VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

ACCREDITED BY NAAC WITH 'A++' GRADE
Ibrahimbagh, Hyderabad-31
Approved by A.I.C.T.E., New Delhi and
Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR B.E. (ECE) V and VI Semesters With effect from 2023-24 (For the batch admitted in 2021-22)

(R-21)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Phones: +91-40-23146040, 23146041

Fax: +91-40-23146090

Institute Vision

Striving for a symbiosis of technological excellence and human values

Institute Mission

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow

Department Vision

Striving for excellence in teaching, training and research in the areas of Electronics and Communication Engineering and fostering ethical values

Department Mission

To inculcate a spirit of scientific temper and analytical thinking and train the students in contemporary technologies in Electronics and Communication Engineering to meet the needs of the industry and society with ethical values

B.E	B.E (ECE) Program Educational Objectives (PEO's)									
PEO I	Graduates will be able to identify, analyze and solve engineering problems.									
PEO II	Graduates will be able to succeed in their careers, higher education, and research.									
PEO III	Graduates will be able to excel individually and in multidisciplinary teams to solve industry and societal problems.									
PEO IV	Graduates will be able to exhibit leadership qualities and lifelong learning skills with ethical values.									

	B.E. (ECE) PROGRAM OUTCOMES (PO's)
Engine	eering Graduates will be able to:
PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
PO3	Design / development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.
PO4	Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Lifelong learning: Recognize the need, and for have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

B.E	B.E (ECE) PROGRAM SPECIFIC OUTCOMES (PSO's)									
PSO I	ECE students will be able to analyze and offer circuit and system level solutions for complex electronics engineering problems, keeping in mind the latest technological trends.									
PSO II	ECE students will be able to apply the acquired knowledge and skills in modeling and simulation of communication systems.									
PSO III	ECE students will be able to implement signal and image processing techniques for real time applications.									

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-21) :: B.E. - ECE : FIFTH SEMESTER (2023 - 24)

B.E (ECE) V - SEMESTER										
		Sche	me of Ir	struction	Scheme of Examination					
Course Code	Name of the Course	Н	ours per	Week	Duration	Maximu	Credits			
		L	Т	P/D	in Hrs	SEE	CIE	Cre		
	THEORY									
U21PC510EC	Microprocessors and Microcontrollers	3	-	-	3	60	40	3		
U21PC520EC	Integrated Circuits and Applications	3	-	-	3	60	40	3		
U21PC530EC	Analog and Digital Communication	3	1	-	3	60	40	3		
U21PC540EC	Antennas and Wave Propagation	3	1	-	3	60	40	4		
U210E5XXXX	Open Elective – III	3	1	-	3	60	40	3		
U21HS510EH	Skill Development Course-V: Communication Skills in English-II	1	-	-	2	40	30	1		
U21PE510EC	Skill Development Course-VI: Technical Skills - II	1	-	-	2	40	30	1		
	PRACTICALS									
U21PC511EC	Microprocessors and Microcontrollers Lab	-	-	2	3	50	30	1		
U21PC521EC	Integrated Circuits and Applications Lab	-	ı	2	3	50	30	1		
U21PC531EC	Analog and Digital Communication Lab	1	1	2	3	50	30	1		
U21PW519EC	Mini Project – II	-	1	2	-	50	30	1		
	TOTAL	17	1	8		580	380	22		
	GRAND TOTAL 26 960									
Left over hours will be allocated for : Sports / Library / Mentor - Mentee Interaction / CC / RC / TC / ECA / CCA										

Note: Every Student shall complete one NPTEL course certification of 8 weeks duration (equivalent to 2 credits weightage) by the end of VI-Semester.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Microprocessors and Microcontrollers

SYLLABUS FOR B.E. V - SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U21PC510EC				
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours				

	COURSE OBJECTIVES	COURSE OUTCOMES				
1.	$8086\mu p$ and $8051\mu c$ architecture so	1. Summarize architectural features of 8086μp.				

CO-PO/PSO Mapping

CO-F	co-ro/roo napping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2										2		
CO2	2	2	1										1		
CO3	2	2	1	1	1								1		
CO4	3	2	1												
CO5	1	1	1	1	1								2		

UNIT - I: 8086 Architecture

8086 Architecture, Register Organization, Memory segmentation, Pin configuration, latching of address bus, Buffering of data bus. Minimum and Maximum mode operations; control signal interfacing for read and write operations; Organization of stack, Interrupt Vector Table

UNIT - II: 8086 Interfacing

Memory interfacing: RAM, EPROM IC Chips I/O interfacing: 8255 PPI, 8257 DMA interface

Interfacing programmable interval timers – 8253/8254

UNIT - III: 8051 Microcontroller

Architecture of 8051, Pin configuration, built-in ROM & RAM organization, Stack organization.

Assembly language Programming with 8051: Instruction set, Data transfer, Arithmetic, logical and Branching instructions, Addressing modes.

UNIT - IV: Peripheral and interfacing programming in Assembly and Embedded-C

8051 Timers in different modes, counter programming, 8051 Serial data communication; Interrupt programming.

Off-chip EPROM, SRAM, Expansion of I/O using 8255; Sensor interface—ADC0804, ADC0808; DAC interface.

UNIT - V:Real world interfacing and Device drivers in Embedded-C Interfacing Seven-segment display, 2x16 LCD, 4x3 Matrix Keyboard, DC Motor, Stepper Motor, DS12887 RTC. Applications of 8086 & 8051: Speed control in Industrial, Automotive with PWM generation; Home automation.

Learning Resources:

- Ray A.K & Bhurchandhi K.M, "Advanced Microprocessor and Peripherals," 2/e, TMH, 2007.
- Douglas V Hall, "Microprocessors and Interfacing Programming and Hardware," 2/e, THM, 2007.
- 3. Mazidi M.A, Mazidi J.G & Rolin D. Mckinlay, "The 8051 Microcontroller & Embedded Systems using Assembly and C," 2/e, Pearson Education, 2007.
- Microprocessors and Microcontrollers by Dr. Santhanu chatopadhya, IIT Kharagpur https://onlinecourses.nptel.ac.in/noc18 ec03/course
- 5. Microprocessors and Microcontrollers, IIT Kanpur. https://nptel.ac.in/courses/Webcourse-contents/IIT- KANPUR/microcontrollers

The	e break-up of CIE: Inte	ernal Tests + Assignments + Quizzes	
1.	No. of Internal Tests	: 2 Max. Marks for each Internal Test	: 30
2.	No. of Assignments	: 3 Max. Marks for each Assignment	: 5
3.	No. of Ouizzes	: 3 Max. Marks for each Quiz Test	: 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Integrated Circuits and Applications

SYLLABUS FOR B.E. V – SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U21PC520EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. Students will acquire the	On completion of the course, students will be able
knowledge of linear IC	
applications and design	
various circuits using IC's	features of op-amp.
for any given	2. Design of linear and non-linear circuits using op-
specifications.	amp.
2. Student shall describe	, , , , ,
specifications of a digital	ICs, such as 555, 723,8038 etc,.
IC for various logic families	
and design combinational	
and sequential circuits with	5. Design and analyze applications using different
digital ICs.	combinational and Sequential circuits (IC's)

	-	-		
CO-	PU	/PSO	Mat	onida

CO-F	со-ғо/ғэо марріну														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2											2		
CO2	2	2	3										2		
CO3	2	2	3										3		
CO4	3	2											2		
COS	2	2	3										3		

UNIT - I : Integrated Circuits and Op-Amp Applications

Chip Size and Circuit Complexity, Ideal and Practical Op-Amp, Op-Amp Characteristics - DC, AC-Slew Rate and Frequency Response, 741 Op-Amp, Modes of Operation: Inverting, Non- Inverting, Differential.

Op-Amp Applications: Basic Applications of Op-Amp, Instrumentation Amplifier, Sample & Hold Circuits, Differentiators and Integrators, Comparators, Schmitt Trigger

UNIT - II : Active filters, Timers

Active Filters: First Order and Second Order Low Pass, High Pass filters, Band Pass, Band Reject and All Pass Filters. Analysis and Design of Function Generators using IC 8038.

555 Timers: Functional Diagram, Monostable, Astable Operations and Applications.

UNIT - III : IC regulators and Data convertors

IC Regulators: Analysis and design of fixed voltage regulators & IC 723 voltage regulator

Data convertors: Basic DAC Techniques – Weighted Resistor Type, R-2R Ladder Type, Inverted R- 2R Type DAC's Different types of ADCs – Parallel Comparator Type, Counter Type, Successive Approximation Register Type and Dual Slope Type.

UNIT - IV : Logic Families

Digital Integrated Circuits: Classification of Digital Integrated Circuits, Standard TTL NAND Gate-Analysis & Characteristics, TTL Open Collector Outputs, Tristate TTL, MOS & CMOS Open Drain and Tristate Outputs,. Comparison of various Logic Families, IC Interfacing - TTL Driving CMOS & CMOS Driving TTL.

UNIT - V: Digital IC Applications

Digital IC Applications TTL & CMOS 74XX Series ICs, Arithmetic Circuit ICs-Parallel Binary Adder/Subtractor using 2's Complement System - 7483, Magnitude Comparator Circuits-7485. Multiplexers -74151 & Demultiplexer - 74138. BCD to 7-segment decoder/driver - 7447. Sequential Circuits: Synchronous and Asynchronous IC Counters - 74163 & 7490, Shift Registers - 7495 and its Applications.

Learning Resources:

- Op-amps and Linear Integrated Circuits, Ramakant A. Gayakwad, Prentice Hall, 2003.
- Linear Integrated Circuits, D. Roy Chowdhury, 3rd Edition, New Age International(P) Ltd., 2008.
- 3. Ronald J. Tocci, Neal S.Widmer & Gregory L.Moss, "Digital Systems: Principles and Applications," PHI,10/e, 2009.
- 4. Sonde, B. S., "Introduction to system Design using IC's," Wiley, 2/e, 1994.
- 5. Digital Fundamentals, Floyd and Jain, 8th Edition, Pearson Education, 2005.
- 6. Modern Digital Electronics, RP. Jain, 4th Edition, Tata McGraw-Hill, 2010.
- 7. https://nptel.ac.in/courses/108106069/
- 8. https://nptel.ac.in/courses/108108111/
- 9. https://nptel.ac.in/courses/108108114/

_	COTE	T				
The break-up	of CIE:	Internal	lests +	Assianments	+ ()uizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Analog and Digital Communication

SYLLABUS FOR B.E. V - SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U21PC530EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
	On completion of the course, students will be able to 1. Determine power, bandwidth, and figure of merit of amplitude modulated signal. 2. Design FM transmitter for a specified frequency and analyze superheterodyne receiver 3. Apply source coding techniques and pulse modulation techniques to convert analog signal to
	digital signal. 4. Estimate probability of errors for various digital modulation schemes.
	5. Encode and decode digital signal for error control.

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3											1	2	
CO2	2	2	2	2										3	
CO3	1	2											2	3	
CO4	2	3		3								2		2	
CO5	2	2										2		2	

UNIT - I: Amplitude modulation

Principle of modulation, Quantitative analysis of amplitude modulation: AM, DSBSC, SSBSC, VSB. Square law modulator, Switching Modulator, Square law detector, Envelope detector. Balanced modulator, Ring modulator, coherent detection of DSBSC. Generation of SSBSC and coherent detection of SSBSC, frequency division multiplexing. Figure of merit and Noise considerations in in AM, DSBSC, SSBSC, Costas loop.

UNIT - II : Angle Modulation

Principle of angle modulation, Phase modulation, frequency modulation, Quantitative analysis of frequency modulation, NBFM, WBFM. Direct method of FM generation, Armstrong method of FM generation, Foster-Sealey detector, Spectrum Analysis of Sinusoidal FM Wave using Bessel functions, Pre emphasis and De-emphasis, Threshold effect in angle

modulation, amplitude limiter.

Transmitters and receivers

Functions of a transmitter and receiver. Low level transmitters, High level transmitters. TRF receiver, Super heterodyne receiver: Intermediate frequency, Image frequency, AGC.

UNIT - III: Pulse Modulation

Principles of Pulse modulation- generation and detection of PAM, Aperture effect, Generation and detection of PWM and PPM signals. Quantization, Types of quantization, Companding, Pulse code modulation (PCM), Differential pulse code modulation, Delta modulation, Adaptive delta modulation, Time Division multiplexing. Noise considerations in PCM and DM.

UNIT - IV: Digital communication

Baseband Pulse Transmission- Inter symbol Interference, Eye diagram, Error vector magnitude, Pass band Digital Modulation schemes- ASK, PSK, FSK, M-ary signaling, MSK, QPSK, 8-PSK, QAM. Generation and detection of digital modulation techniques. Optimum detection of signals in noise, Coherent receiver, matched filter -Probability of Error evaluations.

UNIT - V: Error Control Coding

Types of transmission errors, need for error control coding, Source coding, Shannon – Fano algorithm and Huffman coding. Coding efficiency, Linear Block Codes (LBC):, Encoder, Syndrome and error detection, Convolutional code: Encoder, Decoder.

Learning Resources:

- 1. Singh, R.P. and Sapre, S.D., "Communication Systems," TMH, 2017.
- 2. Simon Haykin, "Communication Systems," 5/e, Wiley India.
- Sam Shanmugham.K., "Digital and Analog Communication Systems," Wiley, 2005.
- 4. Communication Systems (Analog and Digital) by Dr. Sanjay Sharma, 2013
- 5. Modern Digital And Analog Communication Systems: Fourth Editionby B.P. Lathi, Zhi Ding, et al. | 1 July 2017
- 6. https://nptel.ac.in/courses/117105143/
- 7. https://nptel.ac.in/courses/108104091/
- 8. https://nptel.ac.in/courses/117105144/
- 9. https://nptel.ac.in/courses/108104098

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Antennas and Wave Propagation

SYLLABUS FOR B.E. V – SEMESTER

L:T:P (Hrs./week): 3:1:0	SEE Marks: 60	Course Code: U21PC540EC
Credits: 4	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Students will	On completion of the course, students
1. Understand the fundamentals of	will be able to
antenna operation and working for	
different applications.	radiation and antenna parameters.
2. Acquire the knowledge of different	2. Analyze and design wire and loop
modes of wave propagation.	antennas.
	3. Apply the antenna fundamentals in
	antenna array analysis.
	4. Analyze the behaviour of various
	VHF, UHF and Microwave Antennas
	5. Compare modes of wave
	propagation for different
	applications

CO-PO/PSO Mapping

	o i o/i oo napping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2										1	
CO2	3	2	2			2								2	
CO3	3	3	3	2		2						2		2	
CO4	2	2	2	2			2					2		2	
CO5	3	2		2			2							2	

UNIT - I: Antenna Basics

Principles of radiation-single wire, two wire, current distribution on a thin wire antenna, retarded potential, isotropic radiator.

Antenna parameters: Radiation pattern, Beam area, Beam efficiency, radiation intensity, Antenna temperature, Antenna field regions, Gain, directivity, Antenna Polarization, effective length, Antenna Impedance, effective aperture and aperture efficiency, Friis transmission equation.

UNIT - II: Analysis of Linear and Loop Antennas

Infinitesimal dipole, region separation, Half wave dipole, quarter wave mono pole, Ground effects, small circular loop.

UNIT - III: Antenna Arrays

Introduction, Point sources, Array of two isotropic point sources, Linear Arrays of N isotropic point sources of equal amplitude and spacing, principle of pattern multiplication, Broad Side Array, End Fire Array, Binomial Array.

UNIT - IV: VHF, UHF and Microwave Antennas

Helical Antennas-Geometry, Helix modes, Design considerations for Helical Antenna, Horn Antenna, Parabolic Reflector Antennas, Yagi-Uda Array and Log Periodic Array. Micro strip Antennas- Basic characteristics of micro strip antennas, feeding methods.

UNIT - V: Smart Antennas and Wave Propagation

Basic Concepts of Smart Antennas-Concept and benefits of smart antennas. Different modes of Radio Wave propagation used in current practice: Ground wave propagation, Sky wave propagation and Space wave propagation. Introduction to EMI/EMC

Learning Resources:

- 1. J.D. Kraus, "Antennas and Wave propagation", McGraw Hill, 5th edition, 2017.
- 2. C.A. Balanis, "Antenna Theory Analysis and Design", John Wiley, 4th edition, 2015.
- 3. K.D. Prasad, "Antenna and Wave Propagation", Satya Prakashan Publishing Company, 2009.
- 4. I.J. Bahl and P. Bhartia, "Micro Strip Antennas", Artech House, 1980.
- 5. R.K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill, 2005.
- 6. R.E. Crompton, Adaptive Antennas, John Wiley.
- 7. https://nptel.ac.in/courses/108101092/

The break-up of CIE: Internal	Tests +	- Assignments	+ Quizzes
-------------------------------	---------	---------------	-----------

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCE

Skill Development Course - V : Communication Skills in English - II

SYLLABUS FOR B.E. V - SEMESTER

L:T:P (Hrs./week): 1:0:0	SEE Marks: 40	Course Code: U21HS510EH
Credits: 1	CIE Marks: 30	Duration of SEE: 2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the learners to:	At the end of the course the learners
1. Get students proficient in both	will be able to: -
receptive and productive skills	1. Participate in group and forum
2. Enable students to build strategies	discussions by providing factual
for effective group interaction and	information, possible solutions, and
help them in developing decisive	examples
awareness and personality while	2. Present a topic by picking up the key
maintaining emotional balance.	points from the arguments placed.
3. To introduce students to an ideal	3. Read between the lines and write
structure for a presentation	informed opinions.
4. To develop and improve writing and	4. Prepare, present, and analyze
study skills needed for college work.	reports
CO DO/DCO Manning	

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1									2	3					
CO2									2	3					
CO3									2	3					
CO4									2	3					

UNIT-I: Delightful Discussions

- 1.1 Six Thinking Hats
- 1.2 Group Discussion Techniques (Initiation Techniques, Generating Points, Summarization techniques)
- 1.3 Case Study Based Group Discussions

UNIT-II: Powerful Presentations

- 2.1 Concise Cogent Presentation
- 2.2 Persuasion skills
- 2.3 Toulmin Model
- 2.4 BikerB JAM and Extempore

UNIT-III: Fact, Observation and Inference

- 3.1 Discernment of fact and opinion
- 3.2 Note making and Inference
- 3.3 Main idea identification
- 3.4 Logical Conclusions

Unit 4: Effective Technical Writing

- 4.1 Report writing
- 4.2 Image Writing
- 4.3 Book Reviews
- 4.4 Movie Reviews

Learning Resources:

- 1. How to Win Friends and Influence People by Dale Carnegie. ...
- 2. Crucial Conversations: Tools for Talking When Stakes Are High by Kerry Patterson, Joseph Grenny, Ron McMillan, and Al Switzler.
- 3. Difficult Conversations: How to Have Conversations that Matter the Most by Douglas Stone, Bruce Patton, Sheila Heen, and Roger Fisher.

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 20
- 2. No. of Assignments : 2 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Microprocessors and Microcontrollers Lab

SYLLABUS FOR B.E. V - SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PC511EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
1. To enable the students with 8086µp and 8051µc based programming with built in peripheral and interfacing off chip peripherals to develop an interface system using µVision5 IDE & simulate on proteus 7.2.	will be able to 1. Apply knowledge in writing the programs using Masm assembler

CO-PO/PSO Mapping

				· <u> </u>											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			1										
CO2	2	2			2									1	1
CO3	2	2	1	1	2								1	1	1
CO4	2	2	1	1	2							1	1	1	1

Cycle - I:

Assembly language programming for 8086 µP using Assembler

- 1. Execution of basic programs on 8086 microprocessor (8 bit and 16 bit arithmetic operations).
- 2. Programs for data transfer, String searching and sorting

Embedded C programming for 8051 μ C using Keil IDE and Proteus for on-chip interface.

- 3. Programs related to arithmetic instructions.
- 4. Programs related to logical instructions.
- 5. Timer and counter programming.

- 6. Square wave generation with variable duty cycle (PWM).
- 7. Interrupt programming.

Cycle - II:

Embedded C programming with 8051 using Keil IDE & Proteus for off chip peripheral interface.

- 8. Serial communication using RS 232 UART protocols.
- 9. Sensor interfacing with off chip ADC applications.
- 10. Transducer interfacing with off chip DAC applications.
- 11. Program to control stepper motor
- 12. LCD display interfacing (4-bit and 8-bit mode).
- 13. Keypad interfacing.

Mini project

Mini project based on applications that possibly can be developed using 8051µC by interfacing with on-chip and off-chip peripherals.

New / Additional experiments planned:

- 1. Design and implementation of user authentication module.
- 2. Design of UART driver for transmitting the data at 19200bps.

The break-up of CIE:

1.	No. of Internal Test	:	1
_			

2. Max. Marks for internal test : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Tests: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Integrated Circuits and Applications Lab

SYLLABUS FOR B.E. V - SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PC521EC
Credits: 1	CIE Marks: 30	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
	On completion of the course, students
using IC's for the given specifications.	will be able to
	1. Implementing and Testing Various
	Op-Amp based circuits.
	2. Design and verify the combinational
	and sequential circuits.
	3. Examine the performance of various
	filters and 555 timer Applications.
	4. Design & verify regulator using
	IC723 for given specifications.

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1							1				2		
CO2	3	2	2		2				2				3		
CO3	3	1							1				2		
CO4	3	2	2		2				2				3		
CO5															•

CYCLE - I Experiments

- 1. Measurement of parameters of Op-Amp. Voltage Follower, Inverting and Non Inverting Amplifiers, Level Translators using Op-Amp.
- 2. Arithmetic Circuits: Summer, Integrator Differentiator Op-Amp.
- 3. Active filters: LP, HP and BP using Op-Amp.
- 4. Op-Amp Oscillators: Astable, Monostable.
- 5. Triangle and Square wave Generators. Schmitt Trigger using Op-Amp.
- 6. Voltage Controlled Oscillator Using LM 566.
- 7. IC Regulators and current boosting.
- 8. Applications of 555 Timer.

CYCLE - II Experiments

 Measurement of propagation delay, fan-out, Noise margin and transfer Characteristics of TTL and CMOS IC gates and open collector / drain gates.

- 2. Designing code converters using logic gates and standard code converters. Parity generator and checker circuit.
- 3. Flip-Flop conversions and latches using gates and ICs.
- 4. Designing Synchronous, Asynchronous up/down counters
- Shift registers and ring counters using IC Flip-Flops & Standards IC counters.
- 6. Full Adders, Subtractors using logic gates and multiple bits IC Adder / Subtractor and arithmetic Circuits.
- 7. Mux Demux applications.
- 8. Interfacing counters with 7-segment LED/LCD display units.

General Note:

- 1. At least 5 experiments from each part.
- 2. A total of not less than 10 experiments must be carried out during the semester.
- 3. Analysis and design of circuits, wherever possible, should be carried out using SPICE tools.

New / Additional experiments planned:

- 1. Design and implement a function generator using IC 8038 for any given frequency.
- 2. Design and implement Psuedo random sequence generator using IC 7495 shift register.

Mini Project(s)

Learning Resources / Tools:

- 1. http://www.ti.com/lit/an/sboa092b/sboa092b.pdf
- 2. https://www.electrical4u.com/applications-of-op-amp/

The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for internal test : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Tests: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Analog and Digital Communication Lab

SYLLABUS FOR B.E. V - SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PC531EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

CO-PO/PSO Mapping

•••	•,		~PP												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1			2									2	
CO2	3				2									2	
CO3	3	1			2									2	
CO4	3				2									2	

Cycle-I

- Modulation and demodulation of DSB with full carrier.
 AM radio signal reception using Superheterodyne receiver
- Modulation and demodulation of DSB with suppressed carrier Modulation and demodulation of SSB with suppressed carrier Frequency division multiplexing and demultiplexing
- 3. FM signal reception using FM discriminator Characteristics of Pre emphasis and deemphasis
- 4. Generation and detection of PAM signal Time division multiplexing of PAM signals
- Generation and detection of PWM signals in GNU Generation and detection of PPM signals

6. Scanning spectrum for FM signals in RF analyzer

Cycle- II

- 7. Generation and detection of PCM signals
 Time division multiplexing of PCM signals
- 8. Source coding using Delta modulation
 Source coding using Adaptive delta modulation
- 9. Generation and detection of ASK, FSK and BPSK signals
- 10. Generation and detection of QPSK signals in GNU
- 11. Generation and detection of MSK signals
- 12. Signal generation using VSG

New / Additional experiments planned:

- 1. Generation of PSK signals for higher order modulations using USRP.
- 2. Implementing OFDM transmission and reception in SDR platform.

Learning Resources/ Tools:

Tools: MATLAB, Simulink, SystemVue

- Communication systems by V. Chandra Sekar, SASTRA University, Oxford University Press, 2013, ISBN: 9780198078050
- 2. Digital Communication Systems Using MATLAB and Simulink, Second Editionby Dennis Silage
- 3. Communication Systems Modeling and Simulation using MATLAB and Simulink 1st Edition by K. C. Raveendranathan

The break-up of CIE:

1.	No. of Internal Test	:	1
2.	Max. Marks for internal test	:	12
3.	Marks for day-to-day laboratory class work	:	18

Duration of Internal Tests: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Mini Project - II

SYLLABUS FOR B.E. V – SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PW519EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3

COURSE OBJECTIVES	COURSE OUTCOMES
Students should be	On completion of the course, students will be able
1. Exposed to	to
contemporary	1. Review the literature survey to identify the
technologies in	problem
Electronics and	2. Propose the solution to address the problem
Communication	3. Design/Develop/Implement /Solve the problem
Engineering and apply	and test the solution
engineering knowledge	4. Demonstrate the work done in the mini project
into a real world	through presentation and documentation
problem with proper	5. Adapt to contemporary technologies
Design.	

CO-PO/PSO Mapping

	-,		P P												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3			2	2								
CO2				3	3										
CO3								3		3					
CO4									3			3			
CO5											3				

Note: CO1 & CO2 must be mapped with one of the relevant PSOs based on the domain of the project with 3.

CO4 can be mapped to appropriate PSO with level 2.

The students are required to carry out mini projects in relevant areas of electronics communication engineering such as Electronic Devices and Circuits, Embedded Systems, RF, Microwave and Wireless Communications, Communication Systems, Signal, Image and Video Processing, VLSI, Networking.

Students are required to submit a report on the Mini Project.

- > Batch size shall be 2 (or) 3 students per batch.
- > Allocation by department.
- > Two reviews One during 6th week and another during 12th week and final evaluation shall be conducted at the end of the semester.

- > Students are required to give Presentations / Demonstration of the work during the reviews.
- > Students are required to submit the report.

Grades awarded to the Mini Project - II

Continuous Internal Evaluation (CIE) — 30 marks: To be evaluated by the Internal Examiner as per the following:

Assesment-1: [5 Marks]

Review of problem selection & abstract to be conducted in week-2.

Assesment-2: [10 Marks]

Review of project design & initial phase of implementation and to be conducted in week-7.

Assesment-3: [15 Marks]

Review of final implementation, presentation and report to be conducted in week-15.

Semester End Examination(SEE) – 50 marks: To be evaluated by the External Examiner

Evaluation guidelines for Semester End Examination (SEE):

Power Point Presentation [5 Marks]

Demonstration of the application [25 Marks]

Innovation : 05 Marks
Implementation : 15 Marks
Understanding : 05 Marks

Project Report [10 Marks]
Viva Voce [10 Marks]

OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS IN B.E. V SEMESTER

S.No.	Dept.	Course Code	Name of the Course	Credits
1	Civil	U210E510CE	Spatial Information Technology	3
2	CSE	U210E510CS	Web Design	3
3	CSE	U210E520CS	Fundamentals Of Object Oriented Programming	3
4	Physics	U210E530PH	Signal Engineering	3
5	EEE	U210E510EE	Solar Power and applications	3
6	IT	U210E510IT	Introduction to Database Management Systems	3
7	11	U210E520IT	Essentials of Operating Systems	3
8	Mechanical	U210E510ME	Introduction to Robotics	3
9	U210E520ME		Introduction to Automobile Engineering	3
10	H&SS	U210E530EH	Design Thinking	3
11	11000	U210E540EH	Basics of Entrepreneurship	3

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF CIVIL ENGINEERING

SPATIAL INFORMATION TECHNOLOGY (Open Elective-III)

SYLLABUS FOR B.E. V SEMESTER

L: T: P (Hrs./week):3:0: 0	SEE Marks:60	Course Code: U210E510CE
Credits: 3	CIE Marks:40	Duration of SEE:3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES						
Objectives of this course are to	Upon the completion of the course, students are expected to						
To provide fundamental knowledge on geo spatial technology such as Remote sensing GPS and GIS.	 Select the type of remote sensing technique/data, identify and analyze the earth surface features from the satellite images. Identify GPS components, interpret the navigational message and signals received by the GPS satellites, Identify the error sources and apply corrections for accurate positioning. 						
	Analyse the basic components of GIS, process spatial and attribute data, identify and rectify mapping inaccuracies and prepare thematic maps						

Unit-I: Introduction and Basic Concepts of Remote Sensing: Introduction, Basic concepts of remote sensing, Airborne and space born sensors, Passive and active remote sensing, EMR Spectrum, Energy sources and radiation principles, Energy interactions in the atmosphere, Energy interactions with earth surface features, Atmospheric windows, Spectral reflectance curves

Unit-II: Remote Sensing Systems: Satellites and orbits, Polar orbiting satellites, Image characteristics and different resolutions in Remote Sensing, Multispectral, thermal and hyperspectral remote sensing. Some remote sensing satellites and their features, Map and Image, color composites, introduction to digital data, elements of visual interpretation techniques. Applications of Remote sensing in various fields.

Unit-III: Global positioning Systems (GPS) :Overview of GNSS and Introduction to GPS, GLONASS, GALILEO, COMPASS, IRNSS systems, Applications of GPS.

GPS: Basic concepts, Functional system of GPS – Space segment, control segment and user segment, Working principle of GPS, Signal structure and code modulation, Pseudo-range measurements and navigation message

Unit-IV: Errors and Positioning methods of GPS: Errors and biases in GPS measurements, Accuracy of navigation position: UERE and DOP, Intentional

degradation of GPS signals: Selective availability (SA) and Anti-spoofing (AS) Differential GPS: Space based augmentation systems (e.g., SBAS, GAGAN) and Ground based augmentation systems (e.g., WASS, EGNOS). GPS Carrier Phase measurements: Single Differencing, Double Differencing and Triple Differencing in GPS measurements.

Unit-V:Basic Concepts: Introduction to GIS, Areas of GIS application, Components of GIS, Overview of GIS Software packages, Current issues and Trends in GIS. Variables-Point, line, polygon, Map projections, Map Analysis.

GIS Data: Data types – spatial, non-spatial (attribute data) – data structure, data format – point line vector – Raster – Polygon

Data Input: Keyboard entry, Manual Digitizing, Scanner, Remotely sensed data, Existing Digital data Cartographic database, Digital elevation data

Data Editing: Detection and correction of errors, data reduction, edge matching

Learning Resources:

- James B. Campbell & Randolph H. Wynne., Introduction to Remote Sensing, The Guilford Press, 2011
- 2. Lillesand, Kiefer, Chipman., Remote Sensing and Image Interpretation, Seventh Edition, 2015
- 3. Leick, A., GPS Satellite Survey, John Wiley: NJ, 2015
- 4. Hofmann, B., Lichtenegger H. and Collins J., Global Positioning System: Theory and Practice, Springer: Berlin, 2011.
- 5. Basudeb Bhatta, Remote Sensing and GIS, Oxford University Press, 2011.
- Hofmann-Wellenh of, Bernhard, Lichtenegger, Herbert, Wasle, Elmar, GNSS GPS, GLONASS, Galileo and more, 2013
- 7. Thanappan Subash., Geographical Information System, Lambert Academic Publishing, 2011.
- 8. Paul Longley., Geographic Information systems and Science, John Wiley & Sons, 2005
- 9. John E. Harmon & Steven J. Anderson., The design and implementation of Geographic Information Systems, John Wiley & Sons, 2003
- 10. ArcGIS 10.1 Manuals, 2013.
- 11. Kang Tsung Chang., Introduction to Geographic Information Systems, Tata Mc Graw Hill Publishing Company Ltd, New Delhi, 2008.
- 12. Burrough, P.A., Principles of GIS for Land Resource Assessment, Oxford Publications, 2005.
- 13. C.P.Lo & Albert K. W.Yeung, Concepts and Techniques of Geographic Information Systems, Prentice Hall India Pvt.Ltd, 2002.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30 2 No. of Assignments : 3 Max. Marks for each Assignment : 5 3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

VASAVI COLLEGE OF ENGINEERING(Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

WEB DESIGN (OPEN ELECTIVE-III) SYLLABUS FOR B.E. V-SEMESTER

(COMMON FOR CIVIL, ECE, EEE & MECH)

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U210E510CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
1. Develop web application using HTML, CSS, JavaScript and PHP.	 Design static web pages. Apply styles to the web pages. Create dynamic web pages using JavaScript. Design DTD and schema for a given XML file. Develop server side components using PHP.

UNIT-I: Web Basics and overview: Introduction to Internet, World Wide Web, Web Browsers, Web Servers, URL, MIME, HTTP, Web Programmers Tool Box, Introduction to HTML Purpose of HTML and XHTML, Text Formatting, Hypertext Links, Images, Lists, Tables, Forms and Frames.

UNIT-II: Cascading Style Sheets- Levels of Stylesheet, Style Specification Formats, Selector Formats, Property Value Forms, Font Properties, List Properties, Alignment of Text, Box Model, Background Images, Borders, div and span tags, Conflict Resolution.

UNIT-III: JavaScript - Object Orientation and JavaScript, Primitives, Operations, Expressions, Control Statements, Object Creation, Arrays, Functions- Introduction, Program Modules in JavaScript, Programmer-Defined Functions, Function Definitions, Random-Number Generation, Scope Rules, JavaScript Global Functions, Recursion, Constructors, Regular

Expressions, DOM Model, Events, Event Handling in JavaScript, JavaScript objects.

UNIT-IV: Introduction to XML, Syntax of XML, XML Document Structure, Document type Definition, Namespaces and Schemas. Client-Server Architecture, Multi-tier Architecture, Web server.

UNIT-V: PHP- Overview of PHP, General Syntactic Characteristics, Primitives, Operations, and Expressions, Output, Control Statements, Arrays, Functions, Pattern Matching, Form Handling, Cookies and Session Tracking.

Learning Resources:

- 1. Robert W. Sebesta, "Programming the World Wide Web", 4th edition, Pearson Education
- 2. Uttam K.Roy, "Web Technologies", Oxford publishers.
- 3. http://www.w3schools.com
- 4. https://www.php.net/manual/en/tutorial.php

The break-up of CIE: Internal Tests + Assignments + Quizzes									
1 No. of Internal Tests	:	2	Max. Marks for each Internal Tests		30				
2 No. of Assignments	:	3	Max. Marks for each Assignment		5				
3 No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5				

Duration of Internal Tests : 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING(Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

FUNDAMENTALS OF OBJECT ORIENTED PROGRAMMING (OPEN ELECTIVE-III)

SYLLABUS FOR B.E. V-SEMESTER (COMMON FOR CIVIL, ECE, EEE & MECH)

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U210E520CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
 Apply object oriented principles for developing an application using Java constructs. Design GUI using existing Java classes and interfaces. 	 Adopt the fundamentals of Object oriented system development for developing a application. Apply basic features of OOP to design an application. Employ runtime error handling, concurrent programming practices to develop a parallel processing application. Perform string handling, read and write operations using console and files IO streams. Design GUI for a java application using AWT classes.

UNIT-I: Object Oriented System Development: Understanding Object Oriented Development, Understanding Object Concepts, Benefits of Object Oriented Development.

Java Programming Fundamentals: Introduction, Overview of Java, Data types, Variables and Arrays, Operators, Control Statements.

UNIT-II: Building blocks of OOP: Classes and Methods, Constructor, Parameterized constructor, Garbage Collection, this, static, final keywords, Inheritance, types of inheritance, Method Overriding, Abstract class, Nested class, Interface, Package.

UNIT-III: Exception Handling: try, catch, throw, throws, finally, creating user defined exceptions

Multithreaded Programming: Types of Thread creation, multiple threads, isalive, join, thread priority, Thread Synchronization, Inter process communication.

UNIT-IV: String Handling: String constructors, operations, character extraction, comparison, search, modification. StringBuffer, methods, StringBuilder, StringTokenizer

Util: Date, Calendar, Random, Timer, Observable

IO: Files and Directories, I/O Classes and Interfaces, Byte Streams classes and Character Stream classes

UNIT-V: Applet: Applet Class, Applet architecture

Event Handling: The Delegation Event Model, Event Classes, Source of

Events, Events Listener Interfaces

GUI Development: AWT: Classes, Working with Graphics, Frames, Menu, Layout Managers.

Learning Resources:

- Herbert Schildt, The Complete Reference Java, 7th Edition, Tata McGraw Hill 2005.
- 2. P. Radha Krishna, Object Oriented Programming through Java, Universities Press, 2007.
- 3. Sachin Malhotra, Saurabh Choudhary, Programming in Java, 2nd Edition, Oxford Press, 2014.
- 4. https://docs.oracle.com/javase/tutorial/java

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30 2 No. of Assignments : 3 Max. Marks for each Assignment : 5

3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests : 1 Hour 30 Minutes

Signal Engineering (Open Elective - III)

SYLLABUS FOR B.E. V – SEMESTER (CSE, ECE, EEE, IT & Mechanical)

L:T:P (Hrs./week) : 2:0:1	SEE Marks: 60	Course Code: U210E530PH
Credits: 3	CIE Marks: 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES							
To Provide the fundamental knowledge of Signaling and interlocking to control and	On completion of the course, students will be able to 1. Acquire knowledge on railway signaling							
regulate the movement of trains safely & efficiently.	principles.2. Acquire the working of railway signals & their failsafe and safety aspects.3. Understand various systems of train working, interlocking features and general requirements of signaling.							

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1												2
CO2	3	2	1												2
CO3	3	2	1												2

UNIT – I: Introduction to General Signaling (8 Hours)

Opening of Railways: Duties of Commissioners, Sanction to Open Railway for Public Carriage of Passengers, Requirements & Recommendations for Signaling and Interlocking Installations, Catechism for Signaling and Interlocking Installations, for 25KV AC, Spl layouts: Isolation, Ruling gradients, Slip, Catch sidings

Schedule of Dimensions: General, Station Yards, Electric Traction 25KV AC 50 Cycles, Clearances required for 25KV single phase AC Electric Traction.

General Rules: Definitions, Type of Signals; Adequate Distance, System of Working, Absolute Block system, Automatic Block System, Block Working, Level Crossings, Station Working Rules.

UNIT – II: Railway Signaling (6 Hours)

Station Layouts: MACLS, Signal Aspects, Location of Signals; Station Layouts: Single Line, Double Line, 2-Road, 3-Road, 4-Road.

Signaling Elements: Track Circuits & Axle Counters, Block Instruments, point machines, Relays, Relay Interlocking and Electronic Interlocking, Requirement of Signaling in 25KV AC Electrified Area.

Signaling Interlocking Plan: Essentials of Interlocking, Train Detection, Point Switching, Signal, Block Control, Aspect Control Chart.

UNIT – III: Signaling Equipment – I (8 Hours)

Details of Relays, Signal Cables. Signals, Control Panel & Operation – Safety features, Working.

Details of Point Machines – Components, Working, Circuit Progression, Testing, Safety features,

Level Crossing Gates — Working, Circuit Progression, Safety features **Details of Track Circuits, Axle Counters** - Single section, Multisection, Subsystems; Working and Application.

UNIT - IV: Signaling Equipment - II (8 Hours)

Details about Block Instruments – Types, Working, Circuit Progression, safety features Data Acquisition System – Interfaces, Fault Logic.

Details of Integrated Power Supply, CLS Panel, Lightning and Surge Protection.

Practicals at IRISET Laboratory (12 Hours)

- 1. Relays, Signal Cables. Signals, Control Panel & Operation.
- 2. Point Machines Components, Working, Circuit Progression, Testing.
- 3. Level Crossing Gates Working, Circuit Progression.
- 4. Track Circuits, Axle Counters Single section, Multi-section, Subsystems; Working and Application.
- 5. Block Instruments Types, Working, Circuit Progression.
- 6. Data Acquisition System Interfaces, Fault Logic.
- 7. Integrated Power Supply, CLS Panel, Lightning and Surge Protection.

The break-up of CIE : Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Solar Power and Applications Open Elective-III SYLLABUS FOR B.E. V SEMESTER

L: T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U210E510EE
Credits:3	CIE Marks: 40	Duration of SEE: 3Hours

COURSE OBJECTIVES The course will enable the students to:	COURSE OUTCOMES On completion of the course, students will be able to
To impart the basics of solar energy harnessing and solar panel and array.	 Compare different energy resources. Identify and choose proper type of meter for solar radiation measurement. Use proper solar thermal system according to the load requirements. Categorize and compare photovoltaic cells. Apply the knowledge of solar energy.

Unit - I

Fundamentals of Energy Sources: Oil crisis of 1973, Classifications of Energy Resources, Importance of Non-conventional energy sources, Advantages-disadvantages and salient features of Non-conventional energy sources.

Unit - II

Solar Energy Basics: Sun as a source of energy, the Earth, Radiation Spectrums, Extraterrestrial and Terrestrial Radiations, Depletion of solar Radiation, Pyranometer, Pyrheliometer, Sunshine Recorder.

Unit - III

Solar Thermal Systems: Solar Collectors, Solar Water Heater, Solar Passive space – heating and cooling systems, Solar Cookers, Solar furnaces, Solar thermal water pump, Vapour compression refrigeration and Solar pond Electric power plant.

Unit - IV

Solar Photovoltaic Systems: Solar Cell fundamentals, Cell characteristics, Cell classification, Module, Panel and Array, Maximizing the Solar PV output and load matching, MPPT.

Unit - V

Solar PV systems & Applications: Solar PV system classification - Stand-Alone Solar PV system and Grid-Interactive Solar PV system. Applications - Water Pumping, lighting, medical refrigeration, village power and Telecommunication.

Suggested Reading:

- 1. B H Khan, Non-Conventional Energy Resources, 2nd Edition, Tata McGraw Hill.
- 2. G. D. Rai, Non-Conventional Energy Sources, 13th Reprint 2014, Khanna Publications.

The break-up of CIE: Internal Tests+Assignments+Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF INFORMATION TECHNOLOGY

INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS

(Open Elective-III)
SYLLABUS FOR B.E. V SEMESTER
(Common for CIVIL, ECE, EEE & MECH)

L:T:P(Hrs./week):3:0:0	SEE Marks 60	Course Code: U210E510IT
Credits :3	CIE Marks: 40	Duration of SEE :3 Hours

	COURSE OUTCOMES	
COURSE OBJECTIVES	On completion of the course, students will be	
	able to	
Apply the concepts of	1. Understand functional components of the	
database management	DBMS and develop ER model for a given	
systems and design	problem and map ER it to Relational model	
relational databases.	2. Understand Relational model and basic	
	relational algebra operations.	
	3. Devise queries using SQL.	
	4. Design a normalized database schema using	
	different normal forms.	
	5. Understand transaction processing and	
	concurrency control techniques.	

UNIT - I

Introduction: Database System Applications, Purpose of Database Systems, View of Data, Database Languages, Relational Databases, Database Architecture, Database Users and Administrators.

DatabaseDesign and the E-R Model: Overview of the Design Process, The E-R Model, Constraints, E-R Diagrams

UNIT - II

Relational Model: Structure of Relational Databases, Database Schema, Keys, Schema Diagrams, Relational Query Languages, Fundamental Relational-Algebra Operations.

UNIT - III

Structured Query Language: Introduction, Data Definition, Basic Structure of SQL Queries, Modification of the Database, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested Subqueries, Join Expressions, Views.

UNIT - IV

Relational Database Design: Features of Good Relational Design, Normalization-Decomposition Using Functional Dependencies, Functional Dependency Theory.

UNIT - V

Transactions: Transaction Concepts, Transaction State, Concurrent Executions, Serializability

Concurrency Control: Lock-Based Protocols, Timestamp-Based Protocols.

Learning Resources:

- 1. Abraham Silberschatz, Henry F Korth, S. Sudarshan, Database System Concepts, 6th Edition, McGraw-Hill International Edition, 2011.
- 2. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third Edition, McGraw-Hill International Edition, 2003.
- 3. Elmasri, Navathe, Somayajulu and Gupta, Fundamentals of Database System, 6th Edition, Pearson Education, 2011.
- 4. Patric O'Neil, Elizabeth O'Neil, Database-principles, programming, and performance, Morgan Kaufmann Publishers, 2001.
- 5. Peter Rob, Carlos coronel, Database Systems, (2007), Thomoson.
- 6. https://nptel.ac.in/courses/106105175/

The break-up of CIE: Internal Tests + Assignments + Quizzes

No. of Internal Tests
 Max. Marks for each Internal Tests
 No. of Assignments
 Max. Marks for each Assignment
 Max. Marks for each Quiz Test

With effect from Academic Year 2023-24 (R-21)

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

Essentials of Operating Systems

(Open Elective-III)
SYLLABUS OF B.E V- SEMESTER
(Common for CIVIL, ECE, EEE & MECH)

L:T:P(Hrs./week): 3:0:0	SEE Marks :60	Course Code: U210E520IT
Credits :3	CIE Marks: 40	Duration of SEE :3 Hours

	COURCE OUTCOMES
COURCE ORIESTIVES	COURSE OUTCOMES
COURSE OBJECTIVES	On completion of the course, students will
	be able to
Learn the principles of modern operating systems i.e various	Analyze the importance and its key principles by differentiating and
functionalities provided by an	categorizing the functionalities of an
operating system such as process	operatingsystem
management, memory	2. Examine mechanisms involved in
management, Storage and I/O	memory management to handle
management.	processes and threads.
	3. Evaluate and solve deadlocks by
	assessing various handling strategies
	related to each of the conditions for
	deadlock.
	4. Interpret the mechanisms adopted for
	storage organization and access.
	5. Interpret the mechanisms adopted for
	l :
	I/O organization and access.

UNIT-I: Introduction and Process Management:

Operating System Functionalities, Types of Operating Systems, User Operating System Interface, System calls, System Boot. Process Concept: Overview, Threads. Process Scheduling - Uniprocessor scheduling algorithms, Multiprocessor and Real-time scheduling algorithms.

UNIT-II: Memory Management:

Background, Swapping, Contiguous Memory Allocation, Paging, Segmentation. Virtual Memory Management: Demand Paging, Page replacement algorithms, Thrashing.

UNIT-III: Process Synchronization:

Inter Process Communication, Process Synchronization - Peterson's Solution, Bakery Algorithm, Semaphores, Critical Section, Monitors.

Classical problems of synchronization. Deadlocks: Deadlock prevention, deadlock avoidance and Deadlock Detection and Recovery - Bankers Algorithm.

UNIT-IV: Storage Management:

File System-Basic Concepts, File System Structure, File System Mounting, Directory Structure, Allocation Methods, Free Space Management.

UNIT-V: I/O Management:

I/O Management: Disk Structure, RAID Structure, Disk Scheduling, Protection: Goals of Protection, Principles of Protection, Domain of Protection, Access Matrix.

Learning Resources:

- Operating System Concepts Operating System Concepts, Tenth Edition, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons Inc.
- 2. Modern Operating Systems- Andrew S Tanenbaum, Prentice Hall
- Operating Systems Operating System: Internals and Design Principles , William Stallings
- 4. Operating Systems System Programming and Operating Systmes D M Dhamdhere, Tata Mc Graw Hill
- 5. Operating Systems Operating Systems: A Modern Perspective, Gary Nutt, Addison Wesley
- 6. Operating Systems Operating Systems, Achyut S Godbole, Tata Mc Graw Hill
- 7. https://nptel.ac.in/courses/106108101/
- 8. https://www.classcentral.com/course/udacity-introduction-to-operating-systems-3419

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30 2 No. of Assignments : 3 Max. Marks for each Assignment : 5 3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests : 90 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS FOR B.E. V-SEMESTER

INTRODUCTION TO ROBOTICS (Open Elective-III)

L:T:P(Hrs./week):3	SEE Marks : 60	Course Code: U210E510ME
Credits : 3	CIE Marks: : 40	Duration of SEE: 3 Hours

Course objectives	Course Outcomes
The objectives of this course are to:	On completion of the course, the student will be able to
Identify robots and its peripherals for satisfactory operation	understand the anatomy of the robot and various robot configurations for it's selection depending on the task.
and control of robots for industrial and non-industrial applications.	 classify the end effectors , understand different types of joints, various types of robot drive systems for carrying out the assigned job effectively.
	3. analyze a planar manipulator through forward kinematics and understand the control of robot manipulator for better reliability and efficiency using python programming.
	4. Classify the various sensors used in robots for proper selection to an application.
	5. summarize various industrial and non-industrial applications of robots for their selection to a particular task.

UNIT-I ROBOT BASICS

Robot-Basic concepts, Definition, Need, Law, History, Anatomy, specifications.

Robot configurations-cartesian, cylindrical, polar ,articulated and SCARA, Serial manipulator &Parallel Manipulator

Robot wrist mechanism, Precision and accuracy of robot.

UNIT-II ROBOT ELEMENTS

End effectors-Classification, Robot drive system types: Electrical, pneumatic and hydraulic. Robot joints and links-Types, Motion interpolation, Robot trajectories2D and 3D Transformation- Scaling, Rotation and Translation, Homogeneous transformation

UNIT-III

ROBOT KINEMATICS AND CONTROL

Robot kinematics – Basics of direct and inverse kinematics. D-H matrix. Forward kinematics for a 2-link RR planar manipulator.

Control of robot manipulators – Point to point and Continuous Path Control. Robot programming methods. Introduction to Solve any robotic kinematic problem using python programming.

UNIT-IV ROBOT SENSORS

Sensors in robots – Touch sensors-Tactile sensors – Proximity and range sensors. Force sensors, Light sensors, Pressure sensors, position and velocity feedback devices.

Introduction to Machine Vision and Artificial Intelligence.

UNIT-V ROBOT APPLICATIONS

Applications of robots in Industries, Medical, Household, Entertainment, Space, Underwater, Defense, and Disaster management.

Applications of Micro and Nanorobots, Future Applications of robots.

Learning Resources:

- 1. Mikell P. Groover, Mitchell Weiss, Roger N Nagel and Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", TataMcGraw-Hill Publishing Company Limited, 2008.
- 2. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw Hill Publishing Company Limited, 2010.
- 3. KlafterR.D, Chmielewski T.A, and Negin. M, "Robotic Engineering: An Integrated Approach", Prentice Hall of India Pvt. Ltd., 1994.
- 4. K.S. Fu,R.C. Gonzalez and C.S.G.Lee , "Robotics control, sensing, vision and intelligence", TataMcGraw-Hill Publishing Company Limited, 2008
- 5. R.K. Mittal and I.J.Nagrath "Robotics and Control", Tata McGraw-Hill Publishing Company Limited, 2003.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1	No. of Internal Tests:	02	Max.Marks for each Internal Test:	30
2	No. of Assignments:	03	Max. Marks for each Assignment:	05
3	No. of Quizzes:	03	Max. Marks for each Quiz Test:	05

Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031 DEPARTMENT OF MECHANICAL ENGINEERING

INTRODUCTION TO AUTOMOBILE ENGINEERING (OE-III)

SYLLABUS FOR B.E. V-SEMESTER

Instruction: 3Hours	SEE Marks : 60	Course Code : U210E520ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

	Course objectives	Course Outcomes
The	objectives of this course are to:	On completion of the course, the student
1.	familiarize the student with the different	will be able to:
	types of automobiles and engine	1. identify types of Automobiles and
	components along with its working.	engine components and describe its
2.	impart adequate knowledge in fuel	working.
	supply, cooling, lubrication and ignition	2. describe the engine fuel Supply system
	of IC engines.	in petrol and Diesel engines, cooling
3.	understand the steering geometry,	system, and lubrication systems.
	steering mechanism and types of	3. describe the steering mechanism,
	suspension systems.	suspension systems
4.	gain the knowledge about working of	4. describe the working principle and
	clutch, gear box mechanism, and	operation of clutch, gear mechanism
	brakes	and brakes.
5.	make the student conversant with types	5. know the pollutants from automobile
	of wheels, tyres and pollution control	and pollution control techniques and
	techniques.	identify the types of wheels, tyres.

	CO-Po and CO-PSO mapping														
CO						PO	mapp	oing					PS	O map	ping
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1		1	2	2					3	3	2	3
CO2	3	2	2		2	2	2					3	3	2	3
CO3	3	2	2		1	2	2					3	3	2	3
CO4	3	1	2		2	2	2					3	3	2	3
CO5	3	1	2		2	2	3		,			3	3	2	3

UNIT-I

Introduction: Types of automobiles: Hybrid Vehicles, Electrical, gas and Fuel cell vehicles. Chassis and body, Lay out of transmission system, Engine components: cylinder block, cylinder head, crankcase, crank shaft and cam shaft. Types and working of IC Engines: SI and CI engines, two stroke and four stroke engines.

UNIT-II

Fuel system: Fuel supply system for SI engines and CI engines. Simple carburettor, Introduction to Multipoint fuel injection system (**MPFI**) of petrol engines, Introduction to **CRDI** system for diesel engines.

Cooling system: air cooling, water cooling: Thermo syphon, pump circulation system.

Lubrication system: Petroil System, splash system, pressure lubrication: Wet sump and Dry Sump.

Ignition system: Battery Ignition System, Magneto Ignition System and Electronic Ignition System.

UNIT-III

Suspension system: Rigid axle, Independent suspension system: Double wish bone type, Macpherson strut system, Air suspension system.

Steering system: wheel alignment, Ackermann steering mechanism, steering geometry: camber, caster, toe-in, toe-out, steering linkage for vehicle with rigid axle front suspension, steering linkage for vehicle with independent front suspension.

UNIT-IV

Power Train: Single plate clutch, Multi plate clutch. Manual Gear Box: sliding mesh gear box, constant mesh gear box, synchromesh gear box and Automatic Gear Box. Working principle of Differential.

Brakes: Types: Drum and Disc brakes, Mechanical and Hydraulic Brakes, **ABS** system.

UNIT -V

Wheels and Tyres: Types of Wheels: wire wheels, disc wheels, alloy wheels. Types of tyres: Tube type, tubeless type.

Automobile Emissions and control: Automobile pollutants and sources of pollution. Pollution Control Techniques: Catalytic Converters, EGR and PCV. Bharath emission Norms.

Learning Resources:

- 1. Crouse & Anglin, "Automobile Engineering", 10th Edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi,. 2007.
- Kirpal Singh, "Automobile Engineering", Vol.I& II, 13th Edition, Standard Publishers, New Delhi 2013.
- 3. R.B Gupta, "Automobile Engineering" 7th Edition, Satya Prakashan, New Delhi, 2015.
- 4. Joseph Heitner, "Automotive Mechanics", 2nd Edition, Affiliated East West Pvt. Ltd., 2013.
- 5. C.P. Nakra, "Basic Automobile Engineering", 7th Edition, Dhanpat Rai Publishing C (P) Ltd., 2016.

The break-up of CIE: Internal Tests + Assignments + Quizzes

	Duration of Internal Tea	+· 1	Hour 30 Minutes	
3	No. of Quizzes:	03	Max. Marks for each Quiz Test:	05
2	No. of Assignments:	03	Max. Marks for each Assignment:	05
1	No. of Internal Tests:	02	Max.Marks for each Internal Test:	30

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

Design Thinking

(Open Elective) SYLLABUS FOR B.E. 3/4 – V SEMESTER

Instruction: 3 Hours	SEE: 60	Course code: U210E530EH
Credits: 3	CIE: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the learners to:	At the end of the course
Understand the critical design thinking skills needed to either improve an existing product or thinking design a new product.	the learners will be able to: - 1. Learn the concepts
2. Learn to identify customer needs and draft customer	that drive design
needs statements as your first step toward user	thinking.
innovations.	2. Submit project ideas
3. Learn how to translate user needs into product specifications quantitatively, and how establishing	around user Innovations.
product metrics can help to define those specifications.	3. Identify prospective customer needs and
4. Learn to apply creativity, brainstorming, and concept	user groups.
generation process in designing needs solutions.	4. Translate needs into
 Learn to select and implement a product development process that's aligned with your project needs. Explore prototyping methods, strategies, and real-life examples where these have been applied to create a design that represents customer needs and product specifications. 	product specifications 5. Build out the product architecture, Create a prototype and present the prototype.

Unit 1: Design Thinking Skills

Understand the critical design thinking skills needed to either improve an existing product or design a new product.

- 1.1 The Need for Design Thinking
- 1.2 What makes design thinking unique?
- 1.3 Design thinking checklist

Unit 2: Identifying Customer Needs

Learn to identify customer needs and draft customer needs statements as your first step towards user innovations.

- 2.1 Think Users' First
- 2.2 Users' inherent needs
- 2.3 Empathy and Design Thinking
- 2.4 Asking the Right Questions
- 2.5 Persona Empathy map

Unit 3: Product Specifications

Learn how to translate user needs into product specifications quantitatively, and how establishing product metrics can help define those specifications

- 3.1 Creating a Design Brief Template
- 3.2 Stakeholder map template
- 3.3 Customer journey template
- 3.4 Context map template
- 3.5 Opportunity map template

Unit 4: Applied Creativity

Learn to apply creativity, brainstorming, and concept generation process in designing needs solutions.

- 4.1 The need to ideate
- 4.2 The Rules of ideation
- 4.3 Participating in an ideation session
- 4.4 Building a Creative Culture
- 4.5 Divergent—5 common ideation techniques

Unit 5: Product Development Processes and Prototyping

Learn to select and implement a product development process that's aligned to your project needs. Explore prototyping methods, strategies, and real-life examples where these have been applied to create a design that represents customer needs and product specifications.

- 5.1 The need for a prototype
- 5.2 The Need to Test and how to conduct a structured test
- 5.3 How to conduct the observers' debrief

METHODOLOGY

ASSESSMENTS

- Online assignments

- Individual and Group

- Case Studies
- Demonstration
- Presentations
- Expert lectures
- Writing and Audio-visual lessons

Suggested Books

The Art of Innovation, by Tom Kelley*
Insight Out, by Tina Seelig*
Change by Design, Tim Brown
Weird Ideas That Work, by Robert Sutton*
Wired to Care, by Dev Patnaik
Rapid Viz, by Kurt Hanks and Larry Belliston

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal tests : 2 Max. Marks : 30
2 No. of assignments : 3 Max. Marks : 5
3 No. of Ouizzes : 3 Max. Marks : 5

Duration of Internal Tests : 90 Minutes

VASAVI COLLEGE OF ENGINEEING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of H & SS

Basics of Entrepreneurship (Open Elective-III) SYLLABUS FOR B.E V Semester

L:T: P (Hrs./week):3: 0 : 0	SEE :60	Course Code: U210E540EH
Credits: 3	CIE:40	Duration of SEE: 3 Hours

	Course objectives	Course Outcomes
The	e objectives of this course are to:	On completion of the course the student
1.	Deeply understand and discover	will be able to:
	entrepreneurship	1. Take-up entrepreneurship as a career
2.	Build a strong foundation for	choice
	the students to start, build, and	2. Create and Validate business models.
	grow a viable and sustainable	Build a Minimum Viable Product
_	venture	(MVP).
3.	Develop an entrepreneurial mind-set equipped with the	3. Identify various costs and revenue streams for a venture.
	critical skills and knowledge required	 Build successful teams and acquire sales skills.
	•	5. Understand the business regulations
		and various Government schemes available

UNIT-I

Introduction to Entrepreneurship: Definition of Entrepreneurship, Entrepreneurship as a career choice, Benefits and Myths of Entrepreneurship; Characteristics, Qualities and Skills of an Entrepreneur. Impact of entrepreneurship on the Economy and Society.

Opportunity and Customer Analysis: Identify your Entrepreneurial Style, Identify Business Opportunities, Methods of finding and understanding Customer Problems, Process of Design Thinking, Identify Potential Problems, Customer Segmentation and Targeting, Customer Adoption Process, Crafting your Value Proportions, Customer-Driven Innovation.

UNIT-II

Business Model and its Validation: Types of Business Models, Lean Approach, the Problem-Solution Test, Solution Interview Method, Difference between Start-up Venture and small Business, Industry Analysis, Identify Minimum Viable Product (MVP), Build-Measure-Lean Feedback Loop, Product-market fit test.

UNIT-III

Economics and Financial Analysis: Revenue streams and pricing, Income analysis and Cost Analysis-Product Cost and Operation Cost, Basics of Unit Costing, Profit Analysis, Customer Value Analysis, Different Pricing Strategies, Investors' Expectations, Pitching to Investors and Corporate.

UNIT-IV

Team Building and Project Management: Leadership Styles, Team Building in Venture, Role of good team in Venture, Roles and Respondents, Explore Collaboration Tools and Techniques-brainstorming, Mind Mapping. Importance of Project Management, Time Management, Work Flow, Network Analysis Techniques.

UNIT-V

Marketing & Business Regulations: Positioning, Positioning Strategies, Building Digital Presence and Leveraging Social Media, Measuring effectiveness of Channels, Customer Decisionmaking Process, Sales plans and Targets, Unique Sales Proposition (USP), Follow-up and Close Sales, Business Regulations of starting and operating a Business, Start-up Ecosystem, Government schemes.

Learning Resources:

- Robert D. Hisrich, Michael P Peters, "Entrepreneurship", Sixth edition, McGraw-Hill Education.
- 2. Thomas W. Zimmerer, Norman M. Scarborough, "Essentials of Entrepreneurship and small businessManagement", Fourth edition, Pearson, New Delhi, 2006.
- 3. Alfred E. Osborne, "Entrepreneurs Toolkit", Harvard Business Essentials, HBS Press, USA, 2005
- 4. MadhurimaLall and ShikhaSahai, "Entrepreneurship", Excel Books, First Edition, New Delhi, 2006

Web Resource: http://www.learnwise.org

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests: 02 Max.Marks for each Internal Test: 1 30 2 No. of Assignments: 03 Max. Marks for each Assignment: 05 05

3 No. of Ouizzes: 03 Max. Marks for each Quiz Test:

Duration of Internal Test: 1 Hour 30 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD - 500 031. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-21) :: B.E. - ECE : SIXTH SEMESTER (2023 - 24)

B.E (ECE) VI – SEMESTER								
		Schem	e of Inst	truction	Scheme of Examination			
Course Code	Name of the Course	Ηοι	ırs per V	Veek	Duration	Maximu	ım Marks	dits
		L	Т	P/D	in Hrs	SEE	CIE	Credits
·	THEORY							
U21PC610EC	Control Systems Engineering	3	-	ı	3	60	40	3
U21PC620EC	Digital Signal Processing	3	1	-	3	60	40	4
U21PC630EC	Computer Networks	3	-	-	3	60	40	3
U21PC640EC	Computer Organization and Architecture	3	-	-	3	60	40	3
U210E6XXXX	Open Elective – IV	3	-	-	3	60	40	3
U21HS040EH	Economics and Finance for Engineers	2	-	-	3	60	40	2
U21HS630EH	30EH Skill Development Course-VII: Verbal Aptitude			-	2	40	30	1
U21PE610EC	Skill Development Course-VIII: Technical Skills - III	1	-	-	2	40	30	1
	PRACTICA	LS						
U21PC611EC	Control Systems Engineering Lab	ı	-	2	3	50	30	1
U21PC621EC	Digital Signal Processing Lab	ı	-	2	3	50	30	1
U21PC631EC	Computer Networks Lab	ı	-	2	3	50	30	1
U21PW619EC	21PW619EC Theme Based Project			2	ı	50	30	1
-	1	-	-	-	-	-	2	
	TOTAL	19	1	8		640	420	26
GRAND TOTAL 28 1060								
	Il be allocated for: Sports / Library / Mentor - Mentee Interaction ent shall complete one NPTEL course certification of 8 weeks du							

46

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Control Systems Engineering

SYLLABUS FOR B.E. VI - SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U21PC610EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
COURSE OBJECTIVES Analyse the performance of a given system in time and frequency domains and choose appropriate compensator if needed.	
	 Construct Bode plot, Nyquist plot for a given system and analyse its stability. Design a compensator/ controller to meet desired specifications. Analyse MIMO system using state variable approach

CO-PO/PSO Mapping

CO-F	O/PS	אייו טכ	appıı	ıy											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2										3		
CO2	2	2		2									1		
CO3	1	3		3									1		
CO4	2	3	3									2	2		
CO5	2	3		2								2	2		

UNIT - I:

Control System fundamentals and Components: Classification of control systems, Open and Closed loop systems. Mathematical modelling of mechanical systems and their conversion into electrical systems. Block diagram reduction and Signal flow graphs.

UNIT - II:

Time response Analysis: Transfer function and Impulse response, types of input. Transient response of second order system for step input. Time domain specifications. Types of systems, static error coefficients, Routh - Hurwitz criterion for stability.

Root locus techniques: Analysis of typical systems using root locus techniques. Effect of location of roots on system response.

UNIT - III:

Frequency response Analysis: Frequency domain specifications, bode plots, Gain margin and Phase Margin. Principle of argument, Nyquist plot and Nyquist criterion for stability.

UNIT - IV:

Compensators: Introduction to compensators, Lag compensator, Lead compensator, Lag-Lead compensator, Design of compensators.

Controllers: Introduction to controllers, P, I, D, PI, PD, PID controllers

UNIT - V:

State space representation: Concept of state and state variables. State models of linear time invariant systems, State transition matrix, Solution of state equations. Controllability and observability.

Learning Resources:

- 1. Nagrath, I.J., and Gopal, M., "Control System Engineering," New Age Publishers, 5/e, 2009.
- 2. Ogata, K., "Modern Control Engineering," 5/e, PHI, 2010.
- 3. Benjamin C. Kuo, "Automatic Control Systems," 7/e, PHI, 2010.
- 4. Nise, Norman S. Control Systems Engineering. 5th ed. New York, NY: John Wiley & Sons, 2007
- 5. Richard C. Dorf & Robart H. Bishop, "Modern Control Systems," 11/e, Pearson, 2008.
- 6. http://www.nptelvideos.in/2012/11/control-engineeringprof-gopal.html
- 7. https://nptel.ac.in/courses/108101037/ 9. https://nptel.ac.in/courses/108106098/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Digital Signal Processing

SYLLABUS FOR B.E. VI – SEMESTER

L:T:P (Hrs./week): 3:1:0	SEE Marks: 60	Course Code: U21PC620EC
Credits: 4	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
COURSE OBJECTIVES Students will apply FFT algorithms, discuss various design methods of FIR & IIR filters, describe the concepts of multirate signal processing and identify important features of TMS320C67XX DSP processors.	COURSE OUTCOMES On completion of the course, students will be able to 1. Interpret the concept of Discrete Fourier transform and its applications. 2. Compute FFT algorithm for various applications 3. Outline the process of FIR filter design using various techniques. 4. Implement Digital IIR filters using various methods. 5. Construct sampling rate convertor by using decimation and interpolation rate converters.
	decimation and interpolation rate convertor by using decimation and interpolation rate converters. 6. Illustrate the architecture of TMS320C67XX DSP processors.

CO-DO	/ DCN	Man	nına
CO-PO	<i>,</i> F30	riap	Pilly

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO1	2	2	2												2
CO2	3	3	3												3
CO3	3	3	3												3
CO4	3	3	2												3
CO5	3	3	2												3
CO6	2	2	2										•		2

UNIT - I : Discrete Fourier Transform

Overview of Discrete time Fourier Transform (DTFT), Discrete Fourier transform (DFT), - Efficient computation of DFT- Properties of DFT. FFT algorithms - Radix-2 FFT algorithms - Decimation in Time, Decimation in Frequency algorithms - in place computation- bit reversal- Use of FFT algorithms in Linear Filtering and Correlation.

UNIT - II: Digital filters (FIR) Design

Amplitude and phase responses of FIR filters – Linear phase filters – Windowing techniques for design of Linear phase FIR filters – Rectangular, Bartlett, Hamming, Blackman, Kaiser FIR filter design, realization and finite word length effects.

UNIT - III : Digital filters (IIR) Design

Butterworth and Chebyshev approximation- IIR digital filter design techniques- Impulse Invariant transformation - Bilinear transform techniques- Digital Butterworth- Chebyshev filters,-comparisons between FIR and IIR filters. Digital filters structures.

UNIT - IV: Multirate Digital Signal Processing

Introduction -Decimation by a Factor D- Interpolation by a Factor I-Sampling Rate Conversion by a Rational Factor I/D- Implementation of Sampling Rate Conversion- Multistage implementation of Sampling Rate Conversion- by an Arbitrary factor- Application of Multirate Signal Processing.

UNIT - V: Introduction to DSP Processors

Difference between DSP and other microprocessors architectures-Importance of DSP Processors-General purpose DSP processors-TMS320C67XX processor, architecture, registers, pipelining, addressing modes and introduction to instruction set.

Learning Resources:

- 1. John G. Proakis & Dimtris G. Manolakis, "Digital Signal Processing Principles, Algorithms and Application," PHI, 4/e, 2012.
- 2. Sanji K Mitra Digital signal processing: a computer-based approach
- 3. Alan V. Oppenheim & Ronald W. Schafer, "Digital Signal Processing," PHI, 2/e,2014.
- Ashok Ambardar, "Digital Signal Processing: A Modern Introduction," Cengage Learning, 2009.
- 5. Li Tan, "Digital Signal Processing: Fundamentals and Applications," Elsevier, 2012.
- 6. B. Venkataramani & M. Bhaskar, "Digital Signal Processor Architecture, Programming and Application," TMH, 2e 2013.
- 7. Rulph Chassaing, "Digital Signal Processing and Applications with the C6713 and C6416 DSK", John wiley& sons, 2005.
- 8. https://nptel.ac.in/courses/117102060/
- 9. https://nptel.ac.in/courses/117104070/

The break-up of CIE: Internal	Tests +	Assignments	+ Quizzes
-------------------------------	---------	-------------	-----------

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Computer Networks

SYLLABUS FOR B.E. VI – SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U21PC630EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To experience the designing and managing of communication protocols while getting a good exposure to the TCP/IP protocol suite and to understand the different topologies and configurations in the area of computer networks	On completion of the course, students will be able to 1. Describe the network requirements for a given organization and select most appropriate network architecture 2. Design and analyze the performance of LAN for small and medium organizations. 3. Analyze the existing routing and congestion control algorithms. 4. Identify deficiencies in existing protocols and then formulate new and better protocols. 5. Apply and use of cryptography and network security in day to day applications.

CO-PO/PSO Mapping

•••	•,		~PP												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2												2	
CO2	2	2	3											3	
CO3	2	3												2	
CO4	2	3												3	
CO5	3	3												3	

UNIT - I:

Data communication, LAN, WAN, MAN, Network Topologies: Bus, Star, Mesh, Ring, Hybrid. Line configurations. Reference Models: OSI, TCP/IP, ATM.

Data Link Layer: Design issues, Framing, Error Detection and Correction, Flow control Protocols: Stop and Wait, Sliding Window, ARQ Protocols

UNIT - II:

MAC Sub Layer: Multiple Access Protocols: ALOHA, CSMA, Wireless LAN. IEEE 802.2, 802.3, 802.11, 802.16 standards. Bluetooth, Bridges and

Routers. Circuit switching: Circuit Switching Principles and concepts. Packet switching: Virtual circuit and Datagram subnets.

UNIT - III:

Network Layer: Network layer Services, Routing algorithms: Shortest Path Routing, Flooding, Hierarchical routing, Broadcast, Multicast, Distance Vector Routing and Congestion Control Algorithms. Internet Working: The Network Layer in Internet, IPV4, IPV6 and Internet control protocols.

UNIT - IV:

Transport Layer: Transport Services, Elements of Transport Layer, Connection management, TCP and UDP protocols.

UNIT - V:

Application Layer: Domain Name System, SNMP, Electronic Mail, World Wide Web. Network Security: Cryptography Symmetric Key and Public Key algorithms, Digital Signatures, Authentication Protocols.

Learning Resource:

- 1. Andrew S Tanenbaum, "Computer Networks," 5/e, Pearson Education, 2011.
- 2. Behrouz A. Forouzan, "Data Communication and Networking," 5/e, TMH, 2008.
- 3. William Stallings, "Data and Computer Communications," 8/e, PHI, 2004.
- S. Keshav, "An Engineering Approach to Computer Networks," 2/e, PearsonEducation.
- 5. https://onlinecourses.nptel.ac.in/noc18_cs38/preview

The break up of order income research to significants . Quiezes	The break-u	p of CIE:	Internal	Tests	+ Assignments	+ Quizze
---	-------------	-----------	----------	--------------	---------------	----------

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Computer Organization and Architecture

SYLLABUS FOR B.E. VI - SEMESTER

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U21PC640EC
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
To familiarize the students with the concept of organization of a computer system, issues related to performance analysis of CPU in the aspect of memory and I/O interface.	 On completion of the course, students will be able to Apply digital engineering fundamentals to acquire knowledge of arithmetic algorithms for different processors. Analyze the performance of Micro programmed Control unit organization. Implementing the techniques of pipelining and parallelism to analyze the performance of a Processor. Apply the conceptual knowledge of system development with appropriate I/O Interface. Interpret various techniques for efficient memory

CO-PO/PSO Mapping

•••	\circ ,	, o	app	.9											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2										2		
CO2	2	2	1	1									2		
CO3	3	3	2	1									2	1	1
CO4	2	2	2										1	1	1
CO5	2	2	1										1	1	1

UNIT - I:

Data Representation and Computer Arithmetic: Introduction to Computer Organization and architecture, evolution and computer generations; Fixed point representation of numbers, digital arithmetic algorithms for Addition, Subtraction, ripple carry adder, carry look-ahead adder, Multiplication using Booth's algorithm and Division using restoring and non restoring algorithms. Floating point representation with IEEE standards and its arithmetic operations.

UNIT-II:

Basic Processor Organization: General Register Organization, Stored Program Organization, Stack Operation, RPN-Reverse Polish Notation, Instruction formats-Zero, One, Two and Three-Address instructions. Hardwired control unit, Micro programmed Control organization, address

sequencing, micro instruction format and micro program sequencer.

UNIT - III:

Pipelining and Parallelism: Features of CISC and RISC and their comparison, Amdhal's law, Concept of Pipelining, Data path and control path pipelining, Design of Arithmetic pipeline, Instruction Pipeline, performance issues in pipelining, Pipeline hazards, and techniques of Reducing pipeline branch penalties. Concept of parallelism, vector processors, Array processors.

UNIT - IV:

Input-Output Organization: I/O Bus and interface modules, I/O versus Memory Bus, Asynchronous data transfer: Strobe control, Handshaking, Asynchronous serial transfer. Modes of Transfer: Programmed I/O, Interrupt driven I/O, Priority interrupt; Daisy chaining, Parallel Priority interrupt. Direct memory Access, DMA controller and transfer. Input output Processor, CPU-IOP communication.

UNIT - V:

Memory Organization: Memory hierarchy, Mapping of memory with CPU, Primary memory, Concept of memory interleaving, Associative memory, Cache memory organization and performance measures, cache mapping functions, Virtual memory organization, paging mechanism, address mapping using pages, Memory management hardware, Introduction to SDRAM, DDR Memories.

Learning Resources:

- Morris Mano, M., "Computer System Architecture," 3/e, Pearson Education, 2005.
- 2. Hamacher, Vranesic, Zaky, "Computer Organization," 5/e, McGraw Hill, 2007.
- 3. William Stallings, "Computer Organization and Architecture: Designing for performance," 7/e, Pearson Education, 2006.
- 4. Govindarajulu, B., "Computer Architecture and Organization," 2/e, TMH, 2010.
- 5. John Hennessy and David Patterson, Computer Architecture : A Quantitative Approach, 5th Edition, Elsevier.
- 6. Computer Organization and Architecture by IIT Delhi https://nptel.ac.in/courses/106102062/
- 7. Computer Organization and Architecture by Prof.V. kamkoti, IIT Madras https://onlinecourses.nptel.ac.in/noc17_cs35

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

Economics and Finance for Engineers

SYLLABUS FOR B.E. VI – SEMESTER

L:T:P (Hrs./week): 2:0:0	SEE Marks: 60	Course Code: U21HS040EH				
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours				

COURSE OBJECTIVES	COURSE OUTCOMES
	At the end of the course the learner will be able to: 1. Gain a conceptual understanding economics as a discipline. 2. Construct a cost sheet and classify costs and

CO-PO/PSO Mapping

	-,														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1									1						
CO2											1				
CO3											3				
CO4				2											
CO5											1				

UNIT-I: Concepts in Economics

Scarcityof Resources-Relevance of Economics for Engineers- Scope of Managerial Economics

Law of Demand- assumptions and exceptions -Price elasticity of demand(Application-oriented approach)

UNIT-II: CostAnalysis and Profit Planning

Concept of Cost -Costing -Classification of Costs -Preparation of Cost Sheet (Simple Problems)

–Breakeven Analysis(Application-oriented approach)

UNIT-III: Conceptual Understanding of Accounting

Accounting Cycle-Journal-Subsidiary Books- Ledger-Trial Balance-Final Accounts (Manufacturing/Trading, Profit and Loss Account, Balance Sheet (Theory Only)

UNIT-IV: Financial Statement Analysis

Financial Statements- Meaning - Types -Purpose-Comparative and Common Size Statements

Ratio Analysis-Liquidity, Solvency, Activity & Profitability Ratios (including simple problems on Ratio Analysis)

UNIT-V: Long Term Sources and Uses of Finance

Long term sources of finance-Debt, Equity, Hybrid, Start- Up finances, Crowd Funding, Peer to Peer lending platforms.

Capital Budgeting –Traditional and DCF Techniques (including simple problems)

Learning Resources for students:

- 1. S.P.Jain and K.L Narang., "Financial Accounting", Kalyani Publishers Latest edition.
- 2. S.P.Jain and K.LNarang., "Cost Accounting", Kalyani Publishers, Latest edition.
- 3. M.Y.Khan and P.K. Jain., "Financial Management Text, Problems and Cases", Mc Graw Hill Education Private Limited, New Delhi. Latest edition.
- 4. M. Kasi Reddy &Saraswathi, Managerial Economics and Financial Analysis, PHI New Delhi, Latest edition.

Reference books:

- 1. Mehta P.L., "Managerial Economics: Analysis, Problems and Cases", Sultan Chand and Sons. Latest edition.
- 2. Narayanaswamy, "Financial Accounting: A Managerial Perspective", Prentice Hall India
- 3. M. L. Seth., "Micro Economics", Lakshmi Narain Agarwal. Latest edition
- 4. Dr. R.P. Rustagi., "Fundamentals of Financial Management"Taxmann Publications. Latest edition

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

Skill Development Course – VII : Verbal Aptitude

COMMON FOR ALL BRANCHES - B.E. VI - SEMESTER

L:T:P (Hrs./week): 1:0:0	SEE Marks: 40	Course Code: U21HS630EH
Credits: 1	CIE Marks: 30	Duration of SEE: 2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES				
The course will enable the learners to:	At the end of the course the				
1. Introduce students to higher order	learners will be able to: -				
thinking and problem solving via	1. Use vocabulary as a tool to				
vocabulary and its various	solve questions in verbal				
components	ability				
2. Train students to understand context	2. Identify meanings of words				
& theme and use it to complete	using theme and context				
sentences.	3. Solve questions based on				
3. Train students to identify the	jumbles- sentences and				
structure of sentences & paragraphs	paragraphs				
4. Train students to analyze text, e.g.,	4. Develop skills to critically				
simple outlining and note taking,	analyze texts and then the				
summarize, draw conclusions, and	ability to identify its theme				
apply information to personal	5. Improve the quality of their				
experiences	writing by being aware of				
5. Train students to improve the quality	the common errors				
of sentences by fixing errors					

CO-PO/PSO Mapping

•••	50 : 0/: 50 : lapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1										3					
CO2										3					
CO3										3					
CO4										3					
CO5										3					

UNIT-I: Vocabulary- Reading for Content and Context

Overview: This course is designed for students to not just understand the importance of vocabulary but also to build on it by using the appropriate tools and methods. After which they will be able to solve vocabulary based questions and also use vocabulary as a tool to solve problems.

1.1 Concepts & Context Rules: Collocations & Phrasal Verbs

- 1.2 Prefixes/ Suffixes & Root Words
- 1.3 Phrases & Idioms; Questions based on it
- 1.4 One Word Substitution; Questions based on it
- 1.5 Antonyms, Synonyms & Incorrect Word Usage

UNIT-II: Fill in the Blanks- Applying Content and Context

Overview: This course is designed for students to identify the clue/ theme words in sentences, then understand the context in which the words are used and finally apply concepts like collocation, antonyms, and synonyms to solve questions.

- 2.1 Concepts & Rules: Single Fill in the Blanks
- 2.2 Double/ Triple Fill in the Blanks
- 2.3 Cloze Test

UNIT-III: Jumbles

Overview: This course is designed to develop and improve reading and study skills needed for college work. Topics include identifying main idea and supporting details, determining author's purpose and tone, distinguishing between fact and opinion, identifying patterns of organization in a sentence or passage and the transition words associated with each pattern, recognizing the relationships between words and sentences, identifying and using context clues to determine the meanings of words, identifying logical inferences and conclusions.

- 3.1 Concepts- Purpose, Tone, Point of view
- 3.2 Parajumbles
- 3.3 Jumbled Sentences

UNIT-IV: Critical Reading Skills

Overview: Research shows that good reading skills can lead to well written assignments. In this unit, students will learn, develop and improve reading and study skills needed for college work. Building on these basic strategies, students will develop skills to critically analyze texts and then the ability to identify its theme.

- 4.1 Concepts- Basic Introduction & Short Passages
- 4.2 Article & Article Based Passages
- 4.3 Theme Detection

UNIT-V: Spotting the Errors

Overview: In this unit students will focus on identifying errors in sentences, rectifying them and improving the quality of sentences. Building on these skills will also have an impact on the written and spoken skills of students since they will be aware of the common and often made

errors and therefore be able to avoid them while using language.

- 5.1 Concepts- Basic Introduction & Sentence Fillers
- 5.2 Spot the Errors
- 5.3 Sentence Improvement

METHODOLOGY

- Demonstration
- Presentations
- Expert lectures
- Writing and Audio-visual lessons

ASSESSMENTS

- Online assignments
- Individual and Group

Learning Resources:

learn.talentsprint.com

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 20

2. No. of Assignments : 2 Max. Marks for each Assignment : 5

3. No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Control Systems Engineering Lab

SYLLABUS FOR B.E. VI – SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PC611EC			
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours			

COURSE OBJECTIVES	COURSE OUTCOMES									
To analyze control systems using MATLAB/ SIMULINK	 On completion of the course, students will be able to Model any system using MATLAB/ SIMULINK Sketch the response of a system for a given input and determine the specifications of a system. Perform stability analysis of a given system using various plots. Analyze MIMO system using state variable 									
	approach.									
	5. Design a Compensator/Controller for given specifications.									

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1		3								3		
CO2	2	3			3								2		1
CO3	3	3		2	2								2		1
CO4	2	2		3	2								2		
CO5	3	2	3	2	2								1		

List of Experiments:

to transfer function

Exp. Name of the Experiment No. Modeling transfer function of a control system. 1 Transfer function for given closed loop system through block 2 diagram representation. 3 Step response, unit impulse response and time domain specifications of a given control system. Time response of given system subjected to any arbitrary input. 4 5 Steady state errors of a given transfer function. 6 Stability analysis of a control system- Effect of adding zeros/poles

- 7 Effect of d.c. gain on the stability of a system using root locus.
- 8 Relative stability of a given system using bode plot.
- 9 Stability of a closed loop/open loop system using Nyquist plot.
- 10 Lag and Lead compensation Magnitude and phase plot
- 11 Effect of P, PD, PI, PID Controller on second order systems.
- 12 State space model for classical transfer function using MATLAB

New / Additional Experiments Planned

- 1 Study experiments using MATLAB control systems toll boxes.
- 2 Modelling of digital control systems

Learning Resources / Tools:

Modeling, Analysis and Design of Control Systems in MATLAB and Simulink, Dingyü Xue, North eastern University China Yang Quan Chen, University of California, World Scientific Publishing Co., 2015.

The break-up of CIE:

1. No. of Internal Test

2. Max. Marks for internal tests : 12

3. Marks for day-to-day laboratory class work : 18

Duration of Internal Tests: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Digital Signal Processing Lab

SYLLABUS FOR B.E. VI – SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PC621EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES						
Students will develop C & MATLAB programs for operation of sequences, design and obtain the frequency response of various digital filters and to implement techniques of multi rate processing.	On completion of the course, students will be able to 1. Execute Various Mathematical operations on discrete sequences						
	 Compute FFT algorithm for various application Compare different sampling rate convertors. Compute real time signals for various applications 						

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2			3										3
CO2	3	2	1		3										3
CO3	3	2	1		3										3
CO4	3	2	1	1	3										3
CO5	3	2	1	1	3										3

List of Experiments (Conduct any Twelve experiments from given list)

- 1. Basic matrix operations and Generation of test signals.
- 2. Linear Convolution
- 3. Circular convolution
- 4. Discrete Fourier Transform(DFT) and frequency analysis
- 5. Fast Fourier Transform(FFT) and frequency analysis
- 6. FIR filter design using different windows and noise removal
- 7. IIR filter design: Butterworth & Chebyshev (LPF,HPF, BPF& BSF filter) and noise removal
- 8. Interpolation and Decimation.

Experiments on TMS Processor

- 9. Sine wave generation.
- 10. Audio Loop Back
- 11. Linear Convolution.
- 12. Circular Convolution.
- 13. Discrete Fourier Transform (DFT) and frequency analysis
- 14. Fast Fourier Transform (FFT) and frequency analysis
- 15. Implementation of FIR filters.
- 16. Implementation of IIR filters.
- 17. Decimation and Interpolation.

New/ Additional experiments planned:

- 1. Sine wave generation using DSP development kit.
- 2. Audio loop back modelling using DSP development kit.
- 3. Video Processing using DSP development kit.

Mini Project(s)

Develop various programs for designing signal processing applications.

Learning Resources/Tools

- 1. MATLAB 2018a and TMS320C6748OMAP Processor with CCS version 7.
- 2. Paul B. Zbar, Albert P. Malvino, Michael A. Miller, "Basic Electronics, AText-Lab Manual", Vinay K. Ingleand John G. Proakis, "Digital Signal Processing using MATLAB", 4/e, Cengage learning, 2012.
- 3. Digital signal processing using MATLAB for students and researchers, John W. Leis, A John Wiley & Sons, Inc., Publication,1966.
- 4. B. Venkataramani and M. Bhaskar, "Digital Signal Processor architecture, programming and application", 6/e, TMH, 2013.
- 5. Rulph Chassaing, "Digital Signal Processing and Applications with the C6713 and C6416DSK", John wiley &sons, 2005.

The break-up of CIE:

Duration of Internal Tests: 3 Hours

1.	No. of Internal Test	:	1
2.	Max. Marks for internal test	:	12
3.	Marks for day-to-day laboratory class work	:	18

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Computer Networks Lab

SYLLABUS FOR B.E. VI – SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PC631EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OUTCOMES
In completion of the course, students III be able to Implement IP addressing schemes and different sub netting scenarios. Perform basic configurations of networking devices like switches androuters Build and implement simple networking topologies and troubleshooting the networks. Implement and troubleshoot virtual LANs and inter-VLAN routing. Implement and test routing

CO-PO/PSO Mapping

	<u> </u>	,	~PP	<u> </u>											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	2		2				2	1	3	
CO2	3	3	2	3	2	2		2				2	1	3	
CO3	3	3	2	3	2	2		2				2	1	3	
CO4	3	3	2	2	2	2		2				2	1	3	
CO5	3	2	2	2	2	2		2				2	1	3	

CYCLE - I Experiments

- 1. Getting started with Packet Tracer tool and Internetworking OperatingSystem.
- 2. Implementation of different sub netting scenarios and IP addressingschemes
- 3. Basic configuration of networking devices
- 4. Building and troubleshooting different networking topologies
- 5. Building and testing Wired Local Area Networks

- 6. Building and testing Wireless Local Area Networks
- 7. Implementation and understanding of different servers like HTTP,TFP, TFTP and DNS

CYCLE - II Experiments

- 8. Creating and testing Wide Area Networks
- 9. Implementation of routing protocols
- 10. Implementation of Virtual Local Area Networks (VLAN) and inter VLANrouting
- 11. Testing and troubleshooting networks with Protocol Data Units
- 12. Implementation of access lists for traffic control in networking
- 13. Implementation of Gateway protocols (Boarder Gateway Protocols)
- 14. Experiments on DATA LINK LAYER

New / Additional experiments planned:

- 1. Network cabling
- 2. Connections in LAN
- 3. Case Study: Network based Firewalls.

Learning Resources / Tools:

- Packet tracer
- 2. CCNA module 1CCNA Routing and Switching: Introduction to Networks
- 3. CCNA module-2 CCNA Routing and Switching: Routing and Switching Essentials www.netacad.com

The break-up of CIE:

No. of Internal Test
 Max. Marks for internal test
 Marks for day-to-day laboratory class work

Duration of Internal Tests: 3 Hours

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Theme Based Project

SYLLABUS FOR B.E. VI - SEMESTER

L:T:P (Hrs./week): 0:0:2	SEE Marks: 50	Course Code: U21PW619EC
Credits: 1	CIE Marks: 30	Duration of SEE: 3

COURSE OBJECTIVES	COURSE OUTCOMES							
Students should be	On completion of the course, students will be able							
1. Exposed to	to							
contemporary	1. Review the literature survey to identify the							
technologies in	problem							
Electronics and	2. Propose the solution to address the problem							
Communication	3. Design/Develop/Implement /Solve the problem							
Engineering and apply	and test the solution							
engineering knowledge	4. Demonstrate the work done in the mini project							
into a real world	through presentation and documentation							
problem with proper	5. Adapt to contemporary technologies							
Design.								

CO-PO/PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3			2	2								
CO2				3	3										
CO3								თ		3					
CO4									3			3			
CO5											3				

Note: CO1 & CO2 must be mapped with one of the relevant PSOs based on the domain of the project with 3.

CO4 can be mapped to appropriate PSO with level 2.

A. Guidelines for theme based projects Course for conducting theme-based projects as per the following:

- Batch size shall be 2 (or) 3 students per batch.
- Allocation by department based on their academic performance.
- Themes shall be different for each batch i.e., sometimes main theme
 may be same, but sub topic shall be independent as for as possible.
 In case of big size theme, part of the theme can be allotted to
 different groups for final integration.
- Output of the theme based project should be demonstrable / measurable / outcome based.

- Two overall coordinators for each section for theme based project supervision and faculty supervisors for different batches should be assigned.
- Two reviews one after six weeks and another one after twelve weeks and final evaluation shall be conducted at the end of the semester.

B. Grades awarded to the theme based project.

Outstanding - \geq 45 marks Excellent - \geq 40 - 44 marks Very Good - \geq 35 - 39 marks Good - \geq 30 - 34 marks Average - \geq 25 - 29 marks

Continuous Internal Evaluation (CIE) — 30 marks: To be evaluated by the Internal Examiner as per the following:

Assesment-1: [5 Marks]

Review of problem selection & abstract to be conducted in week-2.

Assesment-2: [10 Marks]

Review of project design & initial phase of implementation and to be conducted in week-7.

Assesment-3: [15 Marks]

Review of final implementation, presentation and report to be conducted in week-15.

Semester End Examination(SEE) - 50 marks: To be evaluated by the External Examiner

Evaluation guidelines for Semester End Examination (SEE):

Power Point Presentation [5 Marks]

Demonstration of the application [25 Marks]

Innovation : 05 Marks
Implementation : 15 Marks
Understanding : 05 Marks

Project Report [10 Marks]
Viva Voce [10 Marks]

OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS IN B.E. VI SEMESTER

S.No.	Dept.	Course Code	Name of the Course	Credits
1	Civil	U210E610CE	Project Management	3
2	CSE	U210E610CS	Introduction to Databases	3
3		U210E620CS	Fundamentals of Operating Systems	3
4	ECE	U210E630XX	Automatic Train Protection System – Kavach	3
5	EEE	U210E610EE	Mathematical Programming For Numerical Computation	3
6	IT	U210E610IT	Web application development and Security	3
7		U210E620IT	Introduction to Machine Learning	3
8		U210E630IT	Fundamentals of Machine Learning	3
9	Mechanical	U210E610ME	Additive Manufacturing and its Applications	3
10		U210E620ME	Alternative Fuels and Energy Systems	3
11		U210E630ME	Industrial Administration and Financial Management	3
12	H&SS	U210E630EH	Advanced Course in Entrepreneurship	3

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF CIVIL ENGINEERING PROJECT MANAGEMENT (Open Elective-IV)

SYLLABUSFORB.E.VI-SEMESTER

L:T:P(Hrs/Week):3:0:0	SEE Marks:60	CourseCode: U210E610CE	
Credits: 3	CIEMarks:40	DurationofSEE:3Hours	

	COURSE OBJECTIVES	COURSE OUTCOMES	
Obje	ectives of this course are to:	Upon the completion of this course the students will be expected to:	
1.	Learn the concept of project management along with function and objectives.	 Understand the objectives, functions and principles of management in projects. 	
2.	techniques used for project planning such as bar charts, CPM, PERT and crashing of networks.	 Practice the network techniques like CPM and PERT for better planning and scheduling of engineering works. Analyse the importance of cost and 	
٥.	types of contracts, tenders.	time in network analysis and planning the work accordingly.	
		 Knowledge on Contracts, Tenders, and Work orders related to the projects. 	
		5. Interpret the concept of Linear Programming and solve problems by Graphical and Simplex methods.	

UNIT-I: Significance of Project Management: Importance of Project Management, Types of projects, Project Management Cycle, Objectives and functions ofproject management, management team, principles of organization and types of organization.

UNIT-II: Planning: Project Planning, bar charts, network techniques in project management – CPM Expected likely, pessimistic and optimistic time, normal distribution curve and network problems of PERT.

UNIT-III: Time Cost Analysis: Cost time analysis in network planning, updating

UNIT-IV: Contracts: Introduction, types of contracts and their advantages and disadvantages, conditions of contracts, Introduction to Indian contract act. **Lender:** Lender form, Lender documents, Lender notice, work order.

UNIT-V: Linear Programming and Optimization Techniques: Introduction to optimization-Linear programming, Importance of optimization, Simple problems on formulation of LP. Graphical method, Simplex method.

Learning Resources:

- SrinathL.S., PERT and CPM., Principles and Application, East West Press, 2001.
- 2. Peret, F., Construction Project Management an Integrated Approach, Taylor and Francis, Taylor and Francis Group, London & New York, 2009.
- 3. Punmia B.C. and Khandelwal, PERT and CPM, Laxmi Publications, 2006
- 4. http://nptel.ac.in/courses/

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests: 2 Max. Marks for each Internal Test: 30
2 No. of Assignments: 3 Max. Marks for each Assignment: 5
3 No. of Quizzes: 3 Max. Marks for each Quiz Test: 5

Duration of Internal Tests : 90 Minutes

VASAVI COLLEGE OF ENGINEERING(Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

INTRODUCTION TO DATABASES (OPEN ELECTIVE-IV)

SYLLABUS FOR B.E. VI-SEMESTER

(COMMON FOR CIVIL, ECE, EEE & MECH)

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code : U210E610CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

(COURSE OBJECTIVES	On to	COURSE OUTCOMES completion of the course, students will be able
1	Identify different issues involved in the design and implementation of a database system.	1	Identify the functional components of database management system. Create conceptual data model using Entity Relationship Diagram
2	Understand transaction processing.	2	Transform a conceptual data model into a relational model
		3	Design database using normalization techniques
		4	Apply indexing and hashing techniques for effective data retrieval
		5	Explain transaction processing.

UNIT-I

Introduction: Database System Application, Purpose of Database Systems, View of Data, Database Languages, Relational Database, Database Architecture, Database Users and Administrators.

Database Design and E-R Model: Overview of the Design Process, the E-R Model, Constraints, E-R Diagrams.

UNIT-II

Relational Model: Structure of Relation Database, Relational Algebra Operations, Modification of the Database.

Structured Query Language: Introduction, Basic Structure of SQL Queries, Set Operations, Aggregate Functions, Null Values, Nested Sub queries, Views.

UNIT-III

Relational Database Design: Features of Good Relational Designs, Atomic Domains and first Normal form, Decomposition Using Functional Dependencies.

UNIT-IV

Indexing and Hashing: Basic Concepts, Ordered Indices, B+ Tree Index Files, Static Hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing.

UNIT-V

Transaction Management: Transaction concept, Storage Structure, Transaction Atomicity and Durability, Transaction Isolation and Atomicity, Serializability, Recoverability.

Learning Resources:

- 1. Abraham Silberschatz, Henry F Korth, Sudharshan S, Database System Concepts, 6th Edition(2011), McGraw-Hill International Edition.
- 2. Date CJ, Kannan A, Swamynathan S, An Introduction to Database System , 8th Edition(2006) Pearson Education.
- 3. Raghu Ramakrishna, and Johannes Gehrke, Database Management Systems, 3rd Edition(2003), McGraw Hill.
- 4. RamezElmasri, Durvasul VLN Somyazulu, Shamkant B Navathe, Shyam K Gupta, Fundamentals of Database Systems, 4th Edition(2006), Pearson Education.
- 5. Peter rob, Carlos coronel, Database Systems, (2007), Thomoson.
- 6. http://nptel.ac.in/courses/106106093/

Th	The break-up of CIE: Internal Tests + Assignments + Quizzes						
1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30	
2	No. of Assignments			Max. Marks for each Assignment	:	5	
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5	

VASAVI COLLEGE OF ENGINEERING(Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Computer Science & Engineering

FUNDAMENTALS OF OPERATING SYSTEMS

(OPEN ELECTIVE-IV)

SYLLABUS FOR B.E. VI-SEMESTER (COMMON FOR CIVIL, ECE, EEE & MECH)

L:T:P (Hrs./week): 3:0:0	SEE Marks: 60	Course Code : U210E620CS
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

(COURSE OBJECTIVES	On to	COURSE OUTCOMES completion of the course, students will be able
1	Understand different Operating system	1	Explain Operating system structures and internal structure of a process
	Structures and Services.		Compare CPU scheduling algorithms. Analyze Disk scheduling algorithms
		3	Apply different techniques for Main memory management.
			Describe file management techniques.
		5	Describe deadlock handling methods.

UNIT-I:

Introduction to operating systems: Definition, User view and System view of the Operating system, Operating system structure, Operating system services.

Process: Process concept, Process Control block, Context switching.

UNIT-II:

CPU Scheduling: Scheduling Criteria, Scheduling Algorithms: FCFS, SJF, Round Robin

Device Management: Disk Scheduling algorithms: FCFS, SSTF, SCAN.

UNIT -III:

Memory Management: Swapping, Contiguous memory allocation: Fixed Partitioning, Variable Partitioning. Non-Contiguous memory allocation: Paging.

Virtual memory: Demand paging, Page replacement Algorithms: FIFO, Optimal, LRU.

UNIT -IV:

File System Interface: File Concept, Access Methods: Sequential, Indexed, and Direct

File System Implementation: File-System Structure, Allocation Methods: Contiguous, Linked and Indexed.

UNIT-V:

Deadlocks: System model, deadlock characterization: Mutual Exclusion, Hold and Wait, Non pre-emption, Circular wait. Deadlock Prevention, Deadlock Avoidance: Banker's algorithm.

Learning Resources:

- Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, 9th Edition (2016), Wiley India.
- Andrew S. Tanenbaum, Modern Operating Systems, 2nd Edition (2001), Pearson Education, Asia.
- 3. Dhananjay, Dhamdhere.M, Operating System-concept based approach, 3rd edition (2009), Tata McGraw Hill, Asia
- 4. Robet Love: Linux Kernel Development, (2004)Pearson Education
- 5. Richard Stevens, Stephen Rago, Advanced Programming in the UNIX Environment, 3rd Edition(2013), Pearson Education
- 6. http://web.stanford.edu/~ouster/cgi-bin/cs140-spring19/index.php
- 7. https://nptel.ac.in/courses/106106144/

The break-up of CIE: In	iternal l'ests + Assignments + Quizzes	
1. No. of Internal Tests	: 2 Max. Marks for each Internal Tests	: 30
2. No. of Assignments	: 3 Max. Marks for each Assignment	: 5
3. No. of Quizzes	: 3 Max. Marks for each Quiz Test	: 5

Duration of Internal Tests: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

Automatic Train Protection System - Kavach

SYLLABUS FOR B.E. VI – SEMESTER (CSE, ECE, EEE, IT & Mechanical)

L:T:P (Hrs./week) : 2:0:1	SEE Marks: 60	Course Code: U210E630XX
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES COURSE OU	JTCOMES
To Provide the knowledge of Kavach technology which is used for an anti-collision system for trains. 1. Acquire knowledge about Systems in general and Ka Automatic Train Protection 2. Acquire knowledge about Systems associated with ground - wayside, those on related concepts. 3. Design various plans & implementation of Kavach for the systems associated with ground - wayside, those on related concepts. 4. Simulate & validate the stestbench.	t the Train Protection avach - Indian Railways System in detail. but various elements, h Kavach, those on the n the train - onboard and diagrams required for for typical station layout.

CO-PO/PSO Mapping

CO-F	CO-PO/PSO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1										3		2
CO2	3	2	1										3		2
CO3	3	3	2										3		2
CO4	3	3	2	1										2	2

UNIT – I: Introduction to Train Protection Systems (8 Hours)

Train Protection Systems: Auxiliary Warning Systems, European Train Control Systems Communication Based Interlocking System, Spot and Continuous Relay of Information

Working of Train Protection System – Kavach: Overview of Kavach and its Working, Features, Subsystems, Communication Interfaces, Signalling Interfaces

Subsystem: Onboard Kavach: Driver Machine Interlocking, Braking Interface, Radio Equipment, Onboard Computer, Transponder Receiver, Odometry, GNSS, GPRS, GSM

Subsystem: Stationary Kavach Station Kavach, Track Side Equipment, Signalling Interface, Radio & Tower, GNSS, Transponders, Network Monitoring System

UNIT – II: (6 Hours)

Concepts: Location Referencing - Train position, Modes of Onboard

subsystem, Train Characteristics, Mode Transitions, Braking Curves, Speed Profiles, Speed Limits, Speed Monitoring, Target Speed, Target Distance, Movement Authority, Communication Protocols, Key Management System (KMS), Messages & Language

UNIT - III: Design -Kavach: (8 Hours)

Survey, Assessment & Estimation: Station Layout, Radio Signal Strength, Tower Location, Power Requirement, Cable Survey, Loco Fitment Survey

Station Design: Kavach Scheme Plan, Kavach Control Table, Signalling Interface Diagram, Connectivity Plans for Remote Interface Units (RIUs), Power Supply Plan

Tower Design: Soil Testing, Foundation design, Super Structure Design

UNIT – IV: Installation, Deployment & Testing (8 Hours)

Stationary Kavach: Interlocking Interface, RFID Tags, Station Master Operation Console Indication Panel (SM_OCIP), GPS/GSM Antennas, Precommissioning Checklist, Testing

Onboard Kavach: DMI, Speed Sensors, RFID Reader, Onboard Computer, Brake Interface Unit, Pre-commissioning Checklist, Testing

Practicals at IRISET Laboratory (12 Hours)

- 1. Testbench, Preparation and deployment of Stationary Kavach Data: Configuration involving Topographical Information Arrangement of Signals/Markers, Transponders, Inter signal Distances, Signal Routes, Gradients, Speed Restrictions
- 2. Verification and Validation of Onboard Data Ceiling

The break-up of CIE: Internal Tests + Assignments + Quizzes							
1. No. of Internal Tests	: 2 Max. Marks for each Internal Tests	: 30					
2. No. of Assignments	: 3 Max. Marks for each Assignment	: 5					
3. No. of Quizzes	: 3 Max. Marks for each Quiz Test	: 5					

Duration of Internal Tests: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

MATHEMATICAL PROGRAMMING FOR NUMERICAL COMPUTATION

Open Elective-IV SYLLABUS FOR B.E. VI SEMESTER

L: T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U210E610EE
Credits:3	CIE Marks: 40	Duration of SEE: 3Hours

COURSE OBJECTIVES	COURSE OUTCOMES			
The course will enable the	On completion of the course, students will be able			
students to:	to			
To provide fundamental	On completion of the course, students will be able			
knowledge of	to			
programming language for solving problems.	Generate arrays and matrices for numerical problems solving.			
Solving problems.	 Represent data and solution in graphical display. 			
	3. Write scripts and functions to easily execute			
	series of tasks in problemsolving.			
	4. Use arrays, matrices and functions in			
	Engineeringapplications			
	5. Design GUI for basic mathematical applications.			

UNIT - I : Introduction:

Basics of MATLAB, MATLAB windows, Advantages of MATLAB, on-line help, file types.

MATLAB Basics: Variables and Constants –Vectors and Matrices- Arrays - manipulation- Built-in MATLAB Functions. Creating and printing simple plots, Creating ,Saving and Executing a Script File, Creating and Executing a function file.

Programming Basics: Data types-Operators – Hierarchy ofoperations, Relational and logical operators, if-end structure, if- else-end structure, if-elseif-else-end structure, switch-case statement, for-end loop, while-end loop, break and continue commands.

UNIT - II: Scripts and Functions

Script Files, Function Files, Debugging methods in MATLAB. **Graphics: Basic 2D plots:** Printing labels- grid and axes box- Entering text in a box- Axis control-Style options-Multiple plots- subplots-specialized 2D plots: stem-,bar, hist, pi, stairs, loglog , semilog ,polar ,comet 3D plots: Mesh,Contour,Surf,Stem3,ezplot.

UNIT - III: Numerical Methods Using MATLAB

Numerical Differentiation, Numerical integration- Newton-Cotes integration formulae, Multi-step application of Trapezoidal rule, Simpson's 1/3 Rule for Numerical Integration. MATLAB functions for integration.

Linear Equations- Linear algebra in MATLAB, Solving a linear system, Gauss Elimination, Finding eigen values and eigen vectors, Matrix factorizations, Advanced topics.

UNIT - IV : Nonlinear Equations

System of Non-linear equations, Solving System of Equations Using MATLAB function fsolve, Interpolation-Lagrange Interpolation, Two dimensional Interpolation, Straight line fit using Least Square Method, Curve fitting using built-in functions ployval and polyfit ,

cubic fit using least square method. Finding roots of a polynomial - roots function, Newton-Raphson Method.

UNIT - V:

Solution of Ordinary differential Equations(ODEs)-The 4th order Runge-kutta Method, ODE Solvers in MATLAB,Solving First – order equations using ODE23 and ODE45.

Structures and Graphical user interface(GUI):Advanced data Objects, How a GUI works, Creating and displaying a GUI. GUI components, Dialog Boxes.

Learning Resources:

- 1. Getting started with MATLAB "A quick introduction for scientist and engineers by RudraPratap, Oxfordpublications.
- 2. Advanced Guide to MATLAB-Practical Examples in Science and Engineering by S.N.Alam, S.Islam, S.K. Patel-I.K. International Publishing House Pvt.Ltd.
- 3. Stephen J. Chapman-"MATLAB Programming for Engineers"- 5th Edition-Cengage Learning- 2015. Getting started with MATLAB (Version 9) The Mathworks.
- 4. An Introduction to MATLAB® Programming and Numerical Methods for Engineers 1st Edition by Timmy SiauwAlexandreBayen, Elsevier-18th April 2014.
- 5. https://nptel.ac.in/courses/103106118/2

The break-up of CIE: Internal	Tests+Assignments+Quizzes
-------------------------------	---------------------------

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

WEB APPLICATION DEVELOPMENT AND SECURITY

(OPEN ELECTIVE-IV) (Common for CIVIL, ECE, EEE & MECH)
SYLLABUS FOR B.E VI- SEMESTER

L:T:P(Hrs./week): 3:0:0	SEE Marks: 60	Course Code: U210E610IT
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to		
Acquire basic skills for designing static and dynamic Web Applications using HTML, CSS, Java Script, Bootstrap and XML. Acquire fundamental knowledge of Web Security concepts	 Design a static web pages using HTML, CSS. Create dynamic web pages and client side validation using JavaScript. Develop responsive web applications using Bootstrap. Build an application using an MVC Framework and XML Analyze and evaluate web security attacks. 		

UNIT-I: Introduction

Introduction: World Wide Web, Web Browsers, Web Servers, URL, HTTP, TCP Port. HTML: Standard HTML document structure, Basic Tags, Images, Hypertext Links, Lists, Tables, Frames. CSS: In-line style sheets, Internal Style sheets and External Style sheets.

UNIT-II: Basics of JavaScript

JavaScript: Introduction, Basics of JavaScript-variables, data types and operators, Control Structures, Arrays, Functions, HTML Forms, Events and event handling.

UNIT-III: Bootstrap

Bootstrap: The Grid system, Layout components: Tables, Images, alerts, buttons, badges, progress bars, cards, drop downs, pagination, Collapse, Navbar, Carousel.

UNIT-IV: XML

XML- The Syntax of XML, XML Document Structure, Document Type Definitions.

Introduction to MVC - Introduction to Model View Controller Architecture

UNIT-V: Web Security Fundamentals

Web Hacking Basics, HTTP & HTTPS URL, Evolution of Web Applications - Web Application Security - Core Defence Mechanisms - Handling User Access - Handling User Input- Handling Attackers - Managing the Application, Introduction to Web 2.0

Learning Resources:

- 1. Robert W. Sebesta, Programming the World Wide Web, 7th Edition (2014), Pearson Education.
- 2. "Web Technologies", 7th Edition, Uttam K.Roy,2012.
- 3. Paul J. Deitel, Harvey M. Deitel, Abbey Deitel, Internet & World Wide Web How to Program, 5th Edition, Pearson Education.
- 4. http://getbootstrap.com/

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30 2 No. of Assignments : 3 Max. Marks for each Assignment : 5 3 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

Duration of Internal Tests : 90 Minutes

With effect from Academic Year 2023-24 (R-21)

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

DELAKTIFICATION OR THE ORDER OF THE ORDER OF

INTRODUCTION TO MACHINE LEARNING

(OPEN ELECTIVE-IV)

SYLLABUS FOR B.E VI- SEMESTER (Common for ECE & EEE)

L:T:P (Hrs./week): 3:0:0	SEE Marks :60	Course Code: U210E620IT
Credits: 3	CIE Marks: 40	Duration of SEE :3Hrs

	COURSE OUTCOMES
COURSE OBJECTIVES	On completion of the course, students will be able
	to
Introduce the fundamental	1. Demonstrate knowledge of the Artificial
concepts, techniques and	intelligence and machine learning literature.
modern tools in Artificial	2. Understand and apply latest Python libraries for
intelligence and Machine	Machine learning models.
Learning field to effectively	3. Apply an appropriate algorithm for a given
apply it to the real-world	problem.
problems.	4. Apply machine learning techniques in the
	design of computer systems.
	5. Explain the relative strengths and weaknesses
	of different machine learning methods and
	approaches.

UNIT-I:

Introduction to AIML: Foundations of AI, Sub areas of AI, Applications. Introduction to learning, Types of Learning: Supervised Learning, Unsupervised Learning, Reinforcement Learning.

Introduction to Python and ML libraries: intro to python data types, control flow, loops, functions, modules & packages. Intro to NumPy & Scikit-learn.

UNIT-II:

Supervised learning: ML Task, ML Experience or Data, ML Performance metric, Linear Regression, Linear regression Simulator, Logistic Regression.

Supervised Non-parametric learning: Introduction to Decision Trees, K-Nearest Neighbor, Feature Selection.

UNIT-III:

Supervised Parametric learning (Neural networks): Perceptron, Multilayer Neural Network, Playground Simulator, Backpropagation.

UNIT-IV:

Supervised Parametric learning: Support Vector Machine, Kernel function and Kernel SVM.

Supervised Parametric Bayesian learning: Introduction, Naive Bayes Classification, Bayesian Network.

UNIT-V:

Unsupervised leaning: Clustering, K-means Clustering, DBSCAN

Learning Resources:

- 1. Tom Mitchell, Machine Learning, First Edition, McGraw-Hill, 1997
- Christopher Bishop. Pattern Recognition and Machine Learning. Second Edition.
- 3. EthemAlpaydin , Introduction to Machine Learning, Second Edition
- 4. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e, 2008.
- 5. http://nptel.ac.in/courses/106106139/
- 6. https://www.w3schools.com/python/
- 7. https://www.w3schools.com/python/numpy/default.asp
- 8. https://scikit-learn.org/stable/
- 9. Linear Regression Simulator (mladdict.com)

Duration of Internal Tests : 90 Minutes

- 10. Neural Network Playground simulator
- 11. https://www.mladdict.com/neural-network-simulator

The break-up of CIE:	Internal Tests+ Assignments + Qu	izzes
1 No of Internal	· 2 May Marks for each Ir	tornal

1	No. of Internal	:	2	Max. Marks for each Internal	:	30
	Tests			Tests		
2	No. of	:	3	Max. Marks for each	:	5
	Assignments			Assignment		
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031 DEPARTMENT OF INFORMATION TECHNOLOGY

FUNDAMENTALS OF MACHINE LEARNING

(OPEN ELECTIVE-IV)
SYLLABUS FOR B.E VI- SEMESTER
(Common for CIVIL & MECH)

L:T:P (Hrs./week): 3:0:0	SEE Marks :60	Course Code: U210E630IT
Credits: 3	CIE Marks: 40	Duration of SEE :3Hrs

	COURSE OUTCOMES
COURSE OBJECTIVES	On completion of the course, students will be able
	to
Introduce the fundamental	1. Demonstrate knowledge of the Artificial
concepts, techniques and	intelligence and machine learning literature.
modern tools in Artificial	2. Understand and apply latest Python libraries for
intelligence and Machine	Machine learning models.
Learning field to effectively	3. Apply an appropriate algorithm for a given
apply it to the real-world	problem.
problems.	4. Apply machine learning techniques in the
	design of computer systems.
	5. Explain the relative strengths and weaknesses
	of different machine learning methods and
	approaches.

UNIT-I:

Introduction to AIML: Foundations of AI, Sub areas of AI, Applications. Introduction to learning, Types of Learning: Supervised Learning, Unsupervised Learning, Reinforcement Learning.

Introduction to Python and ML libraries: intro to python data types, control flow, loops, functions, modules & packages. Intro to NumPy & Scikit-learn.

UNIT-II:

Supervised learning: ML Task, ML Experience or Data, ML Performance metric, Linear Regression, Linear regression Simulator, Logistic Regression.

UNIT-III:

Supervised Parametric learning (Neural networks): Perceptron, Multilayer Neural Network, Playground Simulator, Backpropagation.

UNIT-IV:

Supervised Parametric learning: Support Vector Machine.

Supervised Parametric Bayesian learning: Introduction, Naive Bayes Classification.

UNIT-V:

Unsupervised leaning: Clustering, K-means Clustering, DBSCAN

Learning Resources:

- 12. Tom Mitchell, Machine Learning, First Edition, McGraw-Hill, 1997
- 13. Christopher Bishop. Pattern Recognition and Machine Learning. Second Edition.
- 14. EthemAlpaydin , Introduction to Machine Learning, Second Edition
- T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e, 2008.
- 16. http://nptel.ac.in/courses/106106139/
- 17. https://www.w3schools.com/python/
- 18. https://www.w3schools.com/python/numpy/default.asp
- 19. https://scikit-learn.org/stable/
- 20. Linear Regression Simulator (mladdict.com)
- 21. Neural Network Playground simulator
- 22. https://www.mladdict.com/neural-network-simulator

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30 2 No. of Assignments : 3 Max. Marks for each Assignment : 5 3 No. of Ouizzes : 3 Max. Marks for each Ouiz Test : 5

Duration of Internal Tests : 90 Minutes

VASAVI COLLEGE OF ENGINEEING (Autonomous)

IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E VI Semester Additive Manufacturing and its Applications (Open Elective-IV)

L:T: P (Hrs./week):3: 0 : 0	SEE Marks:60	Course Code: U210E610ME
Credits: 3	CIE Marks:40	Duration of SEE: 3 Hours

Course objectives	Course Outcomes
Course objectives The objectives of this course are to: understand the fundamentals of various additive manufacturing technologies and their applications in Engineering Industry.	On completion of the course the student will be able to: 6. Understand the fundamentals of prototyping and the various data formats used in Additive Manufacturing. 7. Study the principle, process, advantages, limitations and case studies of liquid based AM systems. 8. Study the principle, process, advantages, limitations and case studies of solid based AM systems. 9. Study the principle, process, advantages, limitations and case studies of powder based AM systems.
	10. Study the applications of AM in various engineering industries as well as the medical field.

Unit-I

Introduction, Prototyping fundamentals, Historical development, Advantages of AMT, Commonly used terms, **Fundamental Automated Processes**, process chain, 3D modeling, Data Conversion, and transmission, Checking and preparing, Building, Post processing, RP data formats, **Newly Proposed formats**, Classification of AMT process.

Unit-II

Liquid based systems: Stereo lithography apparatus (SLA): Models and specifications, process, working principle, photopolymers, photo polymerization, layering technology, laser and laser scanning, applications, advantages and disadvantages, case studies.

Solid ground curing (SGC): Models and specifications, process, working, principle, applications, advantages and disadvantages, case studies.

UNIT III

Solid based systems: Laminated object manufacturing (LOM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies.

Fused Deposition Modeling (FDM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies.

Unit-IV

Powder Based Systems: Selective laser sintering (SLS): Models and specifications, process, **materials**, working principle, applications, advantages and disadvantages, case studies.

Three dimensional printing (3DP): Models and specification, process, working principle, applications, advantages and disadvantages, case studies.

UNIT-V

Applications of AM systems: Applications in **Design,** aerospace industry, automotive industry, jewellery industry, coin industry, GIS Application, arts and architecture.

RP medical and bio engineering Application: planning and simulation of complex surgery, customized implant and prosthesis, design and production of medical devices, forensic science and anthropology, visualization of bio-molecules.

Learning Resources:

- 1. Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010
- 2. D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001
- 3. Terry Wohlers, "Wholers Report 2000", Wohlers Associates, 2000
- 4. Paul F. Jacobs, "Rapid Prototyping and Manufacturing"-, ASME Press, 1996
- 5. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1 No. of Internal Tests: 02 Max.Marks for each Internal Test: 30

2 No. of Assignments: 03 Max. Marks for each Assignment: 05

3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05 Duration of Internal Test: **1 Hour 30 Minutes**

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E VI Semester

Alternative Fuels and Energy Systems (Open Elective-IV)

L:T: P (Hrs./week):3: 0 :	SEE Marks:60	Course Code :
0		U210E620ME
Credits: 3	CIE Marks:40	Duration of SEE: 3 Hours

Course objectives	Course Out comes
The objectives of this Course	On completion of the Course, the student will
are:	be able to:
To broaden the knowledge of	Identify the need for alternative fuels.
alternate fuels and energy	Explain the characteristic features of bio-
system and to understand the	fuels.
manufacturing and operating	3. Elucidate the properties of biogas, LPG &
characteristics of alternative	CNG.
fuels.	4. Identify the merits and challenges of
	hydrogen and fuel cell based vehicles.
	5. Explain the characteristics of electric and
	hybrid vehicles.

UNIT - I

Need for Alternative Fuels:

Working of I.C. Engine; Properties of Fuels; Fuel Rating; Study of various performance parameters related to properties of different types of fuels; Fossil Fuels: Sources, scope of availability; Need for Alternative Fuels; Effects of constituents of Exhaust gas emission on environment; Green house effect, Factors affecting green house effect.

UNIT – II Alcohols:

Sources of Methanol and Ethanol, methods of it's production. Properties of methanol & ethanol as engine fuels, Use of alcohols in S.I. and C.I. engines, performance of blending methanol with gasoline. Emulsification of alcohol and diesel. Dual fuel systems. Improvement / Change in emission characteristics with respect to % blending of Alcohol.

Bio-diesels:

Base materials used for production of Bio-diesel; Properties of Diesel blended with vegetable oils and difference in performance characteristics of Engine.

Synthetic Alternative Fuels: Di-Methyl Ether (DME), P-Series, Eco-friendly Plastic fuels (EPF).

UNIT - III

Biogas:

Introduction to Biogas system; Extraction process; Factors affecting biogas formation; Usage of Biogas in SI engine & CI engine;

LPG & CNG: Properties of LPG & CNG as engine fuels, fuel metering systems, combustion characteristics, effect on performance, emission, cost and safety.

UNIT – IV

Hydrogen:

Hydrogen as a substitute fuel; Properties, Sources and methods of Production of Hydrogen; Storage and Transportation of hydrogen; Advantages of hydrogen (Liquid hydrogen) as fuel for IC engine/hydrogen car; Layout of a hydrogen car;

Fuel Cells: Concept of fuel cells based on usage of Hydrogen and Methanol; Power rating and performance; Layout of fuel cell vehicle.

UNIT - V

Electric & Hybrid Vehicles:

Layout of an electric vehicle; Systems and components; electronic controlled systems; high energy and power density batteries; Types of hybrid vehicles; advantages & limitations.

Solar Powered Vehicles:

Solar cells for energy collection, Storage batteries; Layout of solar powered automobiles; Advantages and limitations.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1	No. of Internal Tests:	02	Max.Marks for each Internal Test:	30	
2	No. of Assignments:	03	Max. Marks for each Assignment:	05	
3	No. of Quizzes:	03	Max. Marks for each Quiz Test:	05	
	Duration of Internal Test: 1 Hour 30 Minutes				

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR B.E VI Semester

Industrial Administration and Financial Management (Open Elective-IV)

Instruction: 3 Hrs / week	SEE Marks:60	Course Code: U210E630ME
Credits: 3	CIE Marks:40	Duration of SEE: 3 Hours

	Course objectives	Course Out comes
The objectives of this course are to:		On completion of the course, the
1.	aware about types of business forms,	student will be able to:
	organization structures, plant	 understand business forms,
	layouts, merits, demerits and	organization structures and plant
	applications.	layouts.
2.	understand method study procedure,	2. implementation of method study
	PME, time study techniques and	and estimation of standard time.
	wage incentives.	3. understand types of production,
3.	importance of PPC and improving	functions of PPC, quality control
	quality by control charts and	by charts and sampling.
	sampling plants.	4. implement optimization
4.	optimization of inventory to minimize	techniques like LPP, assignment
	total cost and other optimization	and project management
	techniques like LPP, project	techniques.
	management techniques.	5. understand BEA, estimation of
5.	estimate selling price of a product,	
	TVM and budgeting techniques,	, , , , , ,
	depreciation methods.	techniques.

UNIT - I

Industrial Organization : Types of various business organisations. Organisation structures and their relative merits and demerits. Functions of management.

Plant location and layouts: Factors affecting the location of plant and layout. Types of layouts and their merits and demerits.

UNIT - II

Work study: Definitions, Objectives of method study and time study. Steps in conducting method study. Symbols and charts used in method study. Principles of motion economy. Calculation of standard time— by— time study and work sampling. Performance rating factor. Types of ratings. Jobs evaluation and performance appraisal. Wages, incentives, bonus, wage payment plans.

UNIT - III

Inspection and quality control: Kinds and Types, objectives of inspection, Sampling inspection quality control by chart and sampling plans. Quality circles.

Production planning and control: Types of manufacture. Types of production. Principles of PPC and its functions.

UNIT - IV

Optimisation: Introduction to linear programming and graphical solutions. Assignment problems.

Project Management: Introduction to CPM and PERT. Determination of critical path.

Material Management: Classification of materials. Materials planning. Purchasing procedure of a material for an industry Duties of purchase manager and Stores department. Determination of economic order quantities. Types of materials purchase.

UNIT - V

Cost accounting: elements of cost. Various costs. Types of overheads, calculation of selling price. Break even analysis and its applications. Depreciation. Methods of calculating depreciation fund. Nature of financial management. Time value of money. Techniques of capital budgeting and methods.

Learning Resources:

- Pandey I.M., "Elements of Financial Management", Vikas Publ. House, New Delhi, 1994
- 2. Khanna O.P., "Industrial Engineering and Management", Dhanapat Rai & Sons.
- 3. Everrete E Admaa & Ronald J Ebert , "production and Operations Management", 5th Ed. , PHI , 2005
- 4. S N Chary, "Production and Operations Management", 3rd Ed. , Tata McGraw Hill, , 2006
- 5. Pannerselvam, "production and Operations Management", Pearson Education, 2007

6. The break-up of CIE: Internal Tests+ Assignments + Quizzes

- 1 No. of Internal Tests: 02 Max.Marks for each Internal Test: 30
- 2 No. of Assignments: 03 Max. Marks for each Assignment: 05
- 3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05 Duration of Internal Test: **1 Hour 30 Minutes**

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD-31

Department of H&SS

ADVANCED COURSE IN ENTREPRENEURSHIP (OE-IV)

SYLLABUS FOR B.E.VI-SEMESTER

L:T:P(Hrs/week):3:0:0	SEE Marks:60	Course Code: U210E630EH
Credits :03	CIE Marks:40	Duration of SEE: 03Hours

Course objectives	Course Outcomes	
The objectives of this course are to	On completion of the course the student will be able to	
Acquire additional knowledge and skills for developing early customer traction into a repeatable business. They will learn the tools and methods for achieving sustainable growth, such as refining the product or service and business models, building brand strategy, making a sales and financial plan etc.	 Develop an A-team Refine business models and expand customer segments, brand strategy and create digital presence, channel strategy for customer outreach Develop strategies to grow revenues and markets, understand Advance Concepts of business finance, do Financial Planning, find Funding for growth Leverage technologies and platforms for growth stage companies Develop key metrics to track progress, understand Basics of registering a company. 	

Unit I: Pivoting and New Business Model

Introduction to Advance Course and Recapping the key concepts; Revisit of idea/ solution, business model and team members, Need for a mentor; Pivoting and its need; Types of Business models; Refining business model; Analyzing the Business Model of Competitors; Adding new customer segments to existing business model.

Unit II: Business Planning

Product Management: Need for a product management with examples; Making a sales plan; Building sales organization: Entrepreneur interview, Hiring sales team; Making a people plan for the venture; Introduction and understanding financial planning and forecasting template; Discussing financial planning and revisiting business model; Creating a procurement plan; Negotiation.

Unit III: Customer Life cycle and Building the A-team

Customer life cycle; identifying secondary revenue streams; Funding

Landscape: Funding options for an entrepreneur; Investor hunt: Creating funding plan and designing the pitch deck; Attracting right talent – I: Intro to building the A-team; Examples; Setting the team for success.

Unit IV: Branding and Channel Strategy, Leveraging TechnologiesCreating brand Strategy: Drawing venture's golden circle; Defining the positioning statement: values; Creating a Public Image and Presence of the Venture; Identifying the right channel; Platforms for Marketing and Promotion; Platforms for Communication and Collaboration; Making the Tech Plan.

Unit V: Measuring Progress, Legal Matters and Role of Mentors & Advisors

Metrics for Customer Acquisition and Retention; Financial Metrics: Finding new revenue streams based on key financial metrics; Re-forecasting financial plan to increase margin; Professional Help and Legal & Compliance Requirements; Selecting IP for organization; Identifying mentors and advisors; Scouting board of directors; Capstone Project.

Learning Resources:

- http://www.learnwise.org
- 2. Clancy, Ann L. & Binkert, Jacqueline, "Pivoting- A coach's guide to igniting substantial change" Palgrave Macmillan US 2017
- 3. Porter, Michael, E., "Competitive Advantage: Creating and Sustaining Superior Performance", Free press, 1st edi.
- 4. Schwetje, Gerald & Vaseghi Sam, "The Business Plan", Springer-Verlag Berlin Heidelberg.
- 5. LeMay, Matt, "Product Management in Practice", O'Reilly Media Inc.
- 6. Smart, Geoff & Randy, Street., "Who: The A method of hiring", Ballantine books, 2008.
- 7. Blokdyk, Gerardus., "Customer Lifecycle Management A complete guide", 5starcooks, 2018

The break-up of CIE: Internal Tests + Assignments + Quizzes

- No. of Internal Tests:
 No. of Assignments:
 Max. Marks for each Internal Test:
 Max. Marks for each Assignment:
 Max. Marks for each Assignment:
- 3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05

Duration of Internal Test: 1 Hour 30 Minutes