, Introduction to Linear programming problems (LPP) -Formulation of LPP-Solution to LPP by Graphical method and simplex method.

UNIT-II: ADVANCED TOPICS IN LINEAR PROGRAMMING

Dual simplex method, special cases in LPP, Duality in LPP, Differences between primal and dual, shadow prices, sensitivity analysis. Non linear programming Khun Tucker conditions.

UNIT-III

Transportation Model: Definition of the transportation model-matrix of Transportation model-Formulation and solution of transportation models-Methods for calculating Initial basic feasible solution, optimal solution by Stepping stone method and MODI method.

Assignment Problem: Hungarian method of assignment problem, maximization in assignment problem, unbalanced problem, problems with restrictions, travelling salesman problems.

UNIT-IV: PROJECT SCHEDULING

Introduction to network analysis, Rules to draw network diagram, Fulkerson rule for numbering events, Critical path method, Summarisation of CPM calculations. PERT, Estimation of probability and its corresponding duration in PERT, Crashing of project and finding of optimal project duration in crashing.

UNIT-V

Replacement models: Introduction, replacement of items that deteriorate ignoring change in money value, replacement of items that deteriorate considering change in money value with time, replacement of items that fail suddenly — individual replacement policy, group replacement policy.

Game theory: Introduction, 2 person zero sum games, maximi— minima principle, principle of dominance, solution for mixed strategy problems graphical method for $2 \times n$ and $n \times 2$ games

Sequencing models: introduction, general assumptions, processing to jobs through 2 machines, processing 'n' jobs through m machines processing 2 jobs through m machines.

Learning Resources:

- S. D.Sharma, "Operations Research", 10th edition, Newage India Pvt Ltd, New Delhi
- 2. Hamady.A.Taha An Introduction to Operations Research, "8th edition, TMH
- 3. Prem Kumar Gupta and Dr. DS Hira, "Operations Research ", S.Chand & Company Pvt. Ltd., 2014.
- 4. R. Paneerselvam, "Operations Research", PHI Learning Pvt Ltd., 2009.
- NVS Raju, "Optimization methods for Engineers", PHI Learning Pvt. Ltd. ., 2014
- Col D.S. Cheema, "Operations Research", University science press, 2nd edition, India

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Cost Management of Engineering Projects

Open Elective

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PX190E340XX	
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours	

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Learning Resources:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Composite Materials

Open Elective

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PX190E350XX
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

UNIT - II

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

UNIT - III

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

UNIT-IV

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT - V

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount

truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Learning Resources:

- Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.
- 3. Hand Book of Composite Materials-ed-Lubin.
- 4. Composite Materials K.K.Chawla.
- 5. Composite Materials Science and Applications Deborah D.L. Chung.
- 6. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Waste to Energy

Open Elective

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: PX190E360XX
Credits : -	CIE Marks: 40	Duration of SEE: 3 Hours

UNIT-I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

UNIT - II

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

UNIT - III

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for Model Curriculum of Engineering & Technology PG Courses [Volume -II] 299 thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

UNIT - IV

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

UNIT - V

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants -

Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Learning Resources:

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Business Analytics

Open Elective

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 3:0:0 SEE Marks:		Course Code: PX190E370XX
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Understand the role of business analytics	On completion of the course,
	within an organization.	students will be able to
2.	Analyze data using statistical and data	1. Students will demonstrate
	mining techniques and understand	knowledge of data analytics.
	relationships between the underlying	2. Students will demonstrate the
	business processes of an organization.	ability of think critically in
3.	To gain an understanding of how	making decisions based on
	managers use business analytics to	data and deep analytics.
	formulate and solve business problems	
	and to support managerial decision	ability to use technical skills in
	making.	predicative and prescriptive
4.	To become familiar with processes needed	modeling to support business
	to develop, report, and analyze business	decision-making.
_	data.	4. Students will demonstrate the
5.	Use decision-making tools/Operations	ability to translate data into
_	research techniques.	clear, actionable insights
ь.	Mange business process using analytical	
_	and management tools.	
/.	Analyze and solve problems from different	
	industries such as manufacturing, service,	
	retail, software, banking and finance,	
L	sports, pharmaceutical, aerospace etc.	

UNIT -I

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

UNIT - II

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business

Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT – III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization

UNIT - IV

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT - V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

UNIT - VI

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

Learning Resources:

- Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Dissertation-Phase-I / Internship

SYLLABUS FOR M.E. ECE (CE&SP) - III SEMESTER

L:T:P (Hrs./week): 0:0:8	SEE Marks:	Course Code: PII19PW319EC	
Credits: 4	CIE Marks:100	Duration of SEE :	

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Selection of a suitable for	On completion of the course, students
	investigation for the project	will be able to
2.	Literature survey	1. Students go through the foundation
3.	Carrying out investigation /	needed for carrying out new
	experiments including the selection	investigations
	of approaches to be adopted	2. Students would be ready with the
4.	Analysis of the results in interaction	problem to be investigated in phase
	with the project guides.	II
5.	Preparation of presentations and	3. They also get the training needed
	technical report.	for presentations of their work.

The students must be given clear guidelines to execute and complete the project on which they have delivered a seminar in the 3rd semester of the course.

All projects will be monitored at least twice in a semester through student's presentation. Sessional marks should be based on the grades/marks, awarded by a monitoring committee of faculty members as also marks given by the supervisor.

Efforts be made that some of the projects are carries out in industries with the help of industry coordinates.

Common norms will be established for documentation of the project report by the respective department.

The final project reports must be submitted two weeks before the last working day of the semester.

The project works must be evaluated by an external examiner and based on his comments a viva voice will be conducted by the departmental committee containing of HOD, two senior faculty and supervisor.

+ Excellent / Very Good / Good/Satisfactory / Unsatisfactory

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION FOR

M.E – ECE (CE&SP) COMMUNICATION ENGINEERING AND SIGNAL PROCESSING

IV-SEMESTER under CBCS Scheme for 2019-20 Batch (R – 19)

	M.E – ECE (CE&SP) IV-SEMESTER								
			Schem	e of Inst	ruction	Sche	eme of Exa	mination	
S. No.	Course Code	Name of the Course	Hou	rs per W	/eek	Duration	Maximu	m Marks	dits
110.			L	Т	P/D	in Hrs	SEE	CIE	Credits
1	PII19PW419EC	Dissertation-Phase-II / Internship	-	-	24	-	Viva-Voc	e (Grade)	12
	TOTAL		•	•	24	-	-	-	-
	GRAND TOTAL			24		-	-	-	-

DEPARTMENTOF ELECTRONICS AND COMMUNICATIONS ENGINEERING

Dissertation-Phase-II / Internship

SYLLABUS FOR M.E. ECE (CE&SP) - IV SEMESTER

L:T:P(Hrs./week):0:0:24	SEE Marks:-	Course Code:	PII19PW419EC
Credits: 12	CIE Marks: Viva	-Voce (Grade)	Duration of SEE:

	COURSE OBJECTIVES	COURSE OUTCOMES
1.	Carrying out further literature survey	On completion of the course, students
	related to the topic already selected.	will be able to
2.	Carrying out investigation	1. Students will be able to face any
	experiments, simulation in relation	new problem and find a sensible
	to the problem.	solution
3.	Problem analysis and solution	2. Students would be trained to
	finding for problems encountered	investigate a given problem in a
4.	Organization of results	systematic way
5.	Thesis preparation, presentation and	3. They would be ready to take up
	defence.	work which may be needed by the
		industry.

The students must be given clear guidelines to execute and complete the project on which they have delivered a seminar in the 3rd semester of the course.

All projects will be monitored at least twice in a semester through student's presentation. Sessional marks should be based on the grades/marks, awarded by a monitoring committee of faculty members as also marks given by the supervisor.

Efforts be made that some of the projects are carries out in industries with the help of industry coordinates.

Common norms will be established for documentation of the project report by the respective department.

The final project reports must be submitted two weeks before the last working day of the semester.

The project works must be evaluated by an external examiner and based on his comments a viva voice will be conducted by the departmental committee containing of HOD, two senior faculty and supervisor.

+ Excellent / Very Good / Good/Satisfactory / Unsatisfactory