# **VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)**

Accredited by NAAC with 'A++' Grade
Ibrahimbagh, Hyderabad-31
Approved by A.I.C.T.E., New Delhi and
Affiliated to Osmania University, Hyderabad-07

# Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad



# SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR M.E. (ECE)

# **EMBEDDED SYSTEMS AND VLSI DESIGN (ES&VLSID)**

I TO IV SEMESTERS
With effect from 2025-26
(For the batch admitted in 2025-26)

(R-25)



DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Phones: +91-40-23146040, 23146041

Fax: +91-40-23146090

#### Institute Vision

Striving for a symbiosis of technological excellence and human values

#### **Institute Mission**

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow

#### **Department Vision**

Striving for excellence in teaching, training and research in the areas of Electronics and Communication Engineering

#### **Department Mission**

To inculcate a spirit of scientific temper and analytical thinking, and train the students in contemporary technologies in Electronics & Communication Engineering to meet the needs of the industry and society with ethical values.

# **Program Educational Objectives (PEO)**

PG – M.E (ES & VLSID): Embedded Systems and VLSI Design

- **PEO1:** Graduates will be able to design, analyse, and implement systems employing latest techniques and modern tools in the field of Embedded Systems and VLSI Design.
- **PEO2:** Graduates will be able to carry out research independently, write and present a substantial research report.
- **PEO3:** Graduates will be able to demonstrate effective communication skills and leadership qualities with ethical attitudes in broad societal context while working in a multi-disciplinary environment.

# **Program Outcomes (PO)**

PG-M.E (ES & VLSID) : Embedded Systems and VLSI Design : Graduates will have

- **PO1:** An ability to independently carry out research and development work to offer effective engineering solutions and evaluate system level performance.
- **PO2:** An ability to write and present substantial technical reports.
- **PO3:** An ability to demonstrate in depth knowledge for analysing and solving problems in the area of Embedded Systems and VLSI Design.
- **PO4:** An ability to apply appropriate techniques and modern EDA tools to design and conduct advanced experiments and pursue investigations on circuits and system level design.
- **PO5:** An ability to apply engineering and management principles as a member and leader in a team, to manage projects in multi-disciplinary environment with lifelong learning capabilities.

#### **DEPARTMENT OF ECE**

# **SCHEME OF INSTRUCTION AND EXAMINATION (R - 25)**

M.E - Embedded Systems and VLSI Design (ES&VLSID) FIRST SEMESTER (2025-2026)

|             | M.E - ECE (ES&VLSID) I                               | -Semes | ter       |         |                       |         |         |         |
|-------------|------------------------------------------------------|--------|-----------|---------|-----------------------|---------|---------|---------|
|             |                                                      | Schem  | e of Inst | ruction | Scheme of Examination |         |         |         |
| Course Code | Name of the Course                                   | Hou    | ırs per W | /eek    | Duration              | Maximun | n Marks | Credits |
|             |                                                      | L      | Т         | Р       | in Hrs                | SEE     | CIE     | Cre     |
|             | THEORY                                               |        |           |         |                       |         |         |         |
| P25PC110EC  | Professional Core-I: Advanced Embedded System Design | 3      | -         | -       | 3                     | 60      | 40      | 3       |
| P25PC120EC  | Professional Core-II: Analog and Digital VLSI Design | 3      | -         | -       | 3                     | 60      | 40      | 3       |
| P25PE1XXEC  | Professional Elective - I                            | 3      | -         | -       | 3                     | 60      | 40      | 3       |
| P25PE1XXEC  | Professional Elective - II                           | 3      | -         | -       | 3                     | 60      | 40      | 3       |
| P25PC140ME  | Research Methodology and IPR                         | 2      | -         | -       | 3                     | 60      | 40      | 2       |
| P25AC110EH  | Audit Course-I: English for Research Paper Writing   | 2      | -         | -       | 3                     | 60      | 40      | 0       |
|             | PRACTICALS                                           |        |           |         |                       |         |         |         |
| P25PC111EC  | Advanced Embedded Systems Laboratory                 | 4      |           |         |                       | 50      | 2       |         |
| P25PC121EC  | Analog and Digital VLSI Design Laboratory            | -      | -         | 4       | -                     | -       | 50      | 2       |
|             | TOTAL                                                | 16     | -         | 8       | -                     | 360     | 340     | 18      |
|             | GRAND TOTAL                                          |        | 24        |         |                       | 70      | 0       |         |

#### **DEPARTMENT OF ECE**

# **SCHEME OF INSTRUCTION AND EXAMINATION (R - 25)**

M.E Embedded Systems and VLSI Design (ES&VLSID) SECOND SEMESTER (2025-2026)

|             | M.E - ECE (ES&VLSID) II-Semester                            |       |           |         |                       |        |         |         |
|-------------|-------------------------------------------------------------|-------|-----------|---------|-----------------------|--------|---------|---------|
|             |                                                             | Schem | e of Inst | ruction | Scheme of Examination |        |         |         |
| Course Code | Name of the Course                                          | Hou   | rs per V  | /eek    | Duration              | Maximu | m Marks | Credits |
|             |                                                             | L     | Т         | Р       | in Hrs                | SEE    | CIE     | Cre     |
|             | THEORY                                                      |       |           |         |                       |        |         |         |
| P25PC210EC  | Professional Core-III: Embedded Real Time Operating Systems | 3     | ı         | -       | 3                     | 60     | 40      | 3       |
| P25PC220EC  | Professional Core-IV: VLSI Physical Design                  | 3     | -         | -       | 3                     | 60     | 40      | 3       |
| P25PE2XXEC  | P25PE2XXEC   Professional Elective - III                    |       |           |         | 3                     | 60     | 40      | 3       |
| P25OE2XXXX  | Open Elective                                               | 3     | ı         | -       | 3                     | 60     | 40      | 3       |
| P25AC210EH  | Audit course-II: Pedagogy Studies                           | 2     | -         | -       | 3                     | 60     | 40      | 0       |
|             | PRACTICALS                                                  |       |           |         |                       |        |         |         |
| P25PC211EC  | Embedded System Applications Laboratory                     | -     | ı         | 3       | -                     | -      | 50      | 2       |
| P25PC221EC  | VLSI Physical Design Laboratory                             | -     | -         | 3       | -                     | -      | 50      | 2       |
| P25PW219EC  | Mini Project with Seminar                                   | -     | ı         | 2       | -                     | -      | 50      | 2       |
|             | TOTAL                                                       | 14    | -         | 8       | -                     | 300    | 350     | 18      |
|             | GRAND TOTAL                                                 |       | 22        |         |                       | 6!     | 50      |         |

#### **DEPARTMENT OF ECE**

# **SCHEME OF INSTRUCTION AND EXAMINATION (R - 25)**

M.E Embedded Systems and VLSI Design (ES&VLSID) THIRD SEMESTER (2026-2027)

| M.E - ECE (ES&VLSID) III-Semester |                                     |         |             |        |                       |               |     |         |  |
|-----------------------------------|-------------------------------------|---------|-------------|--------|-----------------------|---------------|-----|---------|--|
|                                   |                                     | Schen   | ne of Instr | uction | Scheme of Examination |               |     |         |  |
| Course Code                       | Name of the Course                  | Но      | urs per W   | eek    | Duration              | Maximum Marks |     | dits    |  |
|                                   |                                     | L       | Т           | Р      | in Hrs                | SEE           | CIE | Credits |  |
| THEORY                            |                                     |         |             |        |                       |               |     |         |  |
| P25PE3XXEC                        | Professional Elective – IV          | 3       | ı           | ı      | 3                     | 60            | 40  | 3       |  |
| P25PE3XXEC                        | Professional Elective – V           | 3       | -           | -      | 3                     | 60            | 40  | 3       |  |
|                                   | PR                                  | ACTICAL | S           |        |                       |               |     |         |  |
| P25PW319EC                        | Dissertation - Phase-I / Internship | -       | 1           | 20     | 1                     | -             | 100 | 10      |  |
|                                   | TOTAL                               | 6       | 1           | 20     | ı                     | 120           | 180 | 16      |  |
|                                   | GRAND TOTAL                         |         | 26          |        |                       | 3(            | 00  |         |  |

#### **DEPARTMENT OF ECE**

#### **SCHEME OF INSTRUCTION AND EXAMINATION (R - 25)**

M.E Embedded Systems and VLSI Design (ES&VLSID) FOURTH SEMESTER (2026-2027)

|             | M.E - ECE (ES&VLSID) IV-Semester     |                |             |         |                       |               |            |         |  |
|-------------|--------------------------------------|----------------|-------------|---------|-----------------------|---------------|------------|---------|--|
|             |                                      |                | ne of Insti | ruction | Scheme of Examination |               |            |         |  |
| Course Code | Name of the Course                   | Hours per Week |             |         | Duration              | Maximum Marks |            | Credits |  |
|             |                                      | L              | Т           | Р       | in Hrs                | SEE           | CIE        | Crec    |  |
|             | PR                                   | ACTICAL        | .S          |         |                       |               |            |         |  |
| P25PW419EC  | Dissertation – Phase II / Internship | 1              | -           | 32      | ı                     | Viva – vo     | ce (Grade) | 16      |  |
|             | TOTAL                                | 1              | -           | 32      | 1                     | -             | 1          | 16      |  |
|             | GRAND TOTAL                          |                | 32          |         |                       |               |            | ·       |  |

### **DEPARTMENT OF ECE**

| _        |                                          |                        | List of Stream Based Prof                      | fessional Elect                                       | ives (R-25)                                 |  |  |
|----------|------------------------------------------|------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------------|--|--|
| Semester | Professional<br>Elective                 |                        | ssional Elective Stream 1:<br>Embedded Systems | Professional Elective Stream 2:<br>VLSI System Design |                                             |  |  |
| Sen      | Elective                                 | Course Code            | Title                                          | Course Code                                           | Title                                       |  |  |
|          | PE-I                                     | P25PE110EC             | Programming Languages for<br>Embedded Systems  | P25PE120EC                                            | Advanced CMOS Microfabrication              |  |  |
| I        | DE 11                                    | P25PE130EC             | Advanced Committee Organization                | P25PE140EC                                            | FPGA Architectures and Applications         |  |  |
|          | PE-II                                    | PZSPEISUEC AUVa        | Advanced Computer Organization                 | P25PE150EC                                            | Scripting Languages                         |  |  |
| TT       | PE-III                                   | P25PE210EC             | Hardware Coffware Co Decign                    | P25PE220EC                                            | Design Verification using System<br>Verilog |  |  |
| 11       | PE-111                                   | PZSPEZIUEC             | Hardware-Software Co-Design                    | P25PE230EC                                            | Static Timing Analysis                      |  |  |
|          | PE-IV                                    | D2EDE210EC             | High Lovel Synthesis                           | P25PE320EC                                            | Low Power VLSI Design                       |  |  |
| ш        | I so | riigii Levei Synthesis | P25PE330EC                                     | System on Chip (SoC) Design                           |                                             |  |  |
| 111      | PE-V                                     | P25PE340EC             | InT Architectures and Applications             | P25PE350EC                                            | Physical Design Automation                  |  |  |
|          | PE-V                                     | rzoreo40EC             | IoT Architectures and Applications             | P25PE360EC                                            | Design for Testability                      |  |  |

|       | Audit courses and Open Electives |                                                            |  |  |  |  |  |  |
|-------|----------------------------------|------------------------------------------------------------|--|--|--|--|--|--|
| S.No. | Course Code                      | Course Title                                               |  |  |  |  |  |  |
|       | Audit Course - I                 |                                                            |  |  |  |  |  |  |
| 1     | P25AC110EH                       | English for Research Paper Writing                         |  |  |  |  |  |  |
| 2     | P25AC120XX                       | Value Education                                            |  |  |  |  |  |  |
| 3     | P25AC130XX                       | Stress Management by Yoga                                  |  |  |  |  |  |  |
| 4     | P25AC140XX                       | Sanskrit for Technical Knowledge                           |  |  |  |  |  |  |
|       |                                  | Audit Course —II                                           |  |  |  |  |  |  |
| 1     | P25AC210EH                       | Pedagogy Studies                                           |  |  |  |  |  |  |
| 2     | P25AC220XX                       | Personality Development through Life Enlightenment Skills. |  |  |  |  |  |  |
| 3     | P25AC230XX                       | Constitution of India                                      |  |  |  |  |  |  |
| 4     | P25AC240XX                       | Disaster Management                                        |  |  |  |  |  |  |
|       |                                  | Open Electives                                             |  |  |  |  |  |  |
| 1     | P250E210XX                       | Business Analytics                                         |  |  |  |  |  |  |
| 2     | P250E220XX                       | Industrial Safety                                          |  |  |  |  |  |  |
| 3     | P250E230XX                       | Operations Research                                        |  |  |  |  |  |  |
| 4     | P250E240XX                       | Cost Management of Engineering Projects                    |  |  |  |  |  |  |
| 5     | P250E250XX                       | Composite Materials                                        |  |  |  |  |  |  |
| 6     | P250E260XX                       | Waste to Energy                                            |  |  |  |  |  |  |
| 7     | P250E270XX                       | Fundamentals of Python Programming                         |  |  |  |  |  |  |

# Syllabus for M.E. ECE (ES & VLSI Design) I - SEMESTER

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Advanced Embedded System Design**

Professional Core - I

SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: P25PC110EC   |
|--------------------------|---------------|---------------------------|
| Credits: 3               | CIE Marks: 40 | Duration of SEE : 3 Hours |

| COURSE OBJECTIVES                                                                                                                              | COURSE OUTCOMES                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Define and Classify an<br>Embedded System along with<br>design issues.                                                                         | On completion of the course, students will be able to  1. Define, Classify and Analyze embedded                                                                                          |
| <ol> <li>Justify the philosophy of ARM core as CPU in SoC designs.</li> <li>Demonstrate ARM ISA Assembly usage for data processing.</li> </ol> | system product design with IC Technology.  2. Analyze ARM IP Core usage in design with its programming model and registers.  3. Implement ARM assembly construct for Cortex M4           |
| 4. Implement different I/O interfacing drivers for Cortex M4 MCU in C.                                                                         | <ul><li>4. Design device drivers in embedded-C for Cortex M4 to interface different I/O.</li><li>5. Propose hardware software codesign issues along with debugging techniques.</li></ul> |

#### **CO-PO Mapping**

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | 1   | 2   | 3   | 2   | -   |
| CO2 | 1   | 2   | 3   | 2   | -   |
| CO3 | 1   | 2   | 3   | 2   | -   |
| CO4 | 1   | 2   | 3   | 2   | -   |
| CO5 | 1   | 2   | 3   | 2   | -   |

#### UNIT - I:

**Embedded Systems Design Introduction:** Definition of Embedded System; Examples; Classifications based on Cost and Size; Hard Real Time Systems, Soft Real Time Systems, Life Cycle of Embedded System. Issues of Time-to-Market; Selection of CPU, memories and I/O; RISC Vs CISC; Design Metric.

#### UNIT - II:

**Embedded systems using ARM:** Nomenclature; Core Architecture; Introduction to AMBA Bus; Registers – CPSR, SPSR, Modes; Thumb Mode;

Exceptions, OBD using JTAG; ARM family variants: ARM7, ARM9 and Cortex Cores and comparisons.

#### UNIT - III:

**ARM CortexM4 architecture and Programming:** Introduction; Cortex CPU Block diagram; ARM Assembly Level Programming: Load and Store instructions; Data Formats and Directives; Addressing Modes; ALU instructions, Branching instructions.

#### UNIT - IV:

**ARM [STM32F4xx] Real World Interfacing:** Interfacing of switches, LEDs; Seven Segment Display; Matrix Keypad interface; LCD interfacing; DC Motor, Stepper Motor interfacing designs.

#### UNIT - V:

**Hardware Software Codesign:** Co-Design with a case study of Adaptive Cruise Control Design. Software architectures—Round Robin, RR with interrupts, Functional Queue.

Debugging: Host, Target, Big-Endian, Little-Endian ISA. Debugging methods in S/W & H/W.

#### **Learning Resources:**

- 1. STM32 ARM Programming for Embedded Systems, Muhammad Ali Mazidi, Shujen Chen, Eshragh Ghaemi ISBN: 978-099-792-5944, 2018
- Muhammad Tahir and Kashif Javed, "ARM® Microprocessor Systems: Cortex®-M Architecture, Programming, and Interfacing", CRC Press, © 2017 by Taylor & Francis Group, LLC
- 3. NPTEL-"Embedded System Design Using ARM", https://archive.nptel.ac.in/courses/106/105/106105193/

| The | The break-up of CIE: Internal Tests + Assignments + Quizzes |   |   |                                    |   |    |  |
|-----|-------------------------------------------------------------|---|---|------------------------------------|---|----|--|
| 1.  | No. of Internal Tests                                       | : | 2 | Max. Marks for each Internal Tests | : | 30 |  |
| 2.  | No. of Assignments                                          | : | 3 | Max. Marks for each Assignment     | : | 5  |  |
| 3.  | No. of Quizzes                                              | : | 3 | Max. Marks for each Quiz Test      | : | 5  |  |

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Analog and Digital VLSI Design**

Professional Core - II SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PC120EC</b> |
|---------------------------|---------------|--------------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |

|    | COURSE OBJECTIVES                                                                                                         | COURSE OUTCOMES                                                                                                                 |
|----|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1. | Analyse the effect of sizing the devices of CMOS circuits and its performance in terms of logical and electrical efforts. | On completion of the course, students will be able to  1. Design MOS transistor circuits.  2. Know the Physical design flow and |
| 2. | Introduce the principles of analog circuits and apply the techniques for the design of analog integrated                  | different modelling design.  3. Design sequential circuits at higher level.                                                     |
|    | circuit                                                                                                                   | 4. Design analog circuits like single stage and differential amplifiers.                                                        |
|    |                                                                                                                           | 5. Analyze frequency response of active circuits.                                                                               |

#### **CO-PO Mapping**

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | 2   |     | 1   |     |     |
| CO2 | 1   |     | 1   |     |     |
| CO3 | 2   |     | 3   |     |     |
| CO4 | 2   |     | 3   |     |     |
| CO5 | 2   |     | 2   |     |     |

#### UNIT - I:

Review: Basic MOS structure and its static behavior, Quality metrics of a digital design: Cost, Functionality, Robustness, Power, Delay, Wire delay models. Physical design flow: Floor planning, Placement, Routing, CTS, Power analysis and IR drop estimation-static and dynamic, ESD protection-human body model.

#### UNIT - II:

Inverter: Static CMOS inverter, Switching threshold and noise margin concepts and their evaluation, Dynamic behavior, Power consumption. Combinational logic: Static CMOS design, Logic effort, Ratioed logic, Pass transistor logic, Dynamic logic, Speed and power dissipation in dynamic logic, Cascading dynamic gates, transmission gate logic.

#### UNIT - III:

Sequential logic: Static latches and registers, Bi-stability principle, MUX based latches, Static SR flip-flops, Master-slave edge-triggered register, Dynamic latches and registers, Concept of pipelining, Pulse registers, and Non-bistable sequential circuit.

Giga-scale dilemma, Short channel effects, High–k, Metal Gate Technology, FinFET, and TFET.

#### UNIT - IV:

Single Stage Amplifier: CS stage with resistance load, Diode connected load, Current source load, Triode load, CS stage with source degeneration, Source follower, Common gate stage, Cascode stage, Choice of device models. Differential Amplifiers: Basic differential pair, Common mode response, Differential pair with MOS loads, Gilbert cell.

#### UNIT - V:

Current mirrors: Basic current mirrors, Applications of current Sources, Sizing issues, Cascode mirrors, Active current mirrors.

#### **Learning References:**

- 1. J P Rabaey, A P Chandrakasan, B Nikolic, "Digital Integrated circuits: A design perspective", Prentice Hall electronics and VLSI series, 2nd Edition.
- Baker, Li, Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, 2<sup>nd</sup> Edition.
- 3. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", TMH, 2007.
- 4. Phillip E. Allen and Douglas R. Holberg, "CMOS Analog Circuit Design", Oxford, 3rd Edition.
- 5. Kang, S. and Leblebici, Y., "CMOS Digital Integrated Circuits, Analysis and Design", TMH, 3rdEdition.
- 6. Pucknell, D.A. and Eshraghian, K., "Basic VLSI Design", PHI, 3rd Edition.

| The | The break-up of CIE: Internal Tests + Assignments + Quizzes |                                        |   |    |  |  |
|-----|-------------------------------------------------------------|----------------------------------------|---|----|--|--|
| 1.  | No. of Internal Tests                                       | : 2 Max. Marks for each Internal Tests | : | 30 |  |  |
| 2.  | No. of Assignments                                          | : 3 Max. Marks for each Assignment     | : | 5  |  |  |
| 3.  | No. of Quizzes                                              | : 3 Max. Marks for each Quiz Test      | : | 5  |  |  |

# VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A++' Grade IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Programming Languages for Embedded Systems**

Professional Elective - I

SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE110EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 3               | CIE Marks: 40 | Duration of SEE : 3 Hours      |

| COURSE OBJECTIVES                                                                                                                                                                                                                                    | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>To impart knowledge on embedded C</li> <li>To understand algorithms in C++.</li> <li>To Develops CPP programming.</li> <li>To understand Inheritance and overloading</li> <li>To acquire the knowledge about templates concepts.</li> </ol> | <ol> <li>On completion of the course, students will be able to</li> <li>Write an embedded C application of moderate complexity.</li> <li>Develop and analyze algorithms in C++.</li> <li>Design embedded software using object oriented programming principles.</li> <li>Apply the concept of generic programming for embedded systems.</li> <li>Write exception handlers for embedded software.</li> </ol> |

CO-PO Mapping

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 |     |     | 3   | 2   |     |
| CO2 |     |     | 3   | 3   |     |
| CO3 |     |     | 2   | 3   |     |
| CO4 |     |     | 2   | 2   |     |
| CO5 |     |     | 3   | 2   |     |

#### UNIT – I

Embedded 'C' Programming

- Bitwise operations, Dynamic memory allocation, OS services
- Linked stack and queue, Sparse matrices, Binary tree
- Interrupt handling in C, Code optimization issues
- Writing LCD drives, LED drivers, Drivers for serial port communication
- Embedded Software Development Cycle and Methods (Waterfall, Agile)

#### UNIT - II

Object Oriented Programming - Introduction to procedural, modular, objectoriented and generic programming techniques, Limitations of procedural programming, objects, classes, data members, methods, data encapsulation, data abstraction and information hiding, inheritance, polymorphism

#### UNIT - III

CPP Programming: 'cin', 'cout', formatting and I/O manipulators, new and delete operators, Defining a class, data members and methods, 'this' pointer, constructors, destructors, friend function, dynamic memory allocation

#### **UNIT - IV**

Overloading and Inheritance: Need of operator overloading, overloading the assignment, overloading using friends, type conversions, single inheritance, base and derived classes, friend classes, types of inheritance, hybrid inheritance, multiple inheritance, virtual base class, polymorphism, virtual functions,

#### UNIT - V

Templates: Function template and class template, member function templates and template arguments, Exception Handling: syntax for exception handling code: try-catch- throw, Multiple Exceptions.

#### **Learning Resources:**

- Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008 1.
- Randal L. Schwartz, "Learning Perl", O'Reilly Publications, 6th Edition 2011 2.
- 3.
- A. Michael Berman, "Data structures via C++", Oxford University Press, 2002 Robert Sedgewick, "Algorithms in C++", Addison Wesley Publishing Company, 4. 1999
- 5. Abraham Silberschatz, Peter B, Greg Gagne, "Operating System Concepts", John Willey & Sons, 2005

| The | e break-up of CIE: Inte | erna | al Te | ests + Assignments + Quizzes       |   |    |
|-----|-------------------------|------|-------|------------------------------------|---|----|
| 1.  | No. of Internal Tests   | :    | 2     | Max. Marks for each Internal Tests | : | 30 |
| 2.  | No. of Assignments      | :    | 3     | Max. Marks for each Assignment     | : | 5  |
| 3.  | No. of Quizzes          |      | 3     | Max. Marks for each Ouiz Test      |   | 5  |

# VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Advanced CMOS Microfabrication**

(Professional Elective-I)

SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE120EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 3               | CIE Marks: 40 | Duration of SEE: 3 Hours       |

|    | COURSE OBJECTIVES                                                                                              | COURSE OUTCOMES                                                                                                                                                        |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | To introduce the fundamental concepts of semiconductor physics and materials essential for IC fabrication.     | On completion of the course, students will be able to  1. Understand fundamental semiconductor                                                                         |  |  |  |  |  |
| 2. | To familiarize with thermal oxidation and thin-film deposition processes used in CMOS technology.              | properties, carrier dynamics, and<br>materials relevant to microfabrication.<br>2. Apply oxidation and thin-film deposition                                            |  |  |  |  |  |
| 3. | To understand key microfabrication steps such as diffusion, ion implantation, photolithography, and etching.   | techniques used in CMOS process technology.  3. Demonstrate knowledge of diffusion, ion                                                                                |  |  |  |  |  |
| 4. | To explore the complete CMOS and FinFET fabrication processes and address associated technological challenges. | <ul><li>implantation, photolithography, and etching in microfabrication.</li><li>4. Analyze CMOS and FinFET fabrication flows, including advanced techniques</li></ul> |  |  |  |  |  |
| 5. | To impart knowledge of characterization methods used to analyze semiconductor material and device properties.  | like salicidation and damascene processing.  5. Utilize electrical and physical characterization tools for evaluating semiconductor devices and materials.             |  |  |  |  |  |
| CC | CO-PO/PSO Mapping                                                                                              |                                                                                                                                                                        |  |  |  |  |  |

| CO-PO | <b>PSU</b> | марр | ıng |
|-------|------------|------|-----|
|       |            |      |     |

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | 2   |     | 2   |     |     |
| CO2 | 3   |     | 3   | 2   |     |
| CO3 | 3   |     | 3   | 2   |     |
| CO4 | 3   |     | 3   | 2   |     |
| CO5 | 2   |     | 2   | 3   |     |

#### UNIT-I:

**FUNDAMENTALS OF SEMICONDUCTORS:** Crystal lattices, Bulk crystal Growth, Epitaxial Growth, Bonding forces and energy bands in solids, Charge carriers in semiconductors, Carrier concentrations, Drift of carriers in Electric and Magnetic Fields, Hall effect, Fermi level at equilibrium, Intrinsic vs Extrinsic semiconductors, Excess carriers in semiconductors, Diffusion and recombination, Diffusion length, Properties of Silicon and compounds, Gallium Arsenide, Metals used in IC fabrication.

#### **UNIT-II:**

**FABRICATION TECHNIQUES I:** Top-Down and Bottom-Up Approach, Wafer Cleaning, Silicon Oxidation Techniques: Thermal Oxidation process, Deal-Groove model of oxidation, types of oxidation techniques, growth mechanism, factors affecting the growth mechanisms, dry & wet oxidation. Film deposition: Chemical Vapour deposition, Physical Vapour deposition, Polysilicon deposition, Dielectric deposition.

#### **UNIT-III:**

**FABRICATION TECHNIQUES II:** Diffusion: Basic diffusion process, Extrinsic diffusion, Lateral diffusion, Ion Implantation: Range of Implanted Ions, Implant damage and Annealing, Tilt- Angle Ion Implantation. Photolithography: Optical lithography, Photoresists, Masks, Pattern Transfer. Etching: Wet Chemical Etching, Dry Etching, Isotropic and Anisotropic etching.

#### **UNIT-IV:**

**CMOS FinFET:** Basic MOS Capacitor, MOSFET fabrication process, CMOS Technology, Challenges of STI versus LOCOS, FinFET architecture, Gate first versus gate last, contact resistance issues of simple metal-silicon contact, metal silicides, salicidation, evolution from Ti to Co to Ni silicide, Damascene and dual-Damascene process.

#### **UNIT-V:**

**CHARACTERIZATION TECHNIQUES:** Resistivity: Two-Point versus Four-Point Probe, Carrier and doping density: Capacitance-Voltage (C-V) characterization, Current-Voltage characterization, Optical characterization: Introduction to Ellipsometry, Scanning probe microscopy: SEM, TEM and AFM.

#### **Learning Resources:**

- Ben Streetman, Sanjay Banerjee Solid State Electronic Devices-Prentice Hall (2006)
- 2. Jan M. Rabaey, Anantha Chandrakasan, Digital Integrated Circuits: A Design Perspective, Prentice Hall of India, 2016.
- 3. Tai-Ran Hsu MEMS & Microsystems Design and Manufacture-Tata McGraw-Hill Education (2002).
- 4. Weste, Neil H E\_Harris, David Money CMOS VLSI Design\_ A Circuits and Systems Perspective-Addison-Wesley (2010).
- 5. Stephen D. Senturia, Microsystem design, Springer (India), 2006.

| The | he break-up of CIE: Internal Tests + Assignments + Quizzes |     |                                   |      |  |  |  |
|-----|------------------------------------------------------------|-----|-----------------------------------|------|--|--|--|
| 1.  | No. of Internal Tests                                      | : 2 | Max. Marks for each Internal Test | : 30 |  |  |  |
| 2.  | No. of Assignments                                         | : 3 | Max. Marks for each Assignment    | : 5  |  |  |  |
| 3.  | No. of Ouizzes                                             | : 3 | Max. Marks for each Ouiz Test     | : 5  |  |  |  |

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Advanced Computer Organization**

Professional Elective - II
SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE130EC</b> |
|---------------------------|---------------|--------------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| · · · · · · · · · · · · · · · · · · ·    |                                        |  |  |  |  |
|------------------------------------------|----------------------------------------|--|--|--|--|
| COURSE OBJECTIVES                        | COURSE OUTCOMES                        |  |  |  |  |
| By the end of this course, students      | On completion of the course, students  |  |  |  |  |
| should be able to                        | will be able to                        |  |  |  |  |
| 1. Understand RISC-V as an open ISA,     | 1. Compare RISC-V's open-standard      |  |  |  |  |
| comparing its modularity and             | advantages with ARM/x86 and justify    |  |  |  |  |
| extensibility with proprietary           | its use cases in modern computing.     |  |  |  |  |
| architectures (ARM, x86).                | 2. Write and debug RISC-V programs     |  |  |  |  |
| 2. Analyze RISC-V's instruction formats, | using base and extended ISAs           |  |  |  |  |
| base and standard extensions.            | 3. Optimize RISC-V pipeline            |  |  |  |  |
| 3. Design pipelined RISC-V systems,      | performance by mitigating hazards      |  |  |  |  |
| addressing hazards, branch penalties,    | and implementing superscalar           |  |  |  |  |
| and superscalar techniques for           | techniques.                            |  |  |  |  |
| performance optimization.                | 4. Configure RISC-V's privileged modes |  |  |  |  |
| 4. Evaluate privileged ISA features and  | for interrupt handling.                |  |  |  |  |
| custom extensions for tailored           | 5. Design scalable RISC-V systems      |  |  |  |  |
| hardware/software solutions.             | leveraging parallelism (multicore,     |  |  |  |  |
| 5. Apply parallel computing concepts     |                                        |  |  |  |  |
| (ILP, multiprocessors, SIMD) to RISC-    | performance applications.              |  |  |  |  |
| V-based systems, including shared        |                                        |  |  |  |  |
| memory and vector processors.            |                                        |  |  |  |  |
| CO-PO Manning                            |                                        |  |  |  |  |

#### CO-PO Mapping

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 1   | 3   |     |     |
| CO2 | 2   | 1   | 3   | 2   |     |
| CO3 | 3   | 1   | 3   | 2   |     |
| CO4 | 3   | 1   | 3   | 1   |     |
| CO5 | 3   | 1   | 3   |     |     |
| CO6 | 2   | 1   | 3   |     |     |

#### **UNIT-I: Introduction to RISC-V**

Motivation: Why RISC-V?, Open ISA vs. Proprietary ISAs (ARM, x86), Key Features of RISC-V like Modularity, Extensibility, etc., Open ISA vs. Proprietary ISAs (ARM, x86), Comparison with Other Architectures: ARM vs. RISC-V vs. x86

### **UNIT-II: RISC-V ISA Basics**

Instruction Formats & Types: R-Type, I-Type, S-Type, B-Type, U-Type, J-Type, Base Integer ISA (RV32I, RV64I), Registers (x0-x31, Zero Register), Arithmetic, Logical, and Control Instructions, Memory Access (Load/Store)

#### **UNIT-III: Advanced RISC-V ISA Extensions**

Standard Extensions: M (Multiplication & Division), A (Atomic Operations), F (Single-Precision Floating Point), D (Double-Precision Floating Point), C (Compressed Instructions), Privileged ISA (Supervisor & Machine Mode): CSRs (Control & Status Registers), Exceptions, Interrupts, and Traps, Custom Extensions: How to Define Custom Instructions

### **UNIT-IV: Pipelining Techniques**

Super Scalar techniques, Super scalar and super pipeline design, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

### **UNIT-V: Parallel Computer Systems**

Instruction Level Parallelism (ILP), Multi-processors – Characteristics, Symmetric and Distributive Shared Memory Architecture, Vector Processors, SIMD computers and Super computers

### **Learning Resources:**

- 1. The RISC-V Reader: An Open Architecture Atlas, David Patterson, Andrew Waterman, Strawberry Canyon LLC.
- 2. John L. Hennessy and David A. Patterson, Computer Architecture A quantitative Approach, 3<sup>rd</sup> Edition, Elsevier, 2005.
- 3. Computer Architecture and Parallel Processing Kai Hwang, Faye A.Brigs., MC Graw Hill.
- 4. "Programming with RISC-V", Steve Rhoads

| The | The break-up of CIE: Internal Tests + Assignments + Quizzes |    |   |                                    |   |    |
|-----|-------------------------------------------------------------|----|---|------------------------------------|---|----|
| 1.  | No. of Internal Tests                                       | :[ | 2 | Max. Marks for each Internal Tests | : | 30 |
| 2.  | No. of Assignments                                          | :[ | 3 | Max. Marks for each Assignment     | : | 5  |
| 3.  | No. of Quizzes                                              | :  | 3 | Max. Marks for each Quiz Test      | : | 5  |

# VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A++' Grade IBRAHIMBAGH, HYDERABAD - 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **FPGA Architectures and Applications**

Professional Elective - II SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE140EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 3               | CIE Marks: 40 | Duration of SEE : 3 Hours      |

| COURSE OBJECTIVES                                                                                                                               | COURSE OUTCOMES                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| By the end of this course, students will be able to:                                                                                            | After completing this course, students will be able to:                                                                                                                       |
| 1. Understand the architecture, programming methods, and applications of Simple Programmable Logic Devices (SPLDs) like PROM, PLA, and PAL.     |                                                                                                                                                                               |
| 2. Apply Shannon's expansion theorem and logic synthesis techniques to realize                                                                  | circuits using SPLDs and FPGAs by applying decomposition theorems and logic optimization techniques.                                                                          |
| combinational/sequential circuits using SPLDs.  3. Analyze the resource blocks of FPGAs and compare them with ASICs, microprocessors, and GPUs. | 4. Develop FSM-based systems (e.g.,                                                                                                                                           |
| 4. Implement FPGA-based designs using industry-standard tools (Xilinx                                                                           | counters, controllers) with optimized state encoding and validate them through timing diagrams.                                                                               |
| Vivado) covering simulation, synthesis, and optimization.  5. Design and optimize Finite State Machines (FSMs) using                            | <ol> <li>Compare FPGA architectures with other<br/>computing platforms (ASICs, GPUs) and<br/>justify their use in real-world<br/>applications (e.g., DSP, embedded</li> </ol> |
| Mealy/Moore models and evaluate trade-offs                                                                                                      | systems).                                                                                                                                                                     |

| CO 1 O 14 | apping |     |     |     |     |
|-----------|--------|-----|-----|-----|-----|
| СО        | PO1    | PO2 | PO3 | PO4 | PO5 |
| CO1       | 1      | 1   | 3   |     |     |
| CO2       | 2      | 1   | 3   |     |     |
| CO3       | 2      | 1   | 3   | 2   |     |
| CO4       | 2      | 1   | 3   | 3   |     |
| CO5       | 3      | 1   | 3   | 2   |     |

# UNIT - I:

Programmable Logic Devices (PLDs): Introduction to Simple Programmable Logic Devices (SPLDs), Programmable Read Only Memory (PROM), Programmable Logic Array (PLA), Programmable Array Logic (PAL), Comparison of PLDs, Programming methods for PLDs, Applications of PLDs.

#### UNIT - II:

**Realization of Logic Functions using SPLDs**: Concept of logic synthesis, Shanon's expansion / decomposition theorem, Principles of operation of PROMs, Design procedure with PROMs, Logic function implementation with PROMs, Principles of operation of PLA, Design procedure with PLA, Logic function implementation with PLA, Principles of operation of PAL, Design procedure with PAL, Logic function realization with PAL.

#### UNIT - III:

**Field Programmable Gate Arrays (FPGAs):** Architecture and Basic building blocks and resource blocks of FPGAs, Configurable Logic Blocks (CLBs), IO Block, Programming methods, Anti fuse, SRAM and EPROM based FPGAs, Comparison with ASICs, microprocessors, and GPUs., Implementation examples of logic function using LUTs and CLBs

# **UNIT - IV: FPGA Design Flow**

Design Entry & Simulation: Tools: Xilinx Vivado, Synthesis & Implementation: Constraints (timing, pin assignments), Understanding synthesis reports, Place & Route Optimization: Critical path analysis, resource utilization

**UNIT - V: Finite State Machines:** Realization of sequential circuits, State diagram, state table, state assignment, choice of flipflops, Timing diagram, One hot encoding, Mealy and Moore state machines, State minimization, System Design examples

## **Learning Resources:**

- P.K. Chan & S. Mourad, Digital Design Using Field Programmable Gate Array, Pearson Education 2009.
- 2. Wayne Wolf, FPGA based System Design, Pearson Education 2009.
- 3. Steve Kilts, Advanced FPGA Design: Architecture, Implementation and optimization, A Jhon Wiley & Sons, Inc., publication.
- 4. Pong P Chu, "FPGA Proto Typing by Verilog Examples" WILEY Publications.
- 5. Data sheets and Manuals from Xilinx, Altera, AMD, Actel.

| The break-up of CIE: Internal | Tests + Assignments + Quizzes |
|-------------------------------|-------------------------------|
|-------------------------------|-------------------------------|

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

# VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A++' Grade IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Scripting Languages**

Professional Elective - II SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE150EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 3               | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| COURSE OBJECTIVES                      | COURSE OUTCOMES                       |
|----------------------------------------|---------------------------------------|
| 1. To understand control structures of | On completion of the course, students |
| perl.                                  | will be able to                       |
| 2. To classify character classes.      | Design control structures of perl.    |
| 3. To apply subroutines and data       | 2. Apply subroutines and data         |
| structures.                            | structures.                           |
| 4. To acquire the knowledge extending  |                                       |
| perl.                                  | 4. Classify character classes.        |
| 5. To understand broad features of     | 5. Model features of SKILL, CGI.      |
| SKILL, CGI.                            |                                       |

CO-PO Mapping

|     | ·~PP3 |     |     |     |     |
|-----|-------|-----|-----|-----|-----|
| CO  | PO1   | PO2 | PO3 | PO4 | PO5 |
| CO1 |       |     | 2   |     | 1   |
| CO2 |       |     | 2   |     | 1   |
| CO3 |       |     | 2   |     | 1   |
| CO4 |       |     | 2   |     | 1   |
| CO5 |       |     | 2   |     |     |

#### UNIT – I

Overview of scripting languages-PERL, file handles, operators, control structures, regular expressions, built in data types, operators, statements and declarations- simple, compound, loop statements, global and scoped declarations.

#### UNIT - II

Pattern matching - regular expression, pattern matching operators, character classes, positions, capturing and clustering.

#### UNIT - III

Subroutines- syntax, semantics, proto types, format variables, references, data structures- arrays of arrays, hashes of arrays, hashes of functions. Inter process communication,- signals, files, pipes, sockets,.

#### UNIT - IV

Threads- process model, thread model, Perl debugger- using debugger commands, customization, internals and externals, internal data types, extending Perl, embedding Perl, exercises for programming using Perl.

#### UNIT - V

Other languages: Broad features of other scripting languages SKILL, CGI, java script, VB script.

#### **Learning Resources:**

- Larry Wall, Tom Christiansen, John Orwant, "programming perl", oreilly publications, 3<sup>rd</sup> edition.
- 2. Randal L, Schwartz Tom Phoenix, "Learning PERL", Oreilly publications.

The break-up of CIE: Internal Tests + Assignments + Quizzes

- 1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
- 2. No. of Assignments : 3 Max. Marks for each Assignment : 5
- 3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

#### DEPARTMENT OF MECHANICAL ENGINEERING

# Research Methodology and IPR

SYLLABUS FOR M.E. - I SEMESTER

| L | L:T:P (Hrs./week) : 2:0:0 | SEE Marks: 60 | Course Code: P25PC140ME  |
|---|---------------------------|---------------|--------------------------|
| ( | Credits: 2                | CIE Marks: 40 | Duration of SEE: 3 Hours |

| COURSE OBJECTIVES                         | COURSE OUTCOMES                            |
|-------------------------------------------|--------------------------------------------|
| The objectives of this course are to:     | On completion of the course, students      |
| 1.Learn the research methodology and      | will be able to                            |
| formulation.                              | 1. Explain objectives of research and      |
| 2. Know the sources of literature, method | research process.                          |
| for collection of research data and       | 2. Search the relevant literature and      |
| report writing.                           | summarize information for                  |
| 3. Understand IPR laws and Acts.          | formulating the research problem.          |
|                                           | 3. Collect and organize the data for the   |
|                                           | preparation of research report.            |
|                                           | 4. Explain different types of intellectual |
|                                           | property rights and related laws.          |
|                                           | 5. Understand the patent                   |
|                                           | administration system.                     |

| CO-PO Mapping |     |     |     |     |     |  |
|---------------|-----|-----|-----|-----|-----|--|
| CO            | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1           | 2   | 2   | 1   |     | 1   |  |
| CO2           | 2   | 2   | 1   |     | 1   |  |
| CO3           | 2   | 2   | 1   |     | 1   |  |
| CO4           | 2   | 2   | 1   |     | 1   |  |
| CO5           | 2   | 2   | 1   |     | 1   |  |

#### UNIT - I

**Research Methodology:** Meaning of research, Objectives and motivation of research, types of research, research approaches, significance of research, research methods versus methodology, criteria of good research, Research problem formulation.

#### UNIT - II

**Literature survey:** Importance of literature survey, sources of information, Literature review: Need of Literature review, Plagiarism, research ethics, errors in research, Assessment of quality of journals.

#### **UNIT - III**

**Data collection & report preparation:** Collection of primary data, secondary data, data organization, methods of data grouping, diagrammatic

representation of data, graphic representation of data. Effective technical writing and how to write report, format of a research proposal, contents of a standard technical journal/conference paper, contents of dissertation.

#### **UNIT - IV**

**Introduction to Intellectual property law:** Basics and types of intellectual property, international organizations, agencies and treaties.

**Law of Trademarks:** Purpose and functions of trademarks, types of Marks, acquisition of trade mark rights, protectable matter and trade mark registration process, Trade Mark Act.

#### **UNIT-V**

**Law of copyrights:** Introduction, common law rights. Rights of reproduction, rights to display work publicly, other limitations of exclusive rights, copyright ownership issues, copy right registration and Berne convention.

**Law of Patents:** Administration of Indian patent system, Introduction, rights under patent law. Design patents, Plant patents. Patenting process. Patent ownership and transfer, new developments in IPR and international patent laws, Geographical Indications.

#### **Learning References:**

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C. R. Kothari-Research Methodology Methods and Techniques, Second revised edition, New Age International (P) limited Publishers, New Delhi.2013.
- 3. Ranjitkumar, Research methodology, A step-by-step Guide for Beginners, second Edition, Sage Publications India Pvt. Ltd, New Delhi.2017.
- Panneer Selvam, Research Methodology, Second Edition, PHI Learning Pvt. Ltd, New Delhi.
- Deborah E. Bouchoux -Intellectual Property, the law of trademarks, Copyrights, Patents and Trade Secrets. Fourth Edition, CENGAGE Learning India private Limited, New Delhi.2013.
- 6. P. Narayana, Intellectual property law, Third Edition, Eastern Law House, New Delhi.

| The break-up of CIE: Internal | Tests + Assignments + | Quizzes |
|-------------------------------|-----------------------|---------|
|-------------------------------|-----------------------|---------|

| 1. | No. of Internal Tests | : 2 | Max. Marks for each Internal Tests | : | 30 |
|----|-----------------------|-----|------------------------------------|---|----|
| 2  | No of Assignments     | . 2 | May Marks for each Assignment      |   | Е  |

No. of Assignments : 3 Max. Marks for each Assignment : 5
 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

#### DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES

# **English for Research Paper Writing**

Audit Course - I SYLLABUS FOR M.E. - I SEMESTER

| L:T:P (Hrs./week) : 2:0:0 | SEE Marks: 60 | Course Code: <b>P25AC110EH</b> |
|---------------------------|---------------|--------------------------------|
| Credits : -               | CIE Marks: 40 | Duration of SEE : 3 Hours      |

|   | COURSE OBJECTIVES                                                                                                                                    | COURSE OUTCOMES                                                                                                        |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
|   | e course will enable the learners to:<br>Understand, how to improve writing<br>skills and level of readability.<br>Learn about what to write in each | At the end of the course the learners will be able to: -  1. Write research papers  2. Write citations as per the MLA  |  |  |
| 3 | section. Understand the skills needed whenwriting a Title Ensure the good quality of paper atvery first-time submission                              | stylesheet and APA format  3. Write concisely and clearly following therules of simple grammar, diction and coherence. |  |  |

### **UNIT-I: Foundations of Academic Writing**

Planning and Preparation, Word Order, Breaking up long sentences. Structuring Paragraphs and Sentences, Being concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

# **UNIT-II: Presenting Research Effectively**

Clarifying Who Did What, Highlighting your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction

# **UNIT-III: Structuring the Research Paper**

Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.

## **UNIT-IV: Crafting Impactful Research Components (Part I)**

Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature, useful phrases, how to ensure paper is as good as it could possibly be the first-time submission.

# **UNIT-V: Crafting Impactful Research Components (Part II)**

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions.

#### **METHODOLOGY ASSESSMENTS**

- Case Studies

- Online assignments

- Demonstration

- Individual and Group

- Presentations
- Expert lectures
- Writing and Audio-visual lessons

#### **Learning Resources:**

#### learn.talentsprint.com

- Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM Highman's book.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.

| The | The break-up of CIE: Internal Tests + Assignments + Quizzes |   |   |                                    |   |    |
|-----|-------------------------------------------------------------|---|---|------------------------------------|---|----|
| 1.  | No. of Internal Tests                                       | : | 2 | Max. Marks for each Internal Tests | : | 30 |
| 2.  | No. of Assignments                                          | : | 3 | Max. Marks for each Assignment     | : | 5  |
| 3.  | No. of Quizzes                                              | : | 3 | Max. Marks for each Quiz Test      | : | 5  |

# VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A++' Grade IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# Advanced Embedded Systems Laboratory

SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 0:0:4 | SEE Marks : - | Course Code: <b>P25PC111EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 2               | CIE Marks: 50 | Duration of SEE : -            |

| COURSE OBJECTIVES                                                        | COURSE OUTCOMES                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Design Embedded Systems by using ARM Cortex M4x based MCU as the CPU. | On completion of the course, students will be able to  1. Program ARM based microcontroller                                                                                                                                                                         |
| Implement real world interfacing with ARM and design prototypes.         | using its assembly constructs.  2. Implement C constructs to design ARM based embedded system.  3. Interface real world input and output devices to ARM  4. Design and execute a mini project for the given specifications.  5. Propose different debugging methods |
| CO DO Marriag                                                            | for implementing embedded systems.                                                                                                                                                                                                                                  |

CO-PO Mapping PO1 PO<sub>2</sub> PO3 PO4 PO5 CO1 1 2 3 2 CO2 1 2 3 2 CO3 3 2 CO4 1 2 CO5

# List of Experiments using Embedded C/Embedded C++:

# **Module – 1 (ARM Cortex M4 Assembly Language Programming)**

- ARM Data formats and Directives.
- 2. Addressing Modes.
- 3. Arithmetic & Logical instructions
- 4. Looping and Branching Instructions
- 5. Conditional Subroutines
- 6. ARM Conditional Execution in Assembly

## Module-2 (STM32F4xxx MCU based SBC)

- 7. GPIO Programming
- 8. Interfacing 7-segment display.
- 9. Interfacing a 4x4 Matrix keyboard for input and 2x16 LCD for output.
- 10. Developing user interface for ARM.
- 11. Timer Programming
- 12. Full duplex UART Driver design in Embedded C.

## Suggested tools for used:

- 1. Hardware Target CPU; STM32F4xx (ARM CortexM4F from ST.
- 2. Embedded Compiler Keil µVision5 IDE: ARM compiler
- 3. Embedded Debugger Keil µVision5 Debugger
- 4. Hardware Simulator Proteus 8.x

### The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 20

3. Marks for assessment for day to day evaluation : 30

Duration of Internal Test: 3 Hours

# VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A++' Grade IBRAHIMBAGH, HYDERABAD – 500 031

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Analog and Digital VLSI Design Laboratory**

SYLLABUS FOR M.E. ECE (ES&VLSID) - I SEMESTER

| L:T:P (Hrs./week): 0:0:4 | SEE Marks : - | Course Code: <b>P25PC121EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 2               | CIE Marks: 50 | Duration of SEE : -            |

| COURSE OBJECTIVES                                                                                                                         | COURSE OUTCOMES                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To demonstrate computer aided design tools for the modeling, design, analysis and verification of digital and analog integrated circuits. | On completion of the course, students will be able to  1. Develop HDL code for combinational and sequential logic circuits and Synthesize them.  2. Verify the designs using system Verilog. |
|                                                                                                                                           | 3. Design and simulate analog circuits.                                                                                                                                                      |

**CO-PO Mapping** 

|     | CO I O I Iupping |     |     |     |     |  |  |
|-----|------------------|-----|-----|-----|-----|--|--|
| CO  | PO1              | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | 3                | -   | 3   | 3   | -   |  |  |
| CO2 | 3                | -   | 3   | 3   | -   |  |  |
| CO3 | 3                | -   | 3   | 3   | -   |  |  |

#### Part A

- 1. Design and simulate Adder /Counter using Verilog HDL.
- 2. ASIC Synthesis of Adder/ Counter and find its performance parameters.
- 3. Design and Simulate a traffic signal controller using finite state machine.
- 4. Verify functionality of adder with test bench using System Verilog.
- 5. Verify functionality of Counter with test bench using System Verilog.
- 6. Insert clock gating for power optimization in Counter.

  Note: Above experiments are to be carried out using Cadence tools (incisive simulator and genus)

#### PART B

- 7. Design and Simulation of Symmetrical CMOS inverter and evaluate its performance.
- 8. Design and simulate a 6-T SRAM cell and find its parameters.
- 9. Design and simulation of current mirror and plot its behavior.

- 10. Simulate a single stage MOS amplifier with two different loads and compare their performance.
- 11. Design and Simulate a differential amplifier with active load.
- 12. Design and simulate a general purpose CMOS OPAMP.

Note: Above experiments are to be carried out using Cadence tools (virtuoso Schematic composer and spectre circuit simulator)

Note: Minimum of ten experiments are to be conducted.

### The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 20

3. Marks for assessment for day to day evaluation : 30

Duration of Internal Test: 3 Hours

# Syllabus for M.E. ECE (ES & VLSI Design) II - SEMESTER

Duration of SEF : 3 Hours

Credits · 3

# VASAVI COLLEGE OF ENGINEERING (Autonomous) Accredited by NAAC with 'A++' Grade IBRAHIMBAGH, HYDFRABAD - 500 031

#### DEPARTMENT OF FLECTRONICS AND COMMUNICATION ENGINEERING

# **Embedded Real Time Operating Systems**

Professional Core - III SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

L:T:P (Hrs./week): 3:0:0 Course Code: P25PC210EC SFF Marks: 60 CIF Marks · 40

| COURSE OBJECTIVES                                     | COURSE OUTCOMES                                                                                                              |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Understand the fundamentals of RTOS                   | On completion of the course, students will be able to  1. Differentiate OS, RTOS and classify Real-Time                      |
| 2. Study the task                                     | kernels.                                                                                                                     |
| management and scheduling algorithms                  | 2. Demonstrate the use of different scheduling algorithms to estimate the deadline and propose                               |
| 3. Explore the Linux kernel structure and its process | different inter-task-communication models opted in RTOS.                                                                     |
| management 4. Understand the various                  | 3. Describe Linux kernel architecture and process management.                                                                |
| device drivers and debugging techniques in            | <ol> <li>Differentiate Linux user space processes and kernel<br/>space threads and implement device drivers using</li> </ol> |
| Linux 5. Apply RTOS concepts in                       | Shell APIs.  5. Suggest fault tolerance methods for real time                                                                |
| industry-relevant case                                |                                                                                                                              |

studies

| со-го маррину |     |     |     |     |     |  |
|---------------|-----|-----|-----|-----|-----|--|
| СО            | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1           | 3   | 3   | 2   |     |     |  |
| CO2           | 2   | 2   | 1   |     |     |  |
| CO3           | 2   | 2   | 1   |     |     |  |
| CO4           | 3   | 2   | 2   | 1   | 1   |  |
| CO5           | 1   | 1   | 2   | 1   | 1   |  |

systems

#### UNIT-I

Concept of Embedded Operating Systems, Differences between Traditional OS and RTOS; Architecture of RTOS, Kernels - classifications, importance of scheduler in OS: objectives and functions; Hard versus Soft Real-time systems – examples, Jobs & Processes, timing constraints. Pre-emptive Vs Non-preemptive kernels.

#### **UNIT-II**

Task Priorities, Scheduling, inter task Communication & Synchronization -Definition of Context Switching, Foreground ISRs and Background Tasks. Critical Section: Re- entrant Functions, Inter Process Communication (IPC) - IPC through Semaphores, Mutex, Mailboxes, Message Queues or Pipes and Event Flags.

Scheduling Algorithms - RMS, Preemptive EDF scheduling - principle, comparisons.

#### UNTT-TTT

Linux Kernel 2.x architecture - File system, Concepts of Process - creation, Process Control Block (PCB); process Vs thread; Concurrent Execution, Process Management in Linux-forks Vs Vfork; process state transitions, zombie state, Memory Management Algorithms.

#### **UNIT-IV**

Device Drivers & Communication with Hardware - Definition; advantages of Modules; kernel space Vs user space; Concurrency and Race Conditions; classification of device drivers – character drivers, block drivers and net drivers, Interrupt handling in RTOS, Debugging Techniques.

#### UNTT-V

Fault-Tolerance Techniques & RTOS Application Domains: What causes failures, Fault types, Fault detection, Hardware and software Redundancy. Case studies of RTOS-RTOS for Image Processing - Embedded RTOS for AI and ML applications – RTOS for fault Tolerant Applications – RTOS for Control Systems.

## **Learning Resources:**

- Jean J. Labrosse, "Embedded Systems Building Blocks: Complete and Ready-to- Use Modules in C", CMP Publishers Jan 1999.
- Robert Love, "Linux Kernel Development" (3<sup>rd</sup> Edition), Novell Press 2010.
- Jane W.S. Liu, Real Time Systems, Pearson Education, Asia, 2001.
- Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, "Linux Device Drivers", 3<sup>rd</sup> Edition, O'Reilly Media Publishers Real Time Systems, C.M. Krishna and G. Shin, McGraw-Hill Companies Inc.,
- McGraw Hill International Editions, 1997.

The break-up of CIE: Internal Tests + Assignments + Quizzes 2 : 30 1. No. of Internal Tests Max. Marks for each Internal Tests

5 Max. Marks for each Assignment 2. No. of Assignments

No. of Ouizzes Max. Marks for each Ouiz Test 5 3.

#### DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **VLSI Physical Design**

Professional Core - IV

SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PC220EC</b> |  |
|---------------------------|---------------|--------------------------------|--|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |  |

| COURSE OBJECTI              | VES        | COURSE OUTCOMES                                              |
|-----------------------------|------------|--------------------------------------------------------------|
| 1. To understand the str    | ructures O | On completion of the course, students will be able to        |
| of different compone        | ents of 1  | . Design the structures of different components of VLSI      |
| VLSI design.                |            | design.                                                      |
| 2. To draw stick and        | layout 2   | . Apply the basic concepts of physical design to layouts and |
| diagrams of circuits.       |            | stick diagrams.                                              |
| 3. To acquire the knowledge | edge of 3  | . Apply Design rules for layouts of circuits.                |
| cell based designs.         |            | . Design hierarchical circuit Layouts using cell concepts.   |
|                             | 5          | . Analyze the basic algorithms which are involved in the     |
|                             |            | process of physical design automation.                       |

CO-PO Mapping

|     | ~PP9 |     |     |     |     |
|-----|------|-----|-----|-----|-----|
| CO  | PO1  | PO2 | PO3 | PO4 | PO5 |
| CO1 |      |     |     | 2   |     |
| CO2 |      |     |     | 2   |     |
| CO3 |      |     | 1   | 3   |     |
| CO4 |      |     |     | 3   |     |
| CO5 | 1    |     |     | 2   |     |

#### UNIT - I

VLSI Design cycles and new trends in Design cycles, physical design cycles and new trends in physical design cycles, Components of VLSI, Various layers of VLSI, Typical structures of BJTS, MOSFETS, Resistors, capacitors, inductors ,Brief review of technology, cost and performance analysis.(Reference 1)

#### UNIT - II

Basic concepts of Physical Design - layout of basic structures – wells, FET, BJT, resistors, capacitors, contacts, vias and wires (Interconnects), physical design of logic gates – NOT, NAND and NOR. Mask overlays for different structures. Parasitics – latch up and its prevention. Device matching and common centroid techniques for analog circuits(Reference 1 and 3)

#### UNIT - III

Design rules – fabrication errors, alignment sequence and alignment inaccuracies, process variations and process deltas, drawn and actual dimensions and their effect

on design rules— scalable design rules. Scalable CMOS (SCMOS) design rules, layout design, and stick diagrams, Hierarchical stick diagrams. (Reference 4)

#### UNIT - IV

Cell concepts – cell based layout design – Wein-berger image array — design hierarchies. System level physical design- large scale physical design , interconnect delay modeling,cross talk, floor planning, routing and clock distribution.(Reference1 and 3)

#### UNIT - V

Factors, Complexity Issues and NP-hard Problems, Basic Algorithms (Graph and Computational Geometry): Basic terminology, graph search algorithms, spanning tree algorithms, shortest path algorithms, matching algorithms, min-cut and max-cut algorithms. Steiner tree algorithms, (Referene 1 and 2)

#### **Learning Resources:**

- Algorithms for VLSI Physical Design automation, Naveed Sherwani.3<sup>rd</sup> edition Kluwer academic publishers
- 2. Algorithms for VLSI Design automation, Sabith H.Gerez ,John Wiley & sons, Inc.
- 3. John P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & sons, Inc.
- 4. Modern VLSI Design (System on Chip), Woyne Wolf, Pearson Education, 2002.
- R. Jacob Baker; Harry W.Li., David E. Boyce, CMOS Circuit Design, Layout and Simulation, IEEE Press, Prentice Hall of India.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Ouizzes : 3 Max. Marks for each Ouiz Test : 5

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Hardware-Software Co-design**

Professional Elective - III SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE210EC</b> |
|---------------------------|---------------|--------------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| COURSE OBJECTIVES                                     |   | COURSE OUTCOMES                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To understand architectures, c methodology and design | : | On completion of the course, students will be able to  1. Identify the need for co-design  2. Model data flow and implement the same through software and hardware  3. Construct data flow and control flow graphs  4. Design data flow model for a FSM  5. Design an SoC for given application |

## UNIT -I

Co- Design Issues: Co- Design Models, Architectures, Languages, A Generic Co-design Methodology. Co- Synthesis Algorithms: Hardware software synthesis algorithms: hardware – software partitioning distributed system co-synthesis.

## UNIT -II

Prototyping and Emulation: Prototyping and emulation techniques, prototyping and emulation environments, future developments in emulation and prototyping architecture specialization techniques, system communication infrastructure. Target Architectures: Architecture Specialization techniques, System Communication infrastructure, Target Architecture and Application System classes, Architecture for control dominated systems (8051-Architectures for High performance control), Architecture for Data dominated systems (ADSP21060, TMS320C60), Mixed Systems.

## **UNIT -III**

Compilation Techniques and Tools for Embedded Processor Architectures: Modern embedded architectures, embedded software development needs, compilation technologies, practical consideration in a compiler development environment.

## UNTT -TV

Design Specification and Verification: Design, co-design, the co-design computational model, concurrency coordinating concurrent computations, interfacing components, design verification, implementation verification, verification tools, interface verification

## UNTT -V

Languages for System – Level Specification and Design-I: System – level specification, design representation for system level synthesis, system level specification languages, Languages for System – Level Specification and Design-II: Heterogeneous specifications and multi language co-simulation, the cosyma system and lycos system.

## Learning Resources:

- 1. Hardware / Software Co- Design Principles and Practice Jorgen Staunstrup, Wayne Wolf –2009, Springer.
- Hardware / Software Co- Design Giovanni De Micheli, Mariagiovanna Sami, 2002, Kluwer Academic Publishers.
- 3. A Practical Introduction to Hardware/Software Co-design -Patrick R. Schaumont 2010 Springer

| The | e break-up of CIE: Inter | nal | Test | ts + Assignments + Quizzes         |   |    |
|-----|--------------------------|-----|------|------------------------------------|---|----|
| 1.  | No. of Internal Tests    | :   | 2    | Max. Marks for each Internal Tests | : | 30 |
| 2.  | No. of Assignments       | :   | 3    | Max. Marks for each Assignment     | : | 5  |
| 3.  | No. of Quizzes           | :   | 3    | Max. Marks for each Quiz Test      |   | 5  |

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Design Verification using System Verilog**

Professional Elective - III
SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: P25PE220EC  |
|---------------------------|---------------|--------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours |

|   | COURSE OBJECTIVES                        |    | COURSE OUTCOMES                                    |
|---|------------------------------------------|----|----------------------------------------------------|
| 1 | Students will build a layered test bench | On | completion of the course, students will be able to |
|   | and simulate a simple ligic block        | 1  | Identify the need for a test bench and specify the |
| 2 | They will learn the important features   |    | formal verification techniques (PO2)               |
|   | of System Verilig                        | 2  | Implement simulation based verification of a       |
| 3 | They will develop a test bench using     |    | given system (PO2)                                 |
|   | object oriented concepts for veryfying a | 3  | Implement a formal test bench using object         |
|   | digital system                           |    | oriented concepts for veryfying a digital system.  |
| 4 | They will understand the limitations of  |    | (PO3)                                              |
|   | Randomization of functions and           | 4  | Model hardware interfaces with concurrency         |
|   | implement random device configuration    |    | constructs. (PO3)                                  |
| 5 | They will connect the test bench and     | 5  | CO5 Investigate the interface between the test     |
|   | design of a given system                 |    | bench and the design of a given system using       |
|   |                                          |    | IEEE1800 Verilog assertions.(PO4)                  |

| CO-PO | Man   | nına  |
|-------|-------|-------|
|       | ···up | PIIIS |

|     | ~   |     |     |     |     |
|-----|-----|-----|-----|-----|-----|
| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1 |     |     | 2   | 2   | 1   |
| CO2 |     |     | 2   | 2   | 1   |
| CO3 |     |     | 2   | 2   | 1   |
| CO4 |     |     | 2   | 2   | 1   |
| CO5 |     |     | 2   | 2   | 1   |

## UNIT - I

**Verification Methodologies:** The Verification Process, The Verification Plan, The Verification Methodology Manual, Basic Testbench Functionality, Directed Testing, Methodology Basics, Constrained-Random Stimulus, What Should You Randomize, Functional Coverage, Testbench Components, Layered Testbench, Building a Layered Testbench, Simulation Environment Phases, Maximum Code Reuse, Testbench Performance, Conclusion.

## UNIT - II

**Fundamentals of System Verilog:** DATA TYPES, Built-in Data Types, Fixed-Size Arrays, Dynamic Arrays, Queues, Associative Arrays, Linked Lists, Array Methods, Choosing a Storage Type, Creating New Types with typedef, Creating User-Defined Structures, Enumerated Types, Constants, Strings, Expression Width, Net Types, Conclusion, PROCEDURAL STATEMENTS AND ROUTINES,

Introduction Procedural Statements, Tasks, Functions, and Void Functions, Task and Function Overview, Routine Arguments, Returning from a Routine, Local Data Storage, Time Values.

## UNTT - TIT

**Object Oriented Concepts for verification:** Think of Nouns, not Verbs, Your First Class, Where to Define a Class, OOP Terminology, Creating New Objects, Object Deallocation, Using Objects, Static Variables vs. Global Variables, Class Routines, Defining Routines Outside of the Class, Scoping Rules, Using One Class Inside Another, Understanding Dynamic Objects, Copying Objects, Public vs. Private, Straying Off Course, Building a Testbench.

## UNIT - IV

**RANDOMIZATION Techniques for Verification :** What to Randomize, Randomization in SystemVerilog, Constraint Details, Solution Probabilities, Controlling Multiple Constraint Blocks, Valid Constraints, In-line Constraints, The pre\_randomize and post\_randomize Functions, Constraints Tips and Techniques, Common Randomization Problems, Iterative and Array Constraints, Atomic Stimulus Generation vs. Scenario Generation, Random Control, Random Generators, Random Device Configuration.

## **UNIT-V**

**CONNECTING THE TESTBENCH AND DESIGN**: Separating the Testbench and Design, The Interface Construct, Stimulus Timing, Interface Driving and Sampling, Connecting It All Together, Top-Level Scope, Program – Module Interactions, SystemVerilog Assertions, The Four-Port ATM Router.

## **Learning Resources:**

1. CHRIS SPEAR Synopsys, Inc. "SYSTEMVERILOG FOR VERIFICATION A Guide to Learning the Testbench Language Features" Springer.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Ouizzes : 3 Max. Marks for each Ouiz Test : 5

## DEPARTMENT OF FLECTRONICS AND COMMUNICATION ENGINEERING

## **Static Timing Analysis**

Professional Elective - III
SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE230EC</b> |
|---------------------------|---------------|--------------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| COURSE OBJECTIVES                                                     | COURSE OUTCOMES                                                                                                 |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| COURSE OBJECTIVES                                                     | COURSE OUTCOMES                                                                                                 |
| Students will                                                         | On completion of the course, students will be able to                                                           |
| 1 understand clock domains and critical paths in a given logic design | Identify critical paths and estimate propagation delays and skews in a given data-path (PO1 and)                |
| 2 Interpret extracted parasitics and                                  | PO2)                                                                                                            |
| reduce parasitics in critical paths                                   | 2. Compare the performance of Elmore delay model                                                                |
| 3 Estimate the Interconnect delays and                                | and higher order interconnect delay models (PO3)                                                                |
| calculate multiple path slacks                                        | 3. Analyse Cross-talk Noise and its reduction in a given                                                        |
| 4 Perform cross-talk and Noise analysis                               | data path (PO2)                                                                                                 |
| in a given net                                                        | 4. Perform timing analysis across multicycle paths and                                                          |
| 5 Perform timing analysis and                                         | interpret the results (PO2, PO5)                                                                                |
| verification across multicycle paths and clock domains                | 5. Estimate the timing across multiple clock domains and refine the timing by path balancing (PO2, PO3 and PO5) |

## UNIT - I:

**STA Concepts :** CMOS Logic Design, Basic MOS Structure, CMOS Logic Gate, Standard Cells, Modeling of CMOS Cells, Switching Waveform, Propagation Delay, Slew of a Waveform, Skew between Signals, Timing Arcs and Unateness, Min and Max Timing Paths, Clock Domains, Operating Conditions.

### UNIT - II:

**Interconnect Parasitics:** RLC for Interconnect, T-model, Pi-model, Wireload Models, Interconnect Trees, Specifying Wireload Models, Representation of Extracted Parasitics, Detailed Standard Parasitic Format, Reduced Standard Parasitic Format, Standard Parasitic Exchange Format, Representing Coupling Capacitances, Hierarchical Methodology, Block Replicated in Layout, Reducing Parasitics for Critical Nets, Reducing Interconnect Resistance, Increasing Wire Spacing, Parasitics for Correlated Nets.

## UNIT - III:

**Delay Calculations:** Delay Calculation Basics, Delay Calculation with Interconnect, Prelayout Timing, Post-layout Timing, Cell Delay using Effective Capacitance, Interconnect Delay, Elmore Delay, Higher Order Interconnect Delay Estimation, Full Chip Delay Calculation, Slew Merging, Different Slew Thresholds, Different Voltage Domains, Path Delay Calculation, Combinational Path Delay, Path to a Flip-flop, Input to Flip-flop Path, Flip-flop to Flip-flop Path, Multiple Paths Slack Calculation.

## UNIT - IV:

Crosstalk and Noise Analysis: Crosstalk Glitch Analysis, Basics Types of Glitches, Rise and Fall Glitches, Overshoot and Undershoot Glitches, Glitch Thresholds and Propagation, DC Thresholds, AC Thresholds, Noise Accumulation with Multiple Aggressors, Aggressor Timing Correlation, Aggressor Functional Correlation, Crosstalk Delay Analysis, Basics, Positive and Negative Crosstalk, Accumulation with Multiple Aggressors, Aggressor Victim Timing Correlation, Aggressor Victim Functional Correlation, Timing Verification Using Crosstalk Delay, Setup Analysis, Hold Analysis, Computational Complexity, Hierarchical Design and Analysis, Filtering of Coupling Capacitances, Noise Avoidance Techniques.

## UNIT - V:

**STA Environment & Timing Verification:** What is the STA Environment, timing issues, Generated Clocks, Example of Master Clock at Clock Gating Cell Output, Constraining Output Paths, Timing Path Groups, Modeling of External Attributes, Modeling Drive Strengths, Modeling Capacitive Load, Design Rule Checks, Virtual Clocks, Refining the Timing Analysis, Multicycle Paths, Crossing Clock Domains, False Paths, Half-Cycle Paths, Removal Timing Check, Recovery Timing Check, Timing across Clock Domains, Examples, Half-cycle Path - Case 1, Half-cycle Path - Case 2, Fast to Slow Clock Domain, Slow to Fast Clock Domain, Multiple Clocks.

## **Learning Resources:**

1. J. Bhasker, Rakesh Chadha "Static Timing Analysis for Nanometer Designs A Practical Approach" springer, 2009.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30
2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

## DEAPRIMENT OF HUMANITIES AND SOCIAL SCIENCES.

## **Pedagogy Studies**

Audit Course - II SYLLABUS FOR M.E. - II SEMESTER

| L:T:P(Hrs./week): 2:0:0 | SEE Marks: 60 | Course Code: P25AC210EH  |
|-------------------------|---------------|--------------------------|
| Credits : -             | CIE Marks: 40 | Duration of SEE: 3 Hours |

|     | COURCE OBJECTIVES                           | COURCE OUTCOMES                              |
|-----|---------------------------------------------|----------------------------------------------|
|     | COURSE OBJECTIVES                           | COURSE OUTCOMES                              |
| Obj | ectives of this course are to get students: | Upon the completion of this course the       |
| 1.  | Understand and identify different           | students will be expected to:                |
|     | behavioural styles and adapt training as    | 1. Do a Learning Style inventory and         |
|     | necessary.                                  | understand theirs, and their students'       |
| 2.  | Identify the characteristics of an          | learning style                               |
|     | exceptional facilitator                     | 2. Demonstrate successful understanding of   |
| 3.  | Understand and identify different           | key concepts during a practice               |
|     | behavioural styles and adapt training as    | presentation.                                |
|     | necessary.                                  | 3. Do a need analysis and why it is a        |
| 4.  | Understand how to make lecture-based        | necessary step in any training program.      |
| ''  | programs active.                            | 4. Develop strategies for different types of |
| 5.  | Make effective trainer aids such as         | learners, handling hecklers, bullies, and    |
|     | power points and learn to identify all the  | other disruptive participants                |
|     | dependencies                                | 5. Present information in a clear, concise,  |
|     | dependencies                                | engaging manner.                             |

From Fabulous to Fantastic -The Art and Science of Teaching the Digital Generation

Keeping information fresh and reinforcing new learning is a constant challenge for an instructor imparting knowledge to an adult. How do you choose activities that are fun but meaningful? How do you assess the level of knowledge already in the room? Is there a formula for creating a successful learning session?

This course is designed to nurture the process of learning, to facilitate sharing of field level experience and giving constructive feedback on training style and delivery. This Audit Course will teach participants how to determine the needs of an audience, improve classroom charisma, handle difficult participants, use activities effectively, and more.

Course Outline

## UNIT-1 - Astounding Adults: How they learn

Teaching adults calls for trustworthiness and neutrality while keeping the discussion focused. The first two sessions are about how adults learn how to help in retention and recall.

- How do adults learn
- Pedagogy and Andrago
- Malcolm Knowles theory of Andragogy
- Neuro Linguistic programming
- Kolb's learning styles
- Helping adults learn

## UNIT-2 - Classic Course/Class Design

This section's focus is on creating a classic course design that is tailor made for the trainee's learning style. This section also focuses on assessing the trainees' needs in class and customizes activities/direct discussions to address these needs. This section is delivered in two sessions.

- Six thinking hats and the classic course design
- Creating a beautiful body
- Opening
- Main body
- Grand finale

## Unit 3 -Beating Murphy's Law

This section is designed to help trainers make effective trainer aids such as power points and learn to identify all the dependencies in advance and have sufficient back up plans, in case there are technical issues. This section is spread over four sessions.

- Power Point
- The Rule of Three
- Anecdotes and Metaphors
- Beat Murphy's Law
- Awesome audiovisuals

## **Unit 4 - Dazzling Deliveries**

Keeping trainees focused so they can get their desired results takes skill. Group dynamics and motivations can vary on many levels. Participants will learn how those factors affect facilitation. They will use tips shared in this session to practice re-engaging the audience through dialogue, feedback, and testing for consensus and understanding.

Training vs. facilitating vs. presenting

- Icebreakers
- Training Rainbow
- Teaching Style Tips
- Presenting and Demonstrating
- Teaching/Socratic Direction
- Facilitating discussion/brainstorming/increasing participation

Process Monitoring

## Unit 5 - Fruitful Feedback

This Unit finishes with an important but sometimes forgotten skill of how to give and receive feedback. During an activity called What Would You Say? Participants evaluate their presentations and also do a peer evaluation and create an action plan on the following areas.

- Relevance of Content
- Level of Content
- Rating of the Presenters
- Knowledge Transfer
- Most Useful Aspect of the Course
- Least Useful Aspect of the Course
- Action plan to go from Fabulous to Fantastic

| METHODOLOGY     | ASSESSMENTS                        |
|-----------------|------------------------------------|
| - Case Studies  | - Online assignments               |
| - Demonstration | - Individual and Group             |
| - Presentations | - Expert lectures                  |
|                 | - Writing and Audio-visual lessons |

## **Suggested Books**

| The | e break-up of CIE:Inte | rnal Tests + Assignments + Quizzes     |      |
|-----|------------------------|----------------------------------------|------|
| 1.  | No. of Internal Tests  | : 2 Max. Marks for each Internal Tests | : 30 |
| 2.  | No. of Assignments     | : 3 Max. Marks for each Assignment     | : 5  |
| 3.  | No. of Quizzes         | : 3 Max. Marks for each Quiz Test      | : 5  |

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Embedded System Applications Laboratory**

SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P(Hrs./week): 0:0:3 | SEE Marks : - | Course Code: P25PC211EC |
|-------------------------|---------------|-------------------------|
| Credits: 2              | CIE Marks: 50 | Duration of SEE : -     |

|    | Course Objectives                    | Course Outcomes                            |
|----|--------------------------------------|--------------------------------------------|
| 1. | To Develop the Embedded              | On completion of the course, students will |
|    | applications using sensors           | be able to                                 |
| 2. | To learn the interfacing with motors | Design Embedded Systems with C51           |
|    | and memory devices                   | target interfacing sensor and              |
| 3. | To implement the process             | transducer for RT applications.            |
|    | management functions in Linux        | 2. Design and implement off-chip           |
| 4. | To implement the task scheduling     | memories for embedded systems.             |
|    | algorithms in RTOS                   | 3. Demonstrate host to ARM target          |
| 5. | To implement the IPC for RTOS        | communication in embOS RTOS                |
|    |                                      | environment.                               |
|    |                                      | 4. Configure emPower board with            |
|    |                                      | embOS and validate different               |
|    |                                      | scheduling algorithms.                     |
|    |                                      | 5. Demonstrate different IPC schemes       |
|    |                                      | for multi-tasking in embOS and Linux       |
|    |                                      | OS.                                        |

**CO-PO Mapping** 

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 2   | 3   | 1   |
| CO2 | 3   | 1   | 2   | 3   | 1   |
| CO3 | 3   | 3   | 3   | 3   | 2   |
| CO4 | 3   | 3   | 3   | 3   | 2   |
| CO5 | 3   | 3   | 3   | 3   | 2   |

## List of Experiments in RTOS using Embedded - C/C++:

- 1. Interfacing a sensor with ADC0804.
- 2. Multi-sensor interfacing with ADC0808.
- 3. Transducer interfacing with DAC0808 for generating a triangular, sawtooth sinusoidal waveforms.

- 4. Interfacing & controlling the DC Motor
- 5. Interfacing & controlling the stepper motor
- 6. Off-chip EEPROM 2KB/4KB interfacing for storing & retrieving lookup tables.
- 7. Emboss Real time task creation, Demonstration of Multitasking
- 8. SRAM interface design (1KB/4KB)
- 9. Interfacing with Timers & DS1307 RTC.
- 10. Implementation of fork, wait functions in Linux
- 11. Round Robin Scheduling of 2 Tasks in RTOS
- 12. Preemptive Scheduling of 2 Tasks in RTOS
- 13. IPC between 2 Tasks with Binary Semaphore
- 14. Mailbox usage for IPC between 2 tasks in RTOS

## New / Additional experiments planned:

- Design a Round Robin with the interrupt driven scheduling in ARM by creating three tasks such that 2 tasks perform IPC with the same priority.
- 2. Porting of RTOS on Embedded target boards
- 3. Implementation RTOS scheduling of 3 tasks that has to wait for message Queue in Cortex M4F embOS for UI design.

## Suggested tools for use:

- 1. Hardware Target CPU Cortex M4F power Segger Board, AT89S52
- 2. Embedded Software Development Embedded Studio V3.12a
- 3. Embedded Debugger Cortex M4F ARM Jlink
- 4. RTOS emboss

## The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 20

3. Marks for assessment for day to day evaluation : 30

Duration of Internal Test: 3 Hours

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **VLSI Physical Design Laboratory**

SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P(Hrs./week): 0:0:3 | SEE Marks : - | Course Code: <b>P25PC221EC</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 2              | CIE Marks: 50 | Duration of SEE : -            |

| COURSE OBJECTIVES                       | COURSE OUTCOMES                       |
|-----------------------------------------|---------------------------------------|
| To Design and simulate basic building   | On completion of the course, students |
| blocks of mixed signal IC's and perform | will be able to                       |
| full custom design of cells.            | 1. Perform floor planning, placement  |
|                                         | and routing of Adder/Counter.         |
|                                         | 2. Perform layout and parasitic       |
|                                         | extraction of Adder/Counter.          |
|                                         | 3. perform full custom design of      |
|                                         | basic gates and differential          |
|                                         | amplifier.                            |

**CO-PO Mapping** 

| СО  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 | 3   | -   | 3   | 3   | -   |
| CO2 | 3   | -   | 3   | 3   | -   |
| CO3 | 3   | -   | 3   | 3   | -   |

### Part A

- 1. Layout of basic gates. (inverter / Nand / NOR, Full custom design).
- 2. DRC and LVS of basic gates. (inverter / Nand /NOR, Full custom design).
- Parasitic extraction and Post layout simulation of basic gates. (inverter / Nand / NOR, Full custom design).
- 4. Floor planning, placement and routing of Adder.
- 5. Layout and parasitic extraction of Adder.
- 6. Static timing analysis and power analysis of Adder.
- 7. Floor planning, placement and routing of Counter.
- 8. Layout and parasitic extraction of Counter.

- 9. Static timing analysis and power analysis of Counter.
- 10. Layout of Differential Amplifier.
- 11. Parasitic extraction and post Layout simulation of Differential Amplifier.
- 12. Layout, Parasitic extraction and post layout simulation of 1 bit comparator.

Note: Above experiments are to be carried out using Cadence tools (virtuoso Layout editor, assura, spectre circuit simulator and innovus)

Note: Minimum of ten experiments are to be conducted.

## The break-up of CIE:

1. No. of Internal Test : 1

2. Max. Marks for each internal tests : 20

3. Marks for assessment for day to day evaluation : 30

Duration of Internal Test: 3 Hours

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Mini Project with Seminar**

SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P (Hrs./week): 0:0:2 | SEE Marks : - | Course Code: <b>P25PW219EC</b> |
|--------------------------|---------------|--------------------------------|
| Credits: 2               | CIE Marks: 50 | Duration of SEE : -            |

| COURSE OBJECTIVES                                                                                                                      | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepare the student for a systematic and independent study of the state of the art topics in a broad area of his / her specialization. | <ol> <li>On completion of the course, students will be able to</li> <li>Selection of a suitable mini project topic / problem for investigation and presentation.</li> <li>Carryout literature survey and prepare the presentation.</li> <li>Formulating the problem, identify tools and techniques for solving the problems.</li> <li>Clear communication and presentation of the seminar topic.</li> <li>Apply ethical principles in preparation of seminar report.</li> </ol> |

CO-PO Mapping

| CO-PO I | rapping |     |     |     |     |
|---------|---------|-----|-----|-----|-----|
| CO      | PO1     | PO2 | PO3 | PO4 | PO5 |
| CO1     | 1       | 2   | 1   | 1   | 1   |
| CO2     | 1       | 2   | 1   | 1   | 1   |
| CO3     | 1       | 2   | 1   | 1   | 1   |
| CO4     | 1       | 2   | 1   | 1   | 1   |
| CO5     | 1       | 2   | 1   | 1   | 1   |

Oral presentation and technical report writing are two important aspect of engineering education. The objective of the Mini Project and seminar is to prepare the student for a systematic and independent study of the state of the art topics in the advanced fields of Embedded Systems, VLSI Design and related topics.

Mini Project topics may be chosen by the students with advice from the faculty members. Students are to be exposed to the following aspects for a seminar presentation.

- Literature survey
- Organization of the material
- Presentation of OHP slides / LCD presentation
- Technical writing

## Each student required to:

- 1. Submit a one page synopsis before the seminar talk for display on the notice board.
- 2. Give a 20 minutes time for presentation following by a 10 minutes discussion.
- 3. Submit a detailed technical report on the seminar topic with list of references and slides used.

Seminars are to be scheduled from the 3<sup>rd</sup> week to the last week of the semester and any change in schedule shall not be entertained.

For award of sessional marks, students are to be judged by at least two faculty members on the basis of an oral and technical report preparation as well as their involvement in the discussions.

# Syllabus for M.E. ECE (ES & VLSI Design) III - SEMESTER

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **High Level Synthesis**

Professional Elective - IV
SYLLABUS FOR M.E. ECE (ES&VLSID) - III SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE310EC</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| Course Objectives                     | Course Outcomes                                                        |
|---------------------------------------|------------------------------------------------------------------------|
| To expose the students, the basics of | On completion of the course, students                                  |
| FPGA designs and synthesis.           | will be able to                                                        |
|                                       | 1. Develop simple arithmetic modules and implement in FPGA .(PO1, PO5) |
|                                       | 2. Understand various libraries used in HLS based design (PO2)         |
|                                       | 3. Apply various coding styles for FPGA                                |
|                                       | synthesis and compare their performance (PO1, PO2)                     |
|                                       | 4. Compare the precision data types in                                 |
|                                       | System C and Vivado HLS (PO2, PO3)                                     |
|                                       | 5. Synthesize a subsystem design using                                 |
|                                       | Vivado HLS and port it in FPGA (PO3,                                   |
|                                       | PO5)                                                                   |

**CO-PO Mapping** 

|     | PP3 |     |     |     |     |
|-----|-----|-----|-----|-----|-----|
| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1 |     |     | 2   |     | 1   |
| CO2 |     |     | 2   |     | 1   |
| CO3 |     |     | 2   |     | 1   |
| CO4 |     |     | 2   |     | 1   |
| CO5 |     |     | 2   |     | 1   |

## UNIT - I

Introduction to C-based FPGA Design, Using Vivado HLS HLS UltraFast Design Methodology Managing Interfaces Design Optimization RTL Verification, Exporting the RTL Design

## UNIT - II

Introduction to the Vivado HLS C Libraries, Arbitrary Precision Data Types Library, The HLS Stream Library, HLS Math Library, Vivado HLS Video Library, The HLS IP Libraries, HLS Linear Algebra Library.

## UNIT - III

Coding Styles: Unsupported C Constructs, The C Test Bench Functions, Loops, Arrays, Data Types. C++ Classes and Templates, Using Assertions, SystemC Synthesis.

## UNIT - IV

Command Reference, Graphical User Interface (GUI) Reference, Send Feedback, Interface Synthesis Reference, AXI4 Slave Lite C Driver Reference, Video Functions Reference.

## UNIT - V

HLS Linear Algebra Library, C Arbitrary Precision Types, C++ Arbitrary Precision Types, C++ Arbitrary Precision Fixed Point Types, Comparison of SystemC and Vivado HLS Types.

## **Learning Resources:**

- 2. Andres Takach, Creating C++ IP for High Performance Hardware Implementations of FFTs. DesignsDesignCon2002.
- 3. Preston A. Jackson, Cy P. Chan, Jonathan E. Scalera, Charles M. Rader, and M. Michael Vai A Systolic FFT Architecture for Real Time FPGA Systems. MIT Lincoln Laboratory 244 Wood ST, Lexington, MA 02420
- Vivado Design Suite User Guide and Vivado Design Suite Tutorial for High-Level Synthesis.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Low Power VLSI Design**

Professional Elective - IV
SYLLABUS FOR M.E. ECE (ES&VLSID) - III SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE320EC</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours       |

#### **COURSE OBJECTIVES COURSE OUTCOMES** 1. Study different abstraction levels On completion of the course, students will be able to in VLSI Design and the impact of 1. Distinguish the impact of various power reduction techniques at different levels of VLSI Design power reduction methods at higher levels 2. Identify the sources of power dissipation and apply leakage control techniques to reduce static power 2. Apply leakage control mechanisms consumption in CMOS circuits reduce static power consumption in DSM VLSI regime 3. Apply technology independent and technology-3. Apply technology independent and dependent techniques for Dynamic technology-dependent techniques reduction in CMOS circuits for Dynamic power reduction in 4. Analyze different power reduction techniques for CMOS circuits VLSI systems at Design time, Run-time and Stand-4. Study and apply various software by modes 5. Employ power estimation and optimization software power estimation techniques for low power VLSI optimization methods for low power VLSI system system design 5. Apply low power circuit and 6. Apply low power circuit and architectural techniques such as capacitance reduction, gated architectural techniques for clocking, VDD and Vth scaling, DVS etc in digital reducing power consumption in SRAM designs systems and SRAM designs CO-PO Mapping

| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----|-----|-----|-----|-----|-----|
| CO1 |     |     | 2   |     | 1   |
| CO2 |     |     | 2   |     | 1   |
| CO3 |     |     | 2   |     | 1   |
| CO4 |     |     | 2   |     | 1   |
| CO5 |     |     | 2   |     | 1   |

## UNIT - I

Introduction to Low Power design: Why worry about power – at global and SOC levels, Emerging zero-power applications (WSN), 20 nm scenario, Design-productivity challenge, Impact of implementation choices, Motivation for LPD, Basic VLSI Design Flow, Optimization examples at various levels (System, Subsystem, RTL, Gate, Circuit and Device levels)

Sources of power dissipation, MOS transistor leakage components, Static Power dissipation, Active Power dissipation, Circuit Techniques for Low Power Design – Standby leakage control using transistor stacks, Multiple  $V_{TH}$  and dynamic  $V_{TH}$  techniques, Supply voltage scaling technique (Ref-1)

## UNIT - II

Power Optimization Techniques – I: Dynamic Power Reduction Approaches, Circuit Parallelization, Voltage Scaling Based Circuit Techniques, Circuit Technology – Independent Power Reduction, Circuit Technology Dependent Power Reduction; Leakage Power Reduction – Leakage Components, Design Time Reduction Techniques, Run-time Stand-by Reduction Techniques, Run-time Active Reduction Techniques Reduction in Cache Memories (Ref-2)

## UNIT - III

Power Optimization Techniques – II: Energy Recovery Circuit Design, Adiabatic – Charging Principle and its implementation issues (Ref-2) Software Design for Low Power: Sources of Software Power Dissipation, Software Power Estimation, Software Power Optimizations, Automated Low-Power Code Generation, Co-design for Low Power (Ref-3)

## **UNIT - IV**

Low Voltage Low Power Static Random Access memories: Basics, Race between 6T and 4T memory cells, LVLP SRAM Cell designs- Shared bit-line SRAM cell configuration, Power efficient 7T SRAM cell with current mode read and write, Loadless CMOS 4T SRAM cell, The 1T SRAM cell, Pre-charge and Equalization Circuit, Dynamic and static decoders, Voltage Sense amplifier, Output Latch, Low Power SRAM Techniques: Sources of SRAM Power, Low Power Circuit techniques such as capacitance reduction, Leakage current reduction (Ref-1)

## UNIT - V

Large LP VLSI System design and Applications: Architecture-driven Voltage Scaling, Power optimization using operation reduction and operation substitution, Pre-computation based optimization, Multiple and Dynamic supply voltage design, Choice of supply voltages, Varying the clock speed, varying the  $V_{DD}$  of RAM structures, Gated Clocking. Leakage current reduction in medical devices (Ref-1)

## **Learning Resources:**

- Kiat-Seng Yeo and Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems, Tata McGrawhill Edition, 2005. (Units I, IV and V)
- 2. Christian Piguet, "Low Power CMOS Circuits Technology, Logic Design and CAD Tools", 1st Indian Reprint, CRC Press, 2010.(Units II and III)
- 3. Kaushik Roy and Sharat Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley Pub., 2000 (Unit III)
- 4. Dimitrios Soudris, Christian Piguet and Coastas Goutis, "Designing CMOS Circuits for Low Power", Kluwer Academic Pub, 2002 (Topics beyond Syllabus)
- 5. J. Rabaey, Low Power Design Essentials, 1<sup>st</sup> Edition, Springer Publications, 2010 (for seminars and assignments)

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## System on Chip (SoC) Design

Professional Elective - IV
SYLLABUS FOR M.E. ECE (ES&VLSID) - III SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE330EC</b> |
|---------------------------|---------------|--------------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| COURSE OBJECTIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This course covers the advanced design and analysis of digital circuits with HDL. The primary goal is to provide in depth understanding of system design. The course enables students to apply their knowledge for the design of advanced digital hardware systems with help of FPGA tools.  1. Understand the FPGA hardware architecture and interconnect technologies.  2. Apply the knowledge for the design of digital hardware systems.  3. Implementation of FPGA implementation methodologies with the help of FPGA tools.  4. Block level design verification by writing the test benches.  5. System level design verification by writing the test cases. | On completion of the course, students will be able to  1. Understand design flow of SoC  2. Implement the basic level logic functions in hardware system.  3. Implement the block level and system level IP cores.  4. Writing test benches for block level design verification.  5. Writing test benches for system level design verification. |

## UNIT - I

Introduction to SoC Design, constituents of SoC, Application areas of SoC, SoC development life cycle FPGA architectures for implementing SoC design, FPGA based SoC design flow.

### **UNIT - II**

Front End Design and Back-End Design Overview, Programmable system on chip design, Design with Xilinx zynq SoC platform, Implementation examples of logic functions using LUTs and CLBs, Finite state machine design examples.

## **UNIT - III**

Introduction to IP cores, Block level design using IP cores, Implementation of Block RAM using IP cores, FIFO design and implementation using IP cores.

## **UNIT - IV**

Block Level Design Verification: Introduction to Block-level verification, verification approaches, Functional verification, Static timing verification, Front End Design stages in detail-Flow: Architecture, Design Entry, Simulation, Synthesis and Verification, 16 bit ALU design verification with VIO hardware debugger, Constraints and timings analysis.

## **UNIT-V**

System Level Design Verification: Introduction to system level verification, creating system-level test benches, Applying and migrating test bench-SoC, Design challenges and approaches.

## **Learning Resources:**

- 1. Veena S. Chakravarthi, "A practical Approach to VLSI System on Chip (SoC) Design", A comprehensive Guide, Springer.
- 2. Prakash Rashinkar, Peter Paterson and Leena Singh "System-on-a-Chip Verification Methodology and Techniques", Kluwer Academic Publishers.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 | Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

## VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **IoT Architectures and Applications**

(Professional Elective-V)
SYLLABUS FOR M.E. III – SEMESTER

L:T:P (Hrs./week) : 3:0:0 SEE Marks : 60 Course Code: **P25PE340EC**Credits : 3 CIE Marks : 40 Duration of SEE : 3 Hours

| COURSE OBJECTIVES             | COURSE OUTCOMES                                          |
|-------------------------------|----------------------------------------------------------|
|                               | On completion of the course, students will be able to    |
| to impart knowledge on IoT    | Understand the Architectural Overview of IoT             |
| Architecture, practical       | 2. Enumerate the need and the challenges in Real         |
| constrains, various protocols | World Design Constraints                                 |
| and multiple case studies.    | 3. Choose the required protocol for a given application. |
| -                             | 4. Explore IoT usage in various applications             |
|                               | 5. Understand the Security requirements in IoT.          |

**CO-PO Mapping** 

|     | ~   |     |     |     |     |
|-----|-----|-----|-----|-----|-----|
| CO  | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1 |     |     | 3   |     |     |
| CO2 |     |     | 3   |     |     |
| CO3 |     |     | 3   |     |     |
| CO4 |     |     | 3   |     |     |
| CO5 |     |     | 3   |     |     |

### UNIT - I : IoT

Definition and Technologies that led to evolution of IOT, Characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT Levels & Deployment. M2M and IoT Technology Fundamentals- Devices and gateways, Introduction to cloud IOT platforms like MS Azure, AWS IOT, Google Cloud IOT, Thingworx, Business processes in IoT.

## **UNIT - II : IoT Reference Architecture**

Introduction, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views. IoT edge system architecture.

**Real-World Design Constraints:** Technical Design constraints, Connectivity constraints, Data representation and visualization, Big Data Management.

## **UNIT - III : IoT communications**

**Data link and physical layer Protocols**: PHY/MAC Layer (IEEE 802.11, IEEE 802.15), Bluetooth Low Energy, Thread, introduction to Wi-SUN.

Network Layer Protocols: IPv6, 6LoWPAN;

Transport layer protocols: TCP, UDP;

**Messaging protocols:** Quality of services in MQTT, standards and security in MQTT, CoAP, AMQP.

## **UNIT - IV : Case Studies**

Smart Cities, Smart Homes, Smart Transportation, Smart Healthcare, Precision Agriculture, Connected Vehicles.

**IOT in Indian Scenario:** i) IOT and Aadhaar ii) IOT for health services. iii) IOT for financial inclusion. iv) IOT for rural empowerment v) India Urban Data Exchange (IUDX).

**Industry 4.0**: Industrial Internet of Things (IIoT), Reference Architecture, Characteristics of Industry 4.0.

## **UNIT - V : Securing the Internet of Things**

Security Requirements in IoT Architecture - Security in Enabling Technologies, Security Concerns in IoT Applications.

Security Architecture in the Internet of Things - Security Requirements in IoT, Insufficient Authentication/Authorization, Insecure Access Control, Threats to Access Control, Privacy, and Availability, Attacks Specific to IoT. Security and Vulnerabilities - Secrecy & Secret Key Capacity, Authentication/Authorization for Smart Devices, Transport Encryption, Secure Cloud/Web Interface, Secure Software/Firmware, Physical Layer Security.

## **Learning Resources:**

- 1 Pethuru Raj and Anupama C. Raman, —The Internet of Things: Enabling Technologies, Platforms, and Use Cases", 1st Edition, 2017, CRC Press.
- 2 David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton, Jerome Henny "IoT Fundamentals: Networking technologies Protocols, and Use Cases for the internet of things", June, 2017, Cisco press.
- 3 Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, David Boyle, —From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence||, 1st Edition, 2014, Academic Press.
- 4 Arshdeep Bahga, Vijay Madisetti, —Internet of Things: A Hands-on Approach||, Universities Press, 2014.
- 5 Practical Internet of Things Security (Kindle Edition) by Brian Russell, Drew Van Duren, Packt Publishing, 2016.
- 6 Securing the Internet of Things Elsevier Authors: Shancang Li Li Da Xu,Paperback ISBN: 9780128044582,Imprint: SyngressPublished Date: 13th January 2017.
- 7 https://nptel.ac.in/courses/106105166/5
- 8 https://nptel.ac.in/courses/108108098/4

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Physical Design Automation**

Professional Elective - V SYLLABUS FOR M.E. ECE (ES&VLSID) - III SEMESTER

| L:T:P (Hrs./week) : 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE350EC</b> |
|---------------------------|---------------|--------------------------------|
| Credits: 3                | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| COURSE OBJECTIVES                                                                      | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Students will develop placement and routing algorithms for VLSI Designs using C / C++. | On completion of the course, students will be able to  1. understand the relationship between design automation algorithms and various constraints posed by VLSI fabrication and design technology.  2. adapt the design algorithms to meet the critical design parameters.  3. map various layout optimization techniques to the algorithms.  4. develop proto-type EDA tool and test its efficacy. |

CO-PO Manning

| CO-PO I | rapping |     |     |     |     |
|---------|---------|-----|-----|-----|-----|
| CO      | PO1     | PO2 | PO3 | PO4 | PO5 |
| CO1     |         |     | 2   |     | 1   |
| CO2     |         |     | 2   |     | 1   |
| CO3     |         |     | 2   |     | 1   |
| CO4     |         |     | 2   |     | 1   |

**UNIT-I**: VLSI design Cycle, Physical Design Cycle, Design Rules, Layout of Basic Devices, and Additional Fabrication, Design styles: full custom, standard cell, gate arrays, field programmable gate arrays, sea of gates and comparison, system packaging styles, multi chip modules. Design rules, layout of basic devices, fabrication process and its impact on physical design, interconnect delay, noise and cross talk, yield and fabrication cost. Factors,

**UNIT-II:** Complexity Issues and NP-hard Problems, Basic Algorithms (Graph and

Computational Geometry): graph search algorithms, spanning tree algorithms, shortest path algorithms, matching algorithms, min-cut and max-cut algorithms, Steiner tree algorithms.

**UNIT-III:** Basic Data Structures, atomic operations for layout editors, linked list of blocks, bin based methods, neighbour pointers, corner stitching, multi-layer operations.

**UNIT-IV:** Graph algorithms for physical design: classes of graphs, graphs related to a set of lines, graphs related to set of rectangles, graph problems in physical design, maximum clique and minimum coloring, maximum k-independent set algorithm, algorithms for circle graphs.

**UNIT-V:** Partitioning algorithms: design style specific partitioning problems, group migrated algorithms, simulated annealing and evolution, and Floor planning and pin assignment, Routing and placement algorithms.

## **Learning Resources:**

- 1. Naveed Shervani, Algorithms for VLSI Physical Design Automation, 3rd Edition, Kluwer Academic, 1999.
- 2. Charles J Alpert, Dinesh P Mehta, Sachin S Sapatnekar, Handbook of Algorithms for Physical Design Automation, CRC Press, 2008

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Design for Testability**

Professional Elective - V SYLLABUS FOR M.E. ECE (ES&VLSID) - III SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P25PE360EC</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE : 3 Hours      |

| COURSE OBJECTIVES                                                      | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To expose the students, the basics of testing techniques for circuits. | On completion of the course, students will be able to  1. Illustrate Yield, Fabrication defects, Errors and Faults in VLSI Circuits  2. Simulate digital ICs in the presence of faults and evaluate the given test set for fault coverage.  3. Generate test patterns for detecting single stuck faults in combinational and sequential circuits.  4. Establish a fault model for memory and apply March Tests for fault detection  5. Identify schemes for introducing testability into digital circuits with improved fault coverage.  6. Compare different approaches for introducing BIST into |
|                                                                        | logic circuits, memories and embedded cores.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**CO-PO Mapping** 

|     | .~pp9 |     |     |     |     |
|-----|-------|-----|-----|-----|-----|
| CO  | PO1   | PO2 | PO3 | PO4 | PO5 |
| CO1 |       |     | 2   |     | 1   |
| CO2 |       |     | 2   |     | 1   |
| CO3 |       |     | 2   |     | 1   |
| CO4 |       |     | 2   |     | 1   |
| CO5 |       |     | 2   |     | 1   |

## UNIT - I

**Introduction**: Role of Testing, Digital and Analog VLSI Testing, The Rule of TEN, Yield, Defects and Faults, Reliability and Failure Rate, Test and Design for Testability (DFT)

Modeling: Modeling digital circuits at logic level, register level and structural models.

Logic Simulation: Types of simulation, Delay models, Element evaluation, Hazard detection, Gate level event- driven simulation. {Ref1: Chs 1,2,3 and Ref2: Ch3)

## UNIT - II

**Fault Modeling** – Logic fault models, Fault detection and redundancy, Fault equivalence, Fault location and Fault Collapsing, The Single Stuck and Multiple

Stuck Fault Models. Bridging Faults, CMOS Technology Considerations, Intermittent Faults

Fault Simulation: Applications, Fault Simulation for Combinational circuits. (Ref1: Chs 4 and 5)

## UNIT - III

**Testing for single stuck faults (SSF):** Automated Test Pattern Generation (ATPG/ATG) for SSFs in Combinational Circuits, Algorithms (D, PODEM, FAN), ATG for SSFs in Sequential Circuits. Functional Testing without and with Specific Fault Models

**Memory Test:** Memory density and Defect trends, Faults, Memory Test levels, March Test Notation, Fault Modeling, Memory Testing {Ref1: Chs 6 and 8, Ref2: Ch 9)

## **UNIT - IV**

**Design for Testability** – Controllability and Observability, AdHoc DFT techniques. Scan architectures and testing – Generic boundary scan, Full Serial integrated scan, Storage cells for scan design. Board level and system level DFT approaches. Boundary scan standards. Compression techniques – Syndrome test and Signature analysis – LFSR based Signature Analysis (Ref1: Chs 9 and 10)

## UNIT - V

**Built-in Self-Test (BIST)** – BIST Concepts and test pattern generation. Specific BIST Architectures in brief.

**System Test and Core-Based Design:** System Test Problem Defined, Functional Test, Diagnostic Test, Testable System design, Core-Based Design and Test –Wrapper, A Test Architecture for SOC, An Integrated Design and Test Approach. {Ref1: Ch 11, Ref2: Ch 18}

DSP-based Analog and Mixed-Signal Test: Functional DSP-based Testing, Static ADC/DAC Testing Methods, CODEC Testing, Dynamic Flash ADC Testing using FFT Technique. {Ref2: Ch 10}.

## **Learning Resources:**

- 1. Miron Abramovici, Melvin A. Breur, Arthur D. Friedman, "Digital Systems Testing and Testable Design", Jaico Publishing House, 2001.
- 2. Michael L Bushnell and Vishwani D Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits" Kluwer Academic Publishers, 2002
- 3. NPTEL Course on VLSI Testing IIT Kharagpur

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEAPRTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Dissertation - Phase - I / Internship**

SYLLABUS FOR M.E. ECE (ES&VLSID) - III SEMESTER

| L:T:P(Hrs./week): 0:0:20 | SEE Marks: -   | Course Code: <b>P25PW319EC</b> |
|--------------------------|----------------|--------------------------------|
| Credits: 10              | CIE Marks: 100 | Duration of SEE : -            |

| COURSE OBJECTIVES                                | COURSE OUTCOMES                                                                                                                                                      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepare the student for a systematic and         | On completion of the course, students will                                                                                                                           |
| independent study of the state of the art        | be able to                                                                                                                                                           |
| topics in a broad area of his/her specialization | To select the complex engineering problems beneficial to the society and develop solutions with appropriate considerations in the area of VLSI and embedded systems. |
|                                                  | To apply modern tools and analyze the results to provide valid conclusions.                                                                                          |
|                                                  | To communicate effectively the solutions with report and presentation following ethics                                                                               |
|                                                  | 4. To adapt for the advanced technological changes                                                                                                                   |
|                                                  | 5. To work in teams and apply management principles to complete the project economically                                                                             |
|                                                  | the project economically                                                                                                                                             |

**CO-PO Mapping** 

| CO-FO Mapping |     |     |     |     |     |
|---------------|-----|-----|-----|-----|-----|
| СО            | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1           | 2   | 2   |     |     |     |
| CO2           |     |     |     | 3   |     |
| CO3           |     |     | 2   |     |     |
| CO4           |     |     | 2   |     |     |
| CO5           |     |     |     |     | 3   |

The students must be given clear guidelines to execute and complete the project on which they have delivered a seminar in the 3<sup>rd</sup> semester of the course.

All projects will be monitored at least twice in a semester through student's presentation. Sessional marks should be based on the grades/marks, awarded by a monitoring committee of faculty members as also marks given by the supervisor.

Efforts be made that some of the projects are carries out in industries with the help of industry support.

The final project reports must be submitted two weeks before the last working day of the semester.

The project works must be evaluated by departmental committee containing of HOD, two senior faculty and supervisor.

## Continuous Internal Evaluation (CIE) – 100 marks:

| Evaluation Criteria          | Maximum Marks |
|------------------------------|---------------|
| Literature Survey            | 20            |
| Problem Formulation          | 20            |
| Design/ Methodology          | 20            |
| Implementation & Results     | 20            |
| Presentation & Documentation | 20            |

**Note:** Rubrics are used for assessment and evaluation.

# Syllabus for M.E. ECE (ES & VLSI Design) IV - Semester

DEAPRTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## **Dissertation - Phase - II / Internship**

SYLLABUS FOR M.E. ECE (ES&VLSID) - IV SEMESTER

| L:T:P(Hrs./week):0:0:32 | SEE Marks: -    | Course Code: | P25PW419EC       |
|-------------------------|-----------------|--------------|------------------|
| Credits: 16             | CIE Marks: Viva | -Voce Grade  | Duration of SEE: |

| COURSE OBJECTIVES                                                                                            | COURSE OUTCOMES                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepare the student for a systematic and independent study of the state of the art topics in a broad area of | On completion of the course, students will be able to  1. To select the complex engineering problems beneficial to the society and develop solutions with appropriate considerations in the area of VLSI and |
| his/her specialization                                                                                       | embedded systems.  2. To apply modern tools and analyze the results to provide valid conclusions.                                                                                                            |
|                                                                                                              | To communicate effectively the solutions with report and presentation following ethics                                                                                                                       |
|                                                                                                              | 4. To adapt for the advanced technological changes 5. To work in teams and apply management principles                                                                                                       |
|                                                                                                              | to complete the project economically                                                                                                                                                                         |

**CO-PO Mapping** 

|     | .~PP9 |     |     |     |     |
|-----|-------|-----|-----|-----|-----|
| СО  | PO1   | PO2 | PO3 | PO4 | PO5 |
| CO1 | 2     | 2   |     |     |     |
| CO2 |       |     |     | 3   |     |
| CO3 |       |     | 2   |     |     |
| CO4 |       |     | 2   |     |     |
| CO5 |       |     |     |     | 3   |

The students must be given clear guidelines to execute and complete the project on which they have delivered a seminar in the 3<sup>rd</sup> semester of the course.

All projects will be monitored at least twice in a semester through student's presentation. Sessional marks should be based on the grades/marks, awarded by a monitoring committee of faculty members as also marks given by the supervisor.

Efforts be made that some of the projects are carries out in industries with the help of industry coordinates.

Common norms will be established for documentation of the project report by the respective department.

The final project reports must be submitted two weeks before the last working day of the semester.

The project works must be evaluated by an external examiner and based on his comments a viva voice will be conducted by the departmental committee containing of HOD, two senior faculty and supervisor.

## **Criteria for Award of Grades:**

| Academic Performance (%) | Letter Grade     | <b>Grade Points</b> |
|--------------------------|------------------|---------------------|
| 90 to 100                | A+ (Outstanding) | 10                  |
| 80 to < 90               | A (Excellent)    | 09                  |
| 70 to < 80               | B+ (Very Good)   | 08                  |
| 60 to < 70               | B (Good)         | 07                  |
| 50 to < 60               | C (Average)      | 06                  |
| < 50                     | F (Fail)         | 0                   |

**Note:** Following criteria used for assessment and evaluation.

| QUA        | QUALITY                                                            |   |   |
|------------|--------------------------------------------------------------------|---|---|
| 1.         | Review of literature                                               | ( | ) |
| 2.         | Scope of the work                                                  | ( | ) |
| 3.         | Technical soundness (Methodology / Experimental set-up)            | ( | ) |
| 4.         | Timeliness of work                                                 | ( | ) |
| 5.         | Conclusions drawn                                                  | ( | ) |
| CON        | TENT                                                               |   |   |
| 6.         | Adequacy of data, information and Practical applications / utility | ( | ) |
| 7.         | Organization of the thesis                                         | ( | ) |
| PRES       | SENTATION                                                          |   |   |
| 8.         | Clear explanation of the work                                      | ( | ) |
| 9.         | Justification of work done                                         | ( | ) |
| 10.        | Clarity and unambiguity of the language                            | ( | ) |
|            | Total Score out of 100                                             | ( | ) |
| (in words) |                                                                    |   |   |

## **Open Electives**

## DEAPRTMENT OF HUMANITIES AND SOCIAL SCIENCES

## **Business Analytics**

Open Elective

SYLLABUS FOR M.E. - II SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P250E210XX</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE : 3 Hours      |

|    | COURSE OBJECTIVES                                            | COURSE OUTCOMES                            |
|----|--------------------------------------------------------------|--------------------------------------------|
| 1. | Understand the role of business analytics within             | On completion of the course,               |
|    | an organization.                                             | students will be able to                   |
| 2. | Analyze data using statistical and data mining               | 1. Students will demonstrate               |
|    | techniques and understand relationships between              | knowledge of data                          |
|    | the underlying business processes of an                      | analytics.                                 |
| _  | organization.                                                | 2. Students will demonstrate               |
| 3. | To gain an understanding of how managers use                 | the ability of think critically            |
|    | business analytics to formulate and solve                    | in making decisions based on data and deep |
|    | business problems and to support managerial decision making. | on data and deep analytics.                |
| 4  | To become familiar with processes needed to                  | Students will demonstrate                  |
| "  | develop, report, and analyze business data.                  | the ability to use technical               |
| 5. | Use decision-making tools/Operations research                | skills in predicative and                  |
|    | techniques.                                                  | prescriptive modeling to                   |
| 6. | Mange business process using analytical and                  | support business decision-                 |
|    | management tools.                                            | making.                                    |
| 7. | Analyze and solve problems from different                    | 4. Students will demonstrate               |
|    | industries such as manufacturing, service, retail,           | the ability to translate data              |
|    | software, banking and finance, sports,                       | into clear, actionable                     |
|    | pharmaceutical, aerospace etc.                               | insights                                   |

## UNIT -I

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organisation, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

## **UNIT - II**

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business

Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

## UNIT - III

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization

## UNIT - IV

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

## UNIT - V

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.

## UNIT - VI

Recent Trends in: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism.

## **Learning Resources:**

- Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

### DEAPRTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Industrial Safety**

Open Elective SYLLABUS FOR M.E. - II SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P250E220XX</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours       |

#### UNIT - I

Industrial safety: Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc, Safety color codes. Fire prevention and firefighting, equipment and methods.

#### **UNIT - II**

Fundamentals of maintenance engineering: Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment. Model Curriculum of Engineering & Technology PG Courses [Volume -II] 295

#### **UNIT - III**

Wear and Corrosion and their prevention: Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

#### **UNIT - IV**

Fault tracing: Fault tracing-concept and importance, decision treeconcept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine,

v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

#### **UNIT - V**

Periodic and preventive maintenance: Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

## **Learning Resources:**

- Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 | Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

## DEPARTMENT OF MECHANICAL ENGINEERING

# **Operations Research**

Open Elective
SYLLABUS FOR M.E. II SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P250E230XX</b> |  |
|-------------------------|---------------|--------------------------------|--|
| Credits: 3              | CIE Marks: 40 | Duration of SEE : 3 Hours      |  |

| COURSE OBJECTIVES                                                                                                                                                               | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The objective of this course is to:                                                                                                                                             | On completion of the course, the student will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                |
| understand Linear & non-<br>linear programming,<br>transportation modelling,<br>CPM & PERT for project<br>scheduling and control,<br>replacement, game theory<br>and sequencing | <ol> <li>understand simplex, dual simplex, Sensitivity and transportation and their applications for shop floor problems.</li> <li>understand the importance of Sensitivity analysis and various advanced LPP techniques</li> <li>apply the techniques like CPM and PERT for project management.</li> <li>apply various replacement techniques to find optimum replacement time period for equipment.</li> <li>identify the best strategy to win the game and</li> </ol> |
|                                                                                                                                                                                 | optimum sequence for minimum elapsed time.                                                                                                                                                                                                                                                                                                                                                                                                                               |

#### **UNIT-I: OPERATIONS RESEARCH-AN OVERVIEW**

Meaning and Origin of Operations research, Introduction to Linear programming problems (LPP) -Formulation of LPP-Solution to LPP by Graphical method and simplex method.

#### **UNIT-II: ADVANCED TOPICS IN LINEAR PROGRAMMING**

Dual simplex method, special cases in LPP, Duality in LPP, Differences between primal and dual, shadow prices, sensitivity analysis. Non linear programming Khun Tucker conditions.

#### **UNIT-III**

**Transportation Model:** Definition of the transportation model-matrix of Transportation model-Formulation and solution of transportation models-Methods for calculating Initial basic feasible solution, optimal solution by Stepping stone method and MODI method.

**Assignment Problem:** Hungarian method of assignment problem, maximization in assignment problem, unbalanced problem, problems with restrictions, travelling salesman problems.

## **UNIT-IV: PROJECT SCHEDULING**

Introduction to network analysis, Rules to draw network diagram, Fulkerson rule for numbering events, Critical path method, Summarisation of CPM calculations. PERT, Estimation of probability and its corresponding duration in PERT, Crashing of project and finding of optimal project duration in crashing.

#### **UNIT-V**

**Replacement models:** Introduction, replacement of items that deteriorate ignoring change in money value, replacement of items that deteriorate considering change in money value with time, replacement of items that fail suddenly – individual replacement policy, group replacement policy.

**Game theory:** Introduction, 2 person zero sum games, maximi— minima principle, principle of dominance, solution for mixed strategy problems graphical method for  $2 \times n$  and  $m \times 2$  games

**Sequencing models:** introduction, general assumptions, processing to jobs through 2 machines, processing 'n' jobs through m machines processing 2 jobs through m machines.

## **Learning Resources:**

- S. D.Sharma, "Operations Research", 10<sup>th</sup> edition, Newage India Pvt Ltd, New Delhi
- 2. Hamady.A.Taha An Introduction to Operations Research, "8th edition, TMH
- Prem Kumar Gupta and Dr. DS Hira, "Operations Research ", S.Chand & Company Pvt. Ltd., 2014.
- 4. R. Paneerselvam, "Operations Research", PHI Learning Pvt Ltd., 2009.
- NVS Raju, "Optimization methods for Engineers", PHI Learning Pvt. Ltd. ., 2014
- Col D.S. Cheema, "Operations Research", University science press, 2<sup>nd</sup> edition, India

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEAPRTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Cost Management of Engineering Projects**

Open Elective SYLLABUS FOR M.E. - II SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: P250E240XX  |  |
|-------------------------|---------------|--------------------------|--|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours |  |

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

## **Learning Resources:**

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 | Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

### DEAPRTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Composite Materials**

Open Elective
SYLLABUS FOR M.E. - II SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P250E250XX</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours       |

#### UNIT-I

INTRODUCTION: Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

#### UNIT - II

REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

### UNIT - III

Manufacturing of Metal Matrix Composites: Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

### **UNIT-IV**

Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

#### UNIT - V

Strength: Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount

truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

## **Learning Resources:**

- Material Science and Technology Vol 13 Composites by R.W.Cahn VCH, West Germany.
- 2. Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.
- 3. Hand Book of Composite Materials-ed-Lubin.
- 4. Composite Materials K.K.Chawla.
- 5. Composite Materials Science and Applications Deborah D.L. Chung.
- 6. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W. Tasi.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

### DEAPRTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

# **Waste to Energy**

Open Elective

SYLLABUS FOR M.E. ECE (ES&VLSID) - II SEMESTER

| L:T:P(Hrs./week): 3:0:0 | SEE Marks: 60 | Course Code: <b>P250E260XX</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours       |

#### UNIT-I

Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

#### **UNIT - II**

Biomass Pyrolysis: Pyrolysis – Types, slow fast – Manufacture of charcoal – Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

#### UNIT - III

Biomass Gasification: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for Model Curriculum of Engineering & Technology PG Courses [Volume -II] 299 thermal heating – Gasifier engine arrangement and electrical power – Equilibrium and kinetic consideration in gasifier operation.

#### **UNIT - IV**

Biomass Combustion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

#### UNIT - V

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technology and status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types of biogas Plants -

Applications - Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

## **Learning Resources:**

- 1. Non Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

DEPARTMENT OF INFORMATION TECHNOLOGY

# **Fundamentals of Python Programming**

(Open Elective)

SYLLABUS FOR M.E. / M.Tech. II – SEMESTER (Common to all Branches)

| L:T:P(Hrs./week): 2:0:0 | SEE Marks: 60 | Course Code: <b>P250E270XX</b> |
|-------------------------|---------------|--------------------------------|
| Credits: 3              | CIE Marks: 40 | Duration of SEE: 3 Hours       |

| (  | OURSE OB          | JECTIVES               |         | COURSE OUTCOMES                                                                                                                                                                                                                                                                                                                                                              |
|----|-------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Acquire<br>skills | problem                | solving | On completion of the course, students will be able to                                                                                                                                                                                                                                                                                                                        |
| 3. |                   | grams using<br>and use | , ,     | <ol> <li>Develop Python programs with conditional statements and loops.</li> <li>Write programs using functions, strings and lists.</li> <li>Construct Python data structures programs using tuples, dictionaries and set.</li> <li>Write programs using Files and Class Concept .</li> <li>Try simple example using Python libraries NumPy, SciPy and Matplotlib</li> </ol> |

#### UNIT-I:

**Basics of Python Programming:** Features of Python, variables and identifiers, operators and expressions.

**Decision control Statements:** Selection/Conditional branching statements, basic loop structures/iterative Statements, nested loops, break, continue, and pass Statements.

**Functions and Modules**: function definition, function call, more on defining functions, recursive functions, modules.

#### **UNIT-II:**

**Data Structures: Strings**: Introduction, built-in string methods and functions, slice operation, String Module. Regular Expressions.

**Lists:** Introduction, nested list, cloning lists, basic list operations, list methods. Functional programming-filter(),map(),reduce() function.

#### UNIT -III:

**Tuples:** Introduction, basic tuple operations, tuple assignment, tuples for returning multiple values, nested tuples, tuple methods and functions.

**Set:** Introduction, Set operations.

**Dictionaries**: Basic operations, sorting items, looping over dictionary, nested dictionaries, built-in dictionary functions.

#### **UNIT-IV:**

**Files and Exceptions**: reading and writing files, pickling, handling exceptions. Built-in and user-defined exceptions.

**OOPS Concepts:** Introduction, classes and object, class method and self argument, theinit()method, class variables and object variables, public and private data members, Inheritance, Operator Overloading.

#### **UNIT-V:**

**Python Libraries: NumPy** – Introduction, Arrays – creation, operations, **SciPy**– Introduction, linalg, special, **Matplotlib** – Introduction, types of Plots, using pyplot.

## **Learning Resources:**

- 1. Reema Thareja, "Python programming using problem solving approach", Oxford university press.
- 2. Allen Downey," Think Python: How to Think Like a Computer Scientist", O'Reilly publications, 2nd Edition.
- 3. Mark Lutz, "Learning Python", O'Reilly Publications.
- 4. Wesley J. Chun, "Core Python Programming", Prentice Hall, 2nd Edition.
- 5. http://www.python.org

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5