Ibrahimbagh, Hyderabad-31 Approved by A.I.C.T.E., New Delhi and Affiliated to Osmania University, Hyderabad-07

Sponsored by VASAVI ACADEMY OF EDUCATION Hyderabad

SCHEME OF INSTRUCTION AND SYLLABI UNDER CBCS FOR

B.E. (EEE) I & II Semesters With effect from 2023-24 (For the batch admitted in 2023-24) (R-23)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Phones: +91-40-23146030, 23146031

Fax: +91-40-23146090

INSTITUTE VISION

Striving for a symbiosis of technological excellence and human values.

INSTITUTE MISSION

To arm young brains with competitive technology and nurture holistic development of the individuals for a better tomorrow.

DEPARTMENT VISION

Excellence in quality education by keeping pace with rapidly changing technologies and to create man power of global standards in the field of Electrical and Electronics Engineering.

DEPARTMENT MISSION

To impart in-depth knowledge to students through inductive teaching and learning practices, so that they acquire the skill to innovate, excel and lead in their profession with values and ethics that will benefit society.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO 1: Graduates will acquire technical competence to analyze, design and solve engineering problems in the field of Electrical and Electronics engineering and use modern engineering tools, techniques and software.

PEO 2: Graduates will be able to acquire necessary skills and obtain employment and will be productive in the professional practice of Electrical and Electronics Engineering and related fields.

PEO 3: Graduates will be sensitive to professional and social contexts, committed to ethical action and engaged in lifelong learning skills.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- EEE students will be able to design, analyze Power Systems & Electrical Machines to solve complex engineering problems.
- EEE students will be able to design and analyze Electrical and Power Electronic Circuits.
- EEE students will be able to use and apply modern software tools and techniques related to Electrical Engineering.

	B.E. (EEE) PROGRAM OUTCOMES (PO's)
PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
P08	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
P10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and inmultidisciplinary environments.
P12	Lifelong learning: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

With effect from the Academic Year 2023-24

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS):: IBRAHIMBAGH, HYDERABAD – 500 031. DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-23)::B.E. - EEE: FIRST SEMESTER(2023-24)

Course Code	Name of the Course		ne of action		Scheme of Examination				
Course Code	Name of the Course	Hours per Week			Duration in Hrs	Maximum Marks		Credits	
		L	Т	P/D	75	SEE	CIE	70	
	THEOR	′		•					
U23BS110MA	Matrices & Calculus	3	-	-	3	60	40		
U23BS110CH	Engineering Chemistry	3	-	-	3	60	40		
U23PC110EE	Circuit Theory	3	-	-	3	60	40		
U23ES120EE	Programming and Problem Solving for EEE	3	-	-	3	60	40		
U23ES110CE	Basic Engineering Mechanics	3	-	-	3	60	40		
U23MC010CE	Environmental Science		-	-	3	60	40		
U23MC010ME Introduction to Entrepreneurship		1	-	-	2	40	30		
	PRACTICA	LS							
U23PC111EE	Electrical Circuits Lab	-	-	2	3	50	30		
U23ES121EE	Programming and Problem Solving for EEE Lab	-	-	2	3	50	30		
U23BS011CH	Chemistry Lab	-	-	2	3	50	30		
U23ES111ME	Engineering Workshop-I	-	-	2	3	50	30		
	Library/Sports/Proctorial Interaction	-	-	-	-	-	-		
	PDC/CC/TC/RC	-	-	-	-	-	-		
	TOTAL	18	-	8		600	390	1	
	GRAND TOTAL		26			9	90	1	

B.E students shall complete one NPTEL Certificate equivalent Course of 8 weeks equivalent to 2 Credits by the end of VI semester

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

MATRICES & CALCULUS

SYLLABUS FOR B.E. I SEMESTER

(Common to Civil, EEE, ECE and Mech)

L:T: P (Hrs/Week):3:1:0	SEE Marks: 60	Course Code: U23BS110MA
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

The course will enable the students to: 1. Study the concepts of rank of a matrix, System of linear equations and LU-Decomposition method.

- **2. Learn** the concepts of Eigen values and Eigen vectors, Diagonalization of a matrix
- **3. Understand** the concepts of curvature, radius of curvature, evolutes and to expand functions using Taylor's series.
- **4. Acquire** the knowledge of partial derivatives and expand functions of two real variables using Taylor's series and maxima minima.
 - **5. Identify** the nature of an infinite series using various tests.

COURSE OUTCOMES At the end of the course students

1. Find the rank of a given matrix and solution of a system by LU-Decomposition method.

should be able to:

- **2. Apply** the similarity transformation to diagonalize a matrix.
- **3. Compute** the radius of curvature, evolute of a given curve and to expand given function using Taylor's series.
- **4. Expand** the given function in terms of Taylor's series and find the maxima and minima of functions of several variables also using Lagrange's method of multipliers.
- **5. Apply** an appropriate test to check the nature of an infinite series.

UNIT-I

MATRICES-I

Rank of a Matrix- Echelon form - Normal Form - Linearly Dependence and Independence of Vectors— Consistency and Inconsistency of Homogeneous and Non-Homogeneous system of linear equations — LU-Decomposition method.

UNIT-II

MATRICES-II

Characteristic equation- -Eigen values and Eigenvectors - Cayley - Hamilton Theorem

(without proof) - Diagonalization using Similarity Transformation-Reduction of Quadratic from to Canonical form.

UNIT – III DIFFERENTIAL CALCULUS

Taylor's Series – Maclaurin's Series - Curvature - Radius of Curvature – Centre of Curvature – Evolutes (Cartesian and Parametric forms of the curves).

UNIT – IV MULTIVARIBLE CALCULUS

Limits- Continuity (Concepts) - Partial Derivatives - Higher Order Partial Derivatives - Total Derivates - Derivatives of Composite and implicit functions - Taylor's series of functions of two variables - Maxima and Minima of functions of two variables - Lagrange's Method of multipliers.

UNIT-V INFINITE SERIES

Definition of Sequence, Convergence of sequence. Series – Convergence and Divergence-Series of positive terms-Geometric series- P-series test - Comparison tests – Limit comparison test-D'Alemberts Ratio Test – Cauchy's root test - Alternating Series – Leibnitz test – Absolute and Conditional convergence.

Text Books:

- 1 Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House.
- 2 Higher Engineering Mathematics, B. S. Grewal 40^{th.} Edition, Khanna Publishers.

Reference Books:

- 1 Advanced Engineering Mathematics 8^{th} Edition by Erwin Kreyszig , John Wiley & Sons.
- 2 Differential Calculus by Shanti Narayan S. Chand & Co
- 3 Vector Calculus Schaum's outline series.

Online Resources:

- http://mathworld.wolfram.com/topics
- 2 http://www.nptel.ac.in/course.php
- 3 https://www.coursera.org/in

The break-up of CIE: Internal <u>Test</u>s+ Assignments + Quizzes

No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
 No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF CHEMISTRY

ENGINEERING CHEMISTRY

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U23BS110CH
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	T
COURSE OBJECTIVES	COURSE OUTCOMES
The objectives of the course are:	At the end of the course, students
-	should be able to:
1. Study types of conductance, variation	1. Construct a galvanic cell and calculate
of electrode potential and EMF and to	its EMF and pH wherever applicable.
acquaint with applications of Galvanic Cell.	2. Describe the construction, functioning
2. Classify and compare various types of	and applications of the selected primary,
batteries and fuel cells.	secondary batteries and fuel cells.
3. Get acquainted with different types of	3. Classify the polymers and discuss the
polymers and their applications.	synthesis and applications of few
4. Explain the concepts of engineering	polymers.
materials like nano materials and liquid	4. Get expose to the classification,
crystals.	properties and applications of nano
5. Know the principles of few analytical	materials and liquid crystals.
techniques.	5. Familiarize with the basic concepts of

UNIT-I: ELECTROCHEMISTRY

Introduction, conductance, types of conductance – specific, equivalent, molar conductance and their interrelationship – numericals. Principle and applications of conductometric titrations- strong acid vs strong base, week acid vs strong base and mixture of acids vs strong base.

Cells – electrolytic and electrochemical cells. IUPAC convention of cell notation, cell reaction, concept of electrode potential, electromotive force (EMF). Electrochemical series – applications, Nernst equation – derivation, applications and numericals. Types of electrodes – construction and working of calomel electrode (CE), quinhydrone electrode and glass electrode (GE).

Determination of pH using glass electrode and quinhydrone electrode.

UNIT-II: BATTERY TECHNOLOGY

Introduction – definition of cell and battery – Types of cells (reversible and irreversible cells). Battery characteristics: free energy change, electromotive force of battery, power density, energy density – numericals, Memory effect, flat discharge rate.

Primary batteries: Construction and electrochemistry of Zn-C battery – acidic and alkaline battery and lithium- V_2O_5 battery.

Secondary batteries: Construction and working of lead-acid and lithium ion battery – advantages, limitations and applications.

Fuel cells: Concept, types of fuel cells and merits. Construction, working and applications of methanol - oxygen fuel cell and phosphoric acid fuel cell.

UNIT-III: POLYMER CHEMISTRY

Introduction, degree of polymerization, functionality of monomers and its effect on the structure of polymers. Classification of polymers - a) homo and co-polymers, b) homo chain and hetero chain polymers. c) plastics-elastomers, fibers and resins.

Types of Polymerizations – Addition and condensation polymerization.

Glass transition temperature and factors affecting glass transition temperature.

Molecular weight – number average and weight average molecular weight, numericals.

Plastics: thermo plastics and thermosets,

Biodegradable polymers: Concept, preparation and uses of ploy lactic acid. **Conducting polymers:** Definition – classification, mechanism of conduction in (p-doped and n-doped) polyacetylene and applications.

Polymer composites: Introduction, advantages of composites over conventional materials, Classification of composites. Manufacturing methods-Hand lay up and RTM method.

UNIT-IV: ENGINEERING MATERIALS

Nanomaterials

Introduction – concept of nanomaterials – quantum confinement and surface volume ratio – surface Plasmon resonance. Applications of Nanomaterials.

Types of Nanomaterials: carbon nanotubes, quantum dots, nanowires, nanocrystals.

Synthesis of nanomaterials: Top down and bottom-up approaches – Mechanical grinding by ball milling, sol gel method.

Carbon Nanotubes: Single walled carbon nanotubes (SWCNTs). Multi walled carbon nanotubes (MWCNTs), synthesis of CNTs – arc discharge and laser ablation methods.

Liquid Crystals

Introduction, classification of liquid crystals – Thermotropic and Lyotropic liquid crystals – Chemical constitution & liquid crystalline behavior. Molecular ordering in liquid crystals – Nematic, Smectic and Cholestric liquid crystals – Applications.

UNIT-V: INSTRUMENTAL METHODS OF ANALYSIS

Spectroscopy: Principle of Beer- Lamberts law, numericals. Principle, block diagram and Applications of Atomic Absorption Spectroscopy (AAS).

Microscopic techniques: Introduction, Limitations of optical microscopy. Significance of de Broglie's equation, Principle and block diagram of Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM).

Thermo Gravimetric Analysis: Principle, block diagram of Thermogravimetric Analysis (TGA) and analysis of calcium oxalate and copper sulphate.

Text Books:

- 1. P. C. Jain, M Jain Engineering Chemistry, Dhanapathi Rai and sons (16th edition), New Delhi.
- 2. Sashi Chawla, Text book of Engineering Chemistry, Dhanapathi Rai &sons, New Delhi.
- 3. O. G. PALANNA, Engineering Chemistry, TMH Edition.
- 4. Wiley Engineering chemistry, Wiley India pvt Ltd, II edition.
- 5. Chemistry in engineering and technology by J.C. Kuriacose and Rajaram.

Learning Resources:

- 1. University chemistry, by B. H. Mahan
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin

and M. S. Krishnan

- 3. Physical Chemistry, by P. W. Atkins
- 4. S. S. Dara, S Chand and sons, Engineering Chemistry, New Delhi.
- 5. Puri, Sharma and Pathania Principles of physical chemistry, Vishal Publishing Co.
- 6. NPTEL Polymer Chemistry Course, D. Dhara, IIT Kharagpur.
- 7. Polymer chemistry by Gowariker
- 8. Introduction to Nanoscience, by S m Lindsay, Oxford University press

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1.				Max. Marks for each Internal Test	:	30
2.	No. of Assignments			Max. Marks for each Assignment	:	5
3.	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

Department of Electrical & Electronics Engineering

PROGRAMMING AND PROBLEM SOLVING FOR EEE

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U23ES120EE
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
1	Acquire problem solving skills.	1 Design flowcharts and
2	Develop flow charts.	algorithms for solving a given
3	Understand structured	problem using the fundamentals
	programming	of programming.
	concepts.	2 Apply decision making, looping
4	Write programs in C Language.	constructs and functions to develop
		programs for a given problem.
		3 Store data using arrays and
		perform searching and sorting
		operations on the data.
		4 Design programs on string
		handling and operations on arrays
		using dynamic memory
		management techniques.
		5 Develop programs to store
		data and perform operations using
		structures and files.

UNIT-I

Introduction to Computers: Computer Systems, Computing Environments, Computer Languages, Creating and Running Programs, Software Development, Flowcharts. Number Systems (Binary, Octal, Decimal and Hexadecimal), Representation of Numbers (Fixed and Floating Point).

Introduction to C Language: Background, C Programs, Identifiers, Types, Variables, Constants, Input/Output, Expressions, Precedence and

Associativity, Side Effects, Evaluating Expressions, Type Conversion, Statements, Bitwise Operators.

UNIT-II:

Selection: Logical Data and Operators, if... else, switch Statements, Standard Functions.

Repetition: Loops, while, for, do-while Statements, Loop Examples, break, continue, goto.

Functions: Designing Structured Programs, Functions Basics, User Defined Functions, Inter-Function Communication, Standard Functions, Scope, Storage Classes-Auto, Register, Static, Extern, Scope Rules and Type Qualifiers.

UNIT-III:

Recursion: Recursive Functions, Preprocessor Commands.

Arrays: Concepts, Using Arrays in C, Inter-Function Communication, Array Applications, Two-Dimensional Arrays, Multidimensional Arrays, Linear Search and Binary Search, Selection Sort and Bubble Sort.

UNIT-IV:

Pointers: Introduction, Pointers for Inter-Function Communication, Pointers to Pointers, Compatibility, LValue and RValue, Arrays and Pointers, Pointer Arithmetic and Arrays, Passing on Array to a Function, Memory Allocation Functions, Array of Pointers, Programming Applications, Pointers to void, Pointers to Functions, Command Line Arguments.

Strings: Concepts, C Strings, String Input/Output, Functions, Arrays of Strings, String Manipulation Functions.

UNIT-V:Type Definition (typedef), Enumerated Types.

Structure: Definition and Initialization of Structures, Accessing Structures, Nested Structures, Arrays of Structures, Structures and Functions, Pointers to Structures, Self Referential Structures, Unions.

Input and Output: Files, Streams, Standard Library Input/Output Functions, Character Input/Output Functions.

Learning Resources:

- 1. Forouzan B.A & Richard F. Gilberg, A Structured Programming Approach using C,3rd Edition(2013), Cengage Learning.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming

- Language, 2nd Edition (2006), Prentice-Hall.
- 3. Rajaraman V, The Fundamentals of Computer, 4th Edition(2006), Prentice-Hall of India
- 4. Steve Oualline, Practical CProgramming, 3rd Edition (2006), O'Reilly Press.
- 5. Jeri R. Hanly, Elliot B. Koffman, Problem Solving and Program Design in C, 5thEdition (2007), Pearson Education.
- 6. Balagurusamy E, Programming in ANSI C, 4th Edition(2008), TMG.
- Gottfried, Programming with C, 3rd Edition(2010), TMH. 7.
- 8. R G Dromey, How to Solve it byComputer,1st Edition(2006), Pearson Education.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1. No. of Internal Tests 2 Max. Marks for each Internal Test : 30 3 Max. Marks for each Assignment 5 2. No. of Assignments 5

Max. Marks for each Quiz Test 3. No. of Quizzes

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF CIVIL ENGINEERING

BASIC ENGINEERING MECHANICS (Common to Civil, CSE, ECE, EEE & Mechanical Engineering)

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U23ES110CE	
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours	

	_
COURSE OBJECTIVES	COURSE OUTCOMES
Objectives of this course are to:	At the end of the course, students will
	be able to:
1. Explain the resolution of a system of	1. Determine resultant of forces
forces (coplanar, spatial,	acting on a body.
concurrent, non-concurrent) and	2. Analyse equilibrium of a body
compute their resultant.	subjected to a system of forces.
2. Solve particle equilibrium problem	3. Perform analysis of trusses using
using equation of equilibrium	method of joints and method of
3. Determine forces in the members of	sections.
a truss	4. Solve problem of bodies subjected
4. Perform analysis of bodies lying on	to friction.
rough surfaces.	5. Find the location of centroid and
5. Locate the centroid of a body and	calculate moment of inertia and
also compute the area moment of	polar moment of inertia of a given
inertia of standard and composite	section.
sections.	

UNIT-I: Force Systems: Rectangular components, moment, couple and resultant of two dimensional and three dimensional force systems.

UNIT-II: Equilibrium of Force Systems: Free body diagram, Equations of equilibrium, Equilibrium of planar and spatial system.

UNIT-III: Determinate Trusses: Analysis of plane trusses like Warren

girder, Pratt truss, Fink truss etc using method of joints and method of sections.

UNIT-IV: Friction: Laws of friction. Application to simple systems, Connected systems and belt friction, Wedge friction.

UNIT-V: Centroid and Moment of Inertia: Centroids of lines, areas and volumes, Moment of inertia of areas, Composite areas, Polar moment of inertia, Radius of gyration.

Learning Resources:

- 1. Singer F.L "Engineering Mechanics", Harper & Collins, Singapore, 3rd Edition 2011.
- 2. Timoshenko S.P and Young D.H "Engineering Mechanics", McGraw Hill International Edition, 2017
- 3. Andrew Pytel., JaanKiusalaas., "Engineering Mechanics", 4th edition, Cengage Learning, 2015.
- 4. Beer F.P & Johnston E.R Jr. "VectorMechanics for Engineers", TMH, 2019.
- 5. Hibbeler R.C, "Engineering Mechanics", 4th edition, Pearson Education, 2017.
- 6. Tayal A.K., "Engineering Mechanics Statics & Dynamics", 4th Edition, Umesh Publications, 2011.
- 7. Basudeb Bhattacharyya., "Engineering Mechanics", Oxford University Press, 2014, 2nd Edition
- 8. Meriam. J. L. and Kraige L.G., "Engineering Mechanics", Volume-I Statics, John Wiley & Sons, 2017.
- 9. NPTEL Course (<u>www.nptel.ac.in</u>)
- 10. Virtual labs (www.vlab.co.in)

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests : 2
 No. of Assignments : 3
 Max. Marks for each Internal Test : 30
 No. of Assignments : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Circuit Theory

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U23PC110EE
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
The objective of Circuit theory is to provide a thorough understanding of the fundamentals of electric circuits such that the student would develop an in depth know ledge of circuit elements (active and passive), their characteristics and their functioning to analyze and apply to many engineering problems.	 Describe the elements of electrical circuits and apply basic laws and principles to determine desired values. Apply basic Electrical concepts to analyze dc electrical circuits. Apply basic Electrical concepts to analyze ac electrical circuits. Apply network theorems to analyze Electrical circuits Apply concepts of three phase circuits to analyze them.

UNIT-I: Electric Circuit fundamentals:

Charge and Current, Voltage, Power and energy, Passive sign convention, Passive circuit elements R, L and C and their V-I relationships, Description of independent and dependent sources, Ohm's law, KCL, KVL, Series and parallel circuits, Current and voltage division principles, Source transformation, Wye – Delta transformation, Delta-Wye transformation.

UNIT-II: DC Circuit Analysis:

Nodal and mesh analyses containing independent and dependent sources. **AC Circuit Fundamentals:** Definition and computation of average

value, RMS value of periodic signals, form factor and peak factor, Definition of phasor, Phasor domain conversions.

UNIT-III: AC Circuit Analysis:

Network analysis techniques in phasor domain, Steady state response of RLC circuits subjected to sinusoidal excitation. Definition of instantaneous power, complex power and Power factor. Power in single phase accircuits.

Unit IV: Network Theorems:

Linearity, Superposition, Thevenin's, Norton's, Maximum Power Transfer and Tellegen's Theorem with DC and AC excitation.

Unit V: Three phase circuits:

Balanced three phase voltages, three phase power, Wye and Delta Connected systems, Calculations of voltage, current and power in three phase circuits for balanced and unbalanced loads. Three phase power measurement using two wattmeters.

Learning Resources:

- 1. Charles K.Alexander& Matthew N.O.Sadiku, Fundamentals of ElectricCircuits.Tata McGraw-Hili, 6th Edition, 2019.
- W.H.Hayt, J.E.Kimmerly, Engineering Circuit Analysis, McGraw Hill, 8thEdition, 2013
- M.E. Van Valkenburg, Network Analysis, Prentice Hall of India, 3rd Edition, 2019
- David A.Bell, Electric Circuits ,Oxford university Press, Seventh Edition,2015

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
 No. of Assignments : 3 Max. Marks for each Assignment : 5
 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Mechanical Engineering

Introduction to Entrepreneurship

SYLLABUS FOR B.E.I-SEMESTER

L:T:P(Hrs/week):1:0:0	SEE Marks:40	Course Code: U23MC010ME
Credits: 0	CIE Marks:30	Duration of SEE: 2 Hours

COURSE OBJECTIVE The objective of the course is to	COURSE OUTCOMES On completion of the course, students will be able to		
inspire students develop an entrepreneurial mind-set, educate about the resources and schemes available to start enterprises in India.	 Get awareness about entrepreneurship and potentially become an entrepreneur. Discern the characteristics required to be a successful entrepreneur Know the importance of effective communication. Demonstrate effective sales skills. 		

Unit-I:Sources of new ideas, techniques for generating ideas.

Team formation, how entrepreneurship has changed the country and world, entrepreneurial myths, E-cells and their significance, success story of entrepreneurs, eg: Practo, global entrepreneurs, entrepreneurial journeys, challenges, and successes, characteristics of a successful entrepreneur, entrepreneurial styles, introduction to business model.

Unit-II: Importance of effective communication for entrepreneurs, communication barriers, miscommunication, incorrect assumptions about people, importance of listening, design thinking, sales skills, understanding the customercentric approach, personal selling techniques, show and tell, elevator pitch,

managing risks and learning from failures, women entrepreneurs.

Learning Resources:

- 1. Bruce R. Barringer and R. Duane Ireland, "Entrepreneurship: successfully launching new ventures", 3rd edition, Pearson Prentice Hall, 2009.
- 2. P. Denning and R. Dunham, "The Innovator's Way", MIT Press: Cambridge, Massachusetts, 2010.
- 3. Arya Kumar, "Entrepreneurship", Pearson Education, Delhi, 2012.
- 4. Michael H. Morris, D.F.Kuratko, J G Covin, "Corporate Entrepreneurship and Innovation", Cengage learning, New Delhi, 2010
- 5. Peter F. Drucker, "Innovation and Entrepreneurship", Routledge Classics, 2015.
- 6. Eric Ries, "The Lean Start-up", Currency, 1st edition, 2011.

Web Resources:

7. http://www.learnwise.org

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1. No. of Internal Tests: 1 Max. Marks for each Internal Test: 20

2. No. of Assignments : 1 Max. Marks for each Assignment : 5

3. No. of Quizzes : 1 Max. Marks for each Quiz Test : 5

VASAVI COLLEGE OF ENGINEERING (Autonomous) IBRAHIMBAGH, HYDERABAD - 500 031

DEPARTMENT OF CIVIL ENGINEERING ENVIRONMENTAL SCIENCE

(Common to Civil, ECE, EEE &Mech.)
SYLLABUS FOR B.E.I-SEMESTER

L:T:P(Hrs/week):2:0:0	SEE Marks:60	Course Code: U23MC010CE
Credits : -	CIE Marks:40	Duration of SEE: 3 Hours

I	COURSE OBJECTIVES n this subject the students will		course outcomes n the completion of this course
3	 n this subject the students will Describe various types of natural resources available on the earth surface. Explain the concepts of an ecosystem and the biotic and abiotic components of various aquatic ecosystems. Identify the values, threats of biodiversity, endangered and endemic species of India along with the conservation of biodiversity. Explain the causes, effects and control measures of various types of environmental pollutions. Describe the methods for water conservation, the causes, effects of global warming, climate change, acirain, ozone layer depletion, 	studing studin	
	population explosion.		

UNIT-I: Environmental Studies: Definition, importance of environmental studies. Natural resources: Water resources; floods,drought, conflicts over water, dams-benefits and problems. Food resources; Effects of modern agriculture, fertilizer-pesticide problems, Eutrophication, Biomagnification, water logging, salinity. Energy resources: Renewable and non-renewable energy resources. Land Resources, soil erosion and desertification.

UNIT-II: Ecosystems: Definition of ecosystem, classification of ecosystem, Structure and function of an ecosystem, producers, consumers

and decomposers, food chains, food webs, ecological pyramids, aquatic ecosystem (ponds) ,Terrestrial ecosystem(Forest)

UNIT-III: Biodiversity: Definition, Genetic, species and ecosystem level diversity. Values of biodiversity, threats to biodiversity, endangered and endemic species of India, conservation of biodiversity. Biological diversity Act 2002.

UNIT-IV: Environmental Pollution: Causes, effects and control measures of air pollution, air pollution control devices (catalytic convertor) water pollution, water pollution monitoring devices, soil pollution, noise pollution, solid waste types, Municipal solid waste & e-waste management. **UNIT-V: Social Aspects and the Environment:** Water conservation, Climate change, global warming, case study related to self cooling technologies, acid rain, ozone layer depletion, Kyoto protocol. Environmental Impact Assessment, population explosion. Consumerism, Sustainable development goals (SDG-17), Environmental protection act 1986.

Learning Resources:

- 1. Deswal S. and Deswal A., A Basic Course on Environmental studies, Dhanpat Rai & Co Pvt. Ltd. 2013.
- 2. Benny Joseph, Environmental Studies, Tata McGraw-Hill, 2006.
- 3. Suresh K. Dhameja, Environmental Studies, S.K. Kataria & Sons, 2010.
- 4. De A.K., Environmental Chemistry, New Age International, 2003.
- 5. Odum E.P., Fundamentals of Ecology, W.B. Sunders Co., USA, 2004.
- 6. Sharma V.K., Disaster Management, National Centre for Disaster Management, IIPE, Delhi, 2013.
- 7. Rajagopalan R., Environmental Studies, Second Edition, Oxford University Press, 2013.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

The break up of old internal restor resignments r quilles						
1.	No. of Internal	••	2	Max. Marks for each Internal	••	30
	Tests			Test		
2.	No. of Assignments	:	2	Max. Marks for each Assignment	••	5
3.	No. of Quizzes		2	Max. Marks for each Quiz Test		5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Electrical Circuits Lab

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23PC111EE
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES The course will enable the students	COURSE OUTCOMES On completion of the course, students will be able to
Circuits Laboratory is to provide Under	1. Choose appropriate instrument for leasuring electrical quantities. 2. Apply fundamental laws and find the nknown quantity (voltage/Current) in circuits ith suitable analysis. 3. Analyze network theorems and identify leapplications of them. 4. Analyze the Sinusoidal steady state esponse of RLC circuits. 5. Understand the power measurement of three phase circuits for both balanced and unbalanced loads

List of experiments:

- Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Practical resistors, capacitors and inductors.
- 2. Series and parallel circuits with DC excitation.
- 3. Average and RMS values of periodic waveforms.
- 4. Sinusoidal steady state response for R-L and R-C circuits Measurement of phase angle.

- 5. Determination of power and Power factor in single phase ac circuits.
- 6. Superposition theorem.
- 7. Thevenin's and Norton's theorems.
- 8. Maximum power transfer in a circuit.
- 9. Tellegen's theorem.
- 10. Measurement of cumulative three-phase power in balanced three-phase circuits.
- 11. Measurement of three-phase power in unbalanced three-phase circuits.
- 12. Simulation of Sinusoidal steady state response of R-L R-C and R-L-C circuits.

From the above experiments, each student should perform at least 10(Ten) experiments.

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for assessment of each experiment			18
Duration of Internal Test: 3 Hours			

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF CHEMISTRY

CHEMISTRY LAB

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23BS011CH
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES The course will enable the students to:	COURSE OUTCOMES At the end of the course, students should be able to:
1.Describe the quantitative analytical techniques 2.Learn the skills to handle the instruments 3.Apply the theoretical principles in experiments	 Estimate the amount of metals in the given solutions. Analyze the hardness, alkalinity and chloride content of a given water sample. Determine the concentration a given solution by conductometry, potentiometry and pH metry. Use the principle of colorimetry in the estimation of Permanganate / Copper (II) in a given solution.

Note: Minimum of Ten experiments of the following.

- 1. Preparation of standard FAS or oxalic acid solution and standardization of $KMnO_4$ or NaOH solution.
- 2. Estimation of ferrous iron in the given solution by permanganometry.
- 3. Estimation of chromium (VI) in the given solution by standardized FAS.
- 4. Estimation of copper (II) in given solution by hypo.
- 5. Estimation of available chlorine in bleaching powder.
- 6. Estimation of total hardness of given water sample.

- 7. Estimation of alkalinity of a given sample.
- 8. Conductometric acid-base titrations -Determination of strength of given acids (HCl *Vs* NaOH and CH₃COOH *Vs* NaOH).
- 9. Conductometric acid-base titrations- Determination of strength of acids in a given mixture of acids

(HCl and CH₃COOH Vs NaOH)

- 10. Determination of strength of a given acid by Potentiometry.
- 11. Determination of concentration of a given FeSO₄ using redox titration by Potentiometry.
- 12. Determination of strength of a given acid by pH metry.
- 13. Determination of strength of permanganate or copper in brass solution by Colorimetry.
- 14. Synthesis of Phenol formaldehyde resin / PANI.
- 15. Chemistry of blue printing.

Text Books:

- 1. G H Jeffery, J Bassett, J Mendham, R C Denney, Vogel's text book of quantitative chemical analysis, Fifth Edition.
- 2. M S Kaurav, Engineering chemistry with laboratory experiments, PHI learning (P) ltd, New Delhi.
- 3. Sunita rattan, Experiments in applied chemistry, S K Kataria & Sons (2010)
- 4. A text book on experiments and calculation Engg. S.S. Dara.

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for assessment of each experiment		18	
Duration of Internal Test: 3 Hours			

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

Department of Electrical & Electronics Engineering

Programming and Problem Solving for EEE Lab SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23ES121EE	
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours	

COURSE OBJECTIVES The course will enable the students to:	COURSE OUTCOMES On completion of the course, students will be able to		
 Understand the fundamentals of programming in C Language Write, compile and debug programs in C. 	 Choose appropriate data type for implementing programs in C language. Design and implement modular 		
3. Formulate solution to problems and implement in C. 4. Effectively choose	programs involving input output operations, decision making and looping constructs.		
programming components to solve computing problems.	3. Implement search and sort operations on arrays.		
	4. Apply the concept of pointers for implementing programs on dynamic memory management and string handling.		
	5. Design and implement programs to store data in structures and files.		

Programming Exercise:

- 1. Programs to illustrate operators
- 2. Programs to illustrate selection control statements
- 3. Programs to illustrate loop control statements
- 4. Programs to illustrate nested loop control statements.
- 5. Programs to illustrate functions and recursion
- 6. Programs to illustrate one dimensional arrays, searching and sorting.

- 7. Programs to illustrate two dimensional arrays
- 8. Programs on pointers: pointer to arrays, pointer to functions.
- 9. Functions for string manipulations.
- 10. Programs on structures and unions.
- 11. Finding the number of characters, words and lines of given text file.
- 12. File handling programs.

Learning Resources:

- 1. Forouzan B.A & Richard F. Gilberg, A Structured Programming Approach using C, 3rd Edition(2013), Cengage Learning.
- 2. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2ndEdition (2006), Prentice-Hall.
- 3. Steve Oualline, Practical CProgramming,3rd Edition(2006),O'Reilly Press.
- 4. Balagurusamy E, Programming in ANSI C, 4th Edition(2008), TMG.

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work 18			18
Duration of Internal Test: 2 Hours			

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MECHANICAL ENGINEERING

Engineering Workshop-I (Common to Mechanical, Civil & EEE branches)

SYLLABUS FOR B.E. I SEMESTER

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23ES111ME
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES The objective of the course is to	COURSE OUTCOMES On completion of the course, students will be able to
know basic workshop processes, adopt safety practices while working with various tools	
identify, select and use various marking, measuring, holding, striking and cutting tools & equipment.	tools. 2. Measure and inspect the finished components using suitable measuring instruments. 3. Apply basic electrical and electronics engineering knowledge to make simple electrical circuits and check their functionality along with practice in soldering of electronic components.

List of the Experiments: PLUMBING:

- 1. Introduction of tools, joints, couplings and valves etc.
- 2. Pipe thread cutting and making single joint with coupling and tap connection.
- 3. Water shower connection with reducer coupling

ELECTRICAL & ELECTRONICS:

- 1. Two lamps in (a) series (b) parallel with 3 pin plug and switches
- 2. Staircase wiring and Tube light wiring
- 3. (a) Identification of electronic components
- (b) Soldering practice

CARPENTRY:

- 1. Half-lap joint
- 2. Dove-tail joint
- 3. Bridle joint

SHEET METAL:

- 1. Rectangular box
- 2. Rectangular scoop with handle
- 3. Making a funnel with soldering

Additional Experiments

- 1. Plastic Moulding: Injection moulding of plastic spoon (demo)
- 2. Plumbing: Geyser connection(demo)
- 3. Electrical & Electronics: LT Distribution with loads (Demo)
- 4. Carpentry: Wood turning operation (demo)
- 5. Sheet Metal: Making a T-Joint (Demo).

Learning Resources:

- Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of Workshop Technology" Vol-I 2008 & Vol-II 2010 Media Promoters & Publishers Pvt. Limited, Mumbai.
- Kalpakjian S. and Steven R. Schmid, "Manufacturing Engineering and Technology" 4th Edition, Pearson Education India, 2002.
- 3. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education 2008.
- 4. P. Kannaiah& K. L. Narayana "Workshop manual" 2nd Ed., Scitech publications (I) Pvt. Ltd., Hyderabad.
- 5. B.L. Juneja, "Workshop Practice", Cengage Learning India Pvt. Limited, 2014.
- 6. www.technologystudent.com

No. of Internal Tests:	01	Max. Marks for Internal Test:	12	
Marks for day-to-day laboratory class work 18			18	
Duration of Internal Test: 2 Hours				

With effect from the Academic Year 2023-24

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) :: IBRAHIMBAGH, HYDERABAD - 500 031.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SCHEME OF INSTRUCTION AND EXAMINATION (R-23) :: B.E. - EEE: SECOND SEMESTER(2023-24)

_	B.E (EEE) II Semester				_		•	
			cheme o		Scheme of Examination			redits
Course Code	Name of the Course	Hours per Week				Maximum Marks		
		L	Т	P/D	Duration in Hrs	SEE	CIE	0
	THEORY				•			
U23HS010EH	English Language and Communication	2	-	-	3	60	40	2
U23BS210MA	Differential Equations & Vector Calculus	3	-	-	3	60	40	3
U23BS210PH	Quantum Mechanics and Material Science	3	-	-	3	60	40	3
U23ES210EE	Object Oriented Programming using C++	3	-	-	3	60	40	3
U23ES230CE	Basic Engineering Drawing	1	-	2	3	60	40	2
U23PC210EE	Power Systems –I	2	-	-	3	60	40	2
U23HS020EH			40	30	1			
	PRACTICALS							
U23BS211PH	Engineering Physics Lab	-	-	2	3	50	30	
U23ES211EE	Object Oriented Programming using C++ lab	-	-	2	3	50	30	1
U23HS011EH	English Language and Communication Skills Laboratory	-	-	2	3	50	30	
U23ES211ME	Engineering Workshop – II	-	-	2	3	50	30	
	Library/Sports/Mentor - Mentee Interaction	-	-	-	-	-	-	
	PDC/CC/TC/RC	-	-	-				
	TOTAL	15	-	10	-	600	390	7
	GRAND TOTAL		25	•		990		2

B.E students shall complete one NPTEL Certificate Course of 8 weeks equivalent to 2 Credits by the end of VI semester

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

English Language and Communication

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):2:0:0	SEE Marks: 60	Course Code: U23HS010EH
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours

	COURSE OBJECTIVES		COURSE OUTCOMES
The	course will enable the learners	At ti	ne end of the course the learners
to:		will	be able to: -
1.	Build greater confidence and proficiency in oral and written communication.	1.	Communicate effectively and appropriately in both professional & personal spheres.
2.	Equip themselves with essential language skills to analyze and articulate their point of views.	2.	Listen to different types of spoken discourses and use them in relevant contexts.
3.	Develop the ability to engage in reading for reflection and enquiry.	3.	Construct grammatically correct sentences using adequate
4.	Construct grammatically correct and contextually appropriate correct		vocabulary to compose written and spoken discourses.
5.	sentences. Learn how project reports are	4.	Read, evaluate and appreciate various text types.
	written in their related field of study.	5.	Research, collect data and write branch -specific structured project reports in English

UNIT- 1.0 Effective communication and Interpersonal skills

- 1.1 Role and Importance of Communication styles, channels and barriers of communication.
- 1.2 Politeness theory Brown & Levinson.
- 1.3 Johari Window

- 1.4 Persuasion techniques.
- 1.5 Stages of Team Building by Bruce Tuckman

UNIT-2 2.0 Listening and Speaking skills

- 2.1 Importance of listening--Types of listening
- 2.2 Speaking skills: Grice's conversational Principles

UNIT-3 3.0 Reading and Writing skills

- 3.1Reading strategies- SQ3R Survey, Question, Read, Recite, Review.
- 3.2 Features of Writing---Principles of writing paragraphs-Coherence, Cohesion & Unity; Use of appropriate linkers/connectives.
- 3.3 Request letters
- 3.4 Writing structured project reports.

UNIT-4 4.0 Vocabulary Building and Grammar

- 4.1 **Vocabulary Building**: Synonyms, Antonyms, One-word substitutes; Collocations; Idioms.
- 4.2 **Functional Grammar**: Articles, Prepositions; Tense and Aspect; Subject-Verb agreement; Direct and Indirect Speech. (Identifying errors in contextual sentences)

UNIT-5 5.0 Reading for appreciation of literary texts

- 5.1 **Prose text** What's the language of the future by Henry Hitchings.
- 5.2 **Poem -** What Life should be-Patricia A Fleming.

Prescribed textbook for theory:

Technical communication - Principles and Practice (Latest Edition) - Meenakshi Raman and Sangeeta Sharma- Oxford University Press.

Suggested Reading

- 1. Paul V. Anderson Technical Communication
- 2. E. Suresh Kumar, P. Sreehari and J. Savithri Essential English
- 3. Reading comprehension Nuttal.J.C Orient Blackswan
- 4. Sunitha Mishra, C. Murali Krishna, Communication Skills for Engineers, Pearson, 2004.
- 5. M. Ashraf Rizvi. Effective Technical Communication. Tata Mcgraw Hill, 2005.

- 6. Allen and Waters., How English Works.
- 7. Willis Jane., English through English.
- 8. Brown, Penelope and Stephen C. Levinson. 1978. Universals in language usage: politeness phenomena: Cambridge University Press.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests: 2 Max. Marks for each Internal : 30 Test
 No. of Assignments: 3 Max. Marks for each Assignment: 5
 No. of Quizzes: 3 Max. Marks for each Quiz Test: 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

DIFFERENTIAL EQUATIONS & VECTOR CALCULUS (Common to Civil, EEE, ECE, Mech.)

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):3:1:0	SEE Marks: 60	Course Code: U23BS210MA
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES The course will enable the students to:	COURSE OUTCOMES At the end of the course students should be able to:
1. Study the concepts of vector	1. Find the gradient of a scalar point
differentiation.	function, divergence and curl of vector
2. Learn how to evaluate double and	field and its applications.
triple integrals and Study the concepts of	2. Apply the concepts of multiple
vector integration.	integrals to evaluate area, volume and
3. Learn to Solve the first order	vector integral theorems
differential equations and its applications.	3. Solve the first order differential
4. Learn to Solve the various higher order	equations, model the real time
homogeneous and non-homogeneous	engineering problems viz., RC& LR
linear differential equations with constant	Circuits into differential equations.
coefficients and its applications.	4. Solve the higher order Linear
5. Understand the concepts of Beta,	Differential equations; model the real time
Gamma functions and Error function	engineering problems.
	5. Evaluate Improper integrals using
	Beta, Gamma functions

UNIT – I ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

Exact first order differential equations - Integrating factors - Clairaut's equation - Applications: Orthogonal trajectories (Cartesian families), LR and RC Circuits

UNIT - II

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Solutions of Homogeneous and Non-Homogeneous linear equations with constant coefficients: Complimentary function & Particular Integral-Method of Variation of Parameters. LCR circuits

UNIT – III SPECIAL FUNCTIONS

Definition of Improper Integrals. Beta function , Gamma function , Relations between Beta & Gamma function , Properties of Beta and Gamma functions.

UNIT – IV MULTIPLE INTEGRALS

Double and Triple integrals (Cartesian) - Change of order of integration (Cartesian Coordinates)- Jacobian for two variables - Change of the Variables (Cartesian to polar Coordinates).

UNIT – V VECTOR CALCULUS

Scalar and Vector point function and their derivatives - Level Surface - Gradient of a scalar point function - Normal to a level surface - Directional Derivative - Divergence and Curl of a Vector Field - Solenoidal and Irrotational vectors - Line integral - Green's Theorem (Without proof) - Conservative vector field

Text Books:

- 1. Advanced Engineering Mathematics 3rd Edition, R.K.Jain&S.R.K.Iyengar, Narosa Publishing House.
- 2. Higher Engineering Mathematics 40thEdition Dr. B.S Grewal, Khanna Publishers.
- 3. A Text book of Engineering Mathematics, N.P.Bali& Manish Goyal, Laxmi Publications.

Reference Books:

- Advanced Engineering Mathematics, by Wylie & Barrett, Tata Mc Graw Hill, New Delhi.
- 2. Advanced Engineering Mathematics, 8th Edition by Erwin Kreyszig , John Wiley & Sons, Inc.
- 3. Complex Variables and applications, J.W.Brown and R.V.Churchill, 7th Edition, Tata Mc Graw Hill,2004.

Online Resources:

- http://mathworld.wolfram.com/topics
- 2. http://www.nptel.ac.in/course.php
- 3. https://www.coursera.org/in
- 4. http://davidbau.com

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
 No. of Assignments : 3 Max. Marks for each Assignment : 5
 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF PHYSICS

Quantum Mechanics and Material Science (Common Syllabus for ECE and EEE Branches)

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U23BS210PH
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Demonstrate the significance of crystal structure in device applications. Appreciate the advantages of quantum mechanics over classical mechanics. Arrive at the expressions for carrier concentration in semiconductors Comprehend lasing action and relate the use of lasers in optical fiber communication Choose appropriate dielectric, magnetic and superconducting materials for required applications	 Apply Schrodinger wave equations to quantum mechanical systems. Apply semiconductor physics to fabricate various devices Compare different types of lasers. Summarize merits and demerits of optical fibers.

UNIT-I: FUNDAMENTALS OF CRYSTAL STRUCTURE

Introduction to crystallography-Miller Indices, inter planar spacing (d_{hkl}), Bragg's law, x- ray diffraction, Debye-Scherer (powder) method, distinction between crystalline, polycrystalline, and amorphous materials, Point Defects and their effects, expression for concentration of Schottky and Frankel defects and applications relevant to electronics and communication engineering.

UNIT-II: QUANTUM MECHANICS

De Broglie Hypothesis, wave packet, Davisson and Germer's experiment, wave function and its significance, Schrodinger time dependent and independent wave equations,

Eigen values and Eigen functions of infinite square-well potential (particle in a box). Potential barrier-quantum tunneling problem. Introduction to bra and ket vector notation, representation of Qubit, applications of quantum computing.

UNIT-III: SEMICONDUCTOR PHYSICS

Classical free electron Drude theory and its limitations, Fermi-Dirac Statistical distribution, Density of states, Kronig-Penney model, formation of energy bands, E-k diagram, types of semiconductors, fermi energy level, variation of Fermi energy level with temperature and doping concentration, expression for equilibrium carrier concentration in intrinsic and extrinsic semiconductors, conductivity of intrinsic and extrinsic semiconductors, formation of P-N Junction, Hall effect and its applications. Applications of semiconductor devices in electronic engineering.

UNIT-IV: LASERS AND OPTICAL FIBRES

Lasers: Induced absorption, spontaneous and stimulated emissions, characteristics of lasers, population inversion, meta-stable states, pumping mechanisms, components of laser, Properties of laser beam, types of lasers, construction and working of He-Ne laser and semiconductor laser, advantages and applications of lasers. Optical Fibers: principle of optical fiber, propagation of light in optical fiber, numerical aperture, acceptance angle, types of optical fibers, V- number, signal losses in optical fibers: Attenuation-absorption, scattering, bending, alignment losses, Signal distortion: intermodal and intra model dispersions, block diagram of optical communication system, advantages and application of optical fibers.

UNIT-V: MATERIALS SCIENCE

Dielectric Materials: Polar and non-polar dielectrics, types of dielectric polarizations, Expressions for electronic polarizability and ionic polarizability, Frequency and temperature dependence of dielectric polarizations, applications of dielectric materials.

Magnetic Materials: Origin of magnetism, Ferromagnetic materials, antiferromagnetic materials and ferri-magnetic (ferrites) materials, Weiss molecular field theory of ferromagnetism, magnetic domains, hysteresis curve, soft and hard magnetic materials and their applications.

Superconductivity: Introduction to superconductivity, General properties of superconductors, Meissner effect, Type I and Type II superconductors-fundamentals of BCS Theory - Josephson's Junctions-Josephson's effects—SQUIDS- Applications of superconductors.

Learning Resources:

- Charles Kittel, Introduction to Solid State Physics, 8th edition, John Wiley & Sons, 2012
- 2. S O Pillai, Solid State Physics, 8th edition, New Age International Publishers, 2018
- 3. M.N. Avadhanulu and P.G. Kshirsagar and TVS Arun Murthy, A Textbook Engineering Physics, 11th edition, S. Chand, 2019.
- 4. NPTEL MOOCS, Introduction to Solid State Physics, Satyajit Banerjee
- 5. NPTEL MOOCS, Concepts in Magnetism and Superconductivity, Prof Arghya Taraphder.
- 6. NPTEL MOOCS, Solid State Physics, Prof. Amal Kumar Das.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
 No. of Assignments : 3 Max. Marks for each Assignment : 5
 No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Object Oriented Programming using C++

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):3:0:0	SEE Marks: 60	Course Code: U23ES210EE
Credits: 3	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES The course will enable the students to:	COURSE OUTCOMES On completion of the course, students will be able to
 Understand basic notions of object oriented programming. Acquire object-oriented problem solving skills. Write programs in C++. 	 Explain Object Oriented Programming concepts using C++. Design programs using functions, input/output operations, decision making and looping constructs. Create classes using object oriented design principles. Design programs to implement inheritance, polymorphism. Design programs to implement exception handling.

UNIT-I

Introduction to C++: Programming paradigms, Object Oriented Programming Concepts, Advantages and Applications of OOP.

Variables and Assignments, Input and Output, Data Types, Expressions, Simple Flow Control and Control Structures.

Defining Classes: Structures, Classes, Abstract Data Types.

UNIT-II

Functions: Call by Value, Call by Reference, Parameters using Procedural Abstraction, Testing and Debugging Functions.

I/O Streams as an introduction to Classes and Objects

Arrays: Introduction to Arrays, Arrays in Functions, Programming with Arrays

and Multidimensional Arrays.

UNIT-III

Strings, Pointers and Dynamic Arrays, Recursion, Constructors, Destructors, Copy Constructors.

Static Polymorphism: Function and Operator Overloading, Friend Functions.

UNIT-IV

Inheritance: The Notion of Inheritance, Derived Classes, Overriding, Virtual Base Class.Runtime Polymorphism, Virtual Functions.

UNIT-V

Function Templates and Class Templates.

Exception Handling: Exception Handling Basics, Programming Techniques for Exception Handling

Learning Resources:

- 1. Walter Savitch, "Problem solving with C++", 6th Edition, Pearson Education, 2009.
- 2. Behrouz A. Forouzan, Richard F. Gilberg, "Computer Science, A Structured Approach using C++", 2nd Edition, Cengage Learning, 2010.
- 3. E. Balaguruswamy, "Object-Oriented Programming with C++", 6^{th} Edition, Tata Mc-Graw Hill, 2013.
- 4. K.R.VenuGopal, Rajkumar Buyya, T.RaviShankar, "Mastering C++", 2nd Edition, McGraw Hill, 2013.
- 5. S.B. Lippman. J Lajoie , "C++ Primer" 3rd Edition, AW Publishing Company, 2007.
- 6. Paul Dietel, Harvey Dietel, "C++ How to Program", 6th Edition, PHI, 2010.
- 7. Bjarne Stroustrup, "The C++ Programming Language", 4th Edition, Addison-Wesley, 2013.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests : 2 Max. Marks for each Internal Test : 30
 No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF CIVIL ENGINEERING Basic Engineering Drawing

(Common to EEE & ECE)

SYLLABUS FOR B.E. II SEMESTER

L:T:P (Hrs./week): 1:0:2	SEE Marks: 60	Course Code: U23ES230CE
Credits: 2	CIE Marks: 40	Duration of SEE: 3Hrs

COURSE OBJECTIVES Objectives of this course are to:	COURSE OUTCOMES At the end of the course, students will be able to:	
 Impart skills in using drawing instruments to convey exact and complete information of the object. Construct conic sections and regular polygons. Construct the orthographic projections of points, lines, planes and solids. Visualize and construct isometric projections. 	 Understand the fundamentals of drawing. Draw the orthographic projections of points and straight lines. Draw the orthographic projections of planes inclined to both reference planes. Draw the orthographic projections of solids inclined to one reference plane. Draw the isometric projections of lines, planes and solids. 	

UNIT-I: Introduction to Engineering Drawing: Necessity of Engineering Drawing for engineers, Use of Drawing Instruments, Types of Lines, Lettering practice, Dimensioning and its methods, Conic sections by eccentricity method, Regular polygons given the length of side.

UNIT-II: Orthographic Projections: Principles of orthographic projections, conventions, projections of points placed in different quadrants. Projections of straight lines inclined to one and two reference planes placed in first quadrant only. Traces (By conventional methods only).

UNIT-III: Projections of Planes: Projections of perpendicular planes, oblique planes and their traces.

UNIT-IV: Projections of Regular Solids: Projections of prism, cylinder, pyramid and cone in simple positions and axis inclined to one reference plane. Development of lateral surfaces of full solids.

UNIT-V: Isometric Projections: Principles of isometric projections – Isometric scale, Isometric axes, Isometric planes, Isometric view. Isometric views of lines, planes, regular solids, and combination of two solids.

Learning Resource:

- 1. Bhatt N.D. "Elementary Engineering Drawing", Charotar Publishers, 2014.
- 2. Thomas E French, Charles J Vierck, Robert J. Foster, "Engineering Drawing and Graphic Technology", Mc Graw Hill Education, 1993.
- 3. Gill P.S. "Engineering Drawing: Geometrical Drawing", S K Kataria &sons, 2012.
- 4. Venu gopal. K" EngineeringDrawingand Graphics Plus Autocad",New Age International (P) Ltd., New Delhi,2011.
- 5. Siddiquee A.N" Engineering Drawing with a Primer on Autocad", Prentice hall of India Ltd., New Delhi, 2004.
- 6. Basanth Agrawal, Agrawal C.M " Engineering Drawing" Second Edition, Tata McGraw Hill, 2013
- 7. BVR Gupta, MRajaRoy, "Engineering Drawing with AutoCad", IKInt Pvt Ltd, 2009.
- 8. NPTEL Course (www.nptel.ac.in)
- 9. Virtual labs (www.vlab.co.in)

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Test : 30

2. No. of Assignments : 3 Max. Marks for each Assignment : 5

3. No. of Quizzes : 3 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Power System – I

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):2:0:0	SEE Marks: 60	Course Code: U23PC210EE
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
Objectives of this course are to:	On completion of this course the
	student will be able to :
1. Have a fair knowledge about the fundamentals of various conventional	Identify and select the proper type of Power Plant for the Power Generation.
power plants like Thermal, Hydel, Nuclear and Gas.	Estimate the Energy generated by Different Non conventional Generating stations.
2. Acquire the knowledge of different types of Non conventional energy generation methods like Solar, Wind,	3. Assess the depreciation methods, Tariffs
Ocean Thermal Energy Conversion (OTEC), Tidal and Geo thermal.	4. Test and categorize the insulators and calculate the Sag & Tension in Over head lines.
3. Understand the Economics of Power Generation, Types of costs, Depreciation, methods of P.f. improvement, Tariffs	
4. Have the knowledge of construction of Over head lines, materials, Supports, insulators and Underground cables.	

UNIT - I

Thermal, Hydel, Nuclear Power Generation Principles, Choice of site, layout and various parts of generating stations. Estimation of power in Hydel, flow duration curve, hydrograph, mass curve etc. Types of Hydel stations. Nuclear Stations, PWR, BWR, FBR. GAS Turbines, GAS power stations, MAJOR DISASTERS around the world in power plants-lessons learnt.

UNIT - II

Non-Conventional energy generation methods: Solar, Wind, Ocean Thermal

Energy Conversion (OTEC), Tidal, Solar cells, Efficiency, Solar collectors, Concentrators. Wind generators, Wind turbine types, rotors construction, Hybrid power generation.

UNIT - III

Economics of Power Generation: Load Curve, load demand and diversity factors, base load and peak load operation, types of costs and depreciation fund calculations, tariffs.

UNIT-IV

Construction of Overhead lines - Overhead line materials - Supports - types, Vibration Dampers, Arcing Horns, Sag / Tension calculations, Equal / Unequal supports, Effects of Wind, ICE/Erection Conditions Stringing Ch arts Insulators-Types - Material for construction - potential distribution over string of insulators, Equalizing of potential-Methods, Insulators testing. Underground cables - Insulating Materials, Mechanical Protection, EHV / HV / LV cables, grading of cables, capacitance of 3 core cables.

Learning Resources

- 1. C.L. Wadhwa, Electrical Power Systems, Wiley Eastern Ltd. 5thEdition, 2005
- 2. C.L.Wadhwa, Generation, Distribution and Utilization of Electrical Energy, Wiley Eastern Ltd., 5thEdition, 2005.
- 3. S.N.Singh- Electrical Power Generation, Transmission and Distribution-Prentice Hall pvt.ltd.New-2003.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1.	No. of Internal Tests	:	2	Max. Marks for each Internal Test	:	30
2.	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3.	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES HUMAN VALUES AND PROFESSIONAL ETHICS - I

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):1:0:0	SEE Marks: 40	Course Code: U23HS020EH
Credits: 1	CIE Marks: 30	Duration of SEE: 2 Hours

	COURSE OBJECTIVES		COURSE OUTCOMES
The to:	course will enable the learners		ne end of the course the learners be able to: -
1.	Get a holistic perspective of value- based education.	1.	Understand the significance of value inputs in a classroom and start
2.	Grasp the meaning of basic human aspirations vis-a-vis the professional	2	applying them in their life and profession
3.	aspirations Understand professionalism in harmony with self and society.	2.	Distinguish between Personal and Professional life goals—constantly evolving into better human beings
4.	Develop ethical human conduct and professional competence.	3.	and professionals. Work out the strategy to actualize a
5.	Enrich their interactions with the world around, both professional and	J.	harmonious environment wherever they work.
	personal.	4.	Distinguish between ethical and unethical practices, and start implementing ethical practices
		5.	Apply ethics and values in their personal and professional interactions.

UNIT-1 HARMONY WITH SELF AND FAMILY

Understanding and living in harmony at various levels-with self, family, society and nature and the Ethical and moral values: which include self-sufficiency, self-determination, self-advocacy, self-competence, self-direction, self-efficacys, self-regulation, self-reliance, and self-responsibility. This also includes Family values involving all the ideas of how you want to live your family life, and they are often passed down from previous generations.

- 1.1 Self-Values and Ethics
- 1.2 Family Values and Ethics
- 1.3 Flipped class room

UNIT-2 PROFESSIONAL VALUES AND BEHAVIOUR

At the level of individual: as socially and ecologically responsible engineers and technologists. Team Work: Developing Credibility and building trust by having open and truthful communication. This includes recognizing the value of time and respecting time of self and others.

- 2.1 Professional Ethics Individual
- 2.2 Professional Ethics Team
- 2.3 Flipped class room

UNIT-3 SOCIAL VALUES

Values of service, social justice, dignity and worth of the person Importance of human relationships, integrity, and competence.

- 31. Social Values
- 3.2 Importance of relationship
- 3.3 Flipped class room

UNIT-4 SPIRITUAL VALUES

Developing individual practice and has to do with having a sense of peace and purpose. Spiritual values, namely, benevolence, charity, dignity, forbearance, hope, humility, kindness, love, modesty, peace, perseverance, piety, repentance, righteous, sacredness, sincerity, steadfastness, striving, trusting, truthfulness, unity, and wisdom.

- 4.1 Spiritual Values
- 4.2 Mindful Vs Mindfull
- 4.3 Flipped class room

MODE of DELIVERY

Viva

 Questionnaires 	 Discussions
 Quizzes 	Skits
Case-studies	 Short Movies/documentaries
 Observations and practice 	 Team tasks and individual tasks
 Home and classroom assignments 	 Research based tasks

Relevant Websites, CD's and Documentaries

https://plato.stanford.edu/

Learning Resources:

learn.talentsprint.com

The break-up of CIE: Internal Tests+ Assignments + Quizzes

No. of Internal Tests: 1 Max. Marks for each Internal : 20 Test
 No. of Assignments : 2 Max. Marks for each Assignment : 5
 No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF PHYSICS

ENGINEERING PHYSICS LAB SYLLABUS FOR B.E. II SEMESTER (Common to ECE and EEE)

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23BS211PH
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

	students acquire the ability to
characteristics of a given device To identify probable errors and take in the readings and known possible precautions To compare the experimental and theoretical values and draw possible conclusions. To interpret the results from the graphs drawn using experimental values. To write the record independently with appropriate results.	Conduct experiment independently and in team to record the measurements Outline the precautions required to be taken for each experiment Compare the experimental results with standard values and estimate errors Draw graphs and interpret the results with respect to graphical and theoretical values Write the summary of the experiment and draw appropriate conclusions

- 1. Determination of wavelength of Laser light.
- 2. Study of I-V characteristics of P-N Junction diode.
- 3. Study of I-V characteristics of Zener Diode.
- 4. Calculation of numerical aperture, acceptance angle and power loss due to bending of an optical fibre.
- 5. Determination of energy gap of a given semiconductor by four probe method

- 6. Study of I-V characteristics of solar cell and to calculate fill factor and efficiency
- 7. Determination of Hall's coefficient using Hall's effect
- 8. Determination of e/m of an electron by Thomson's method
- Study of resonance in LCR series circuits and estimation of band width & Qfactor
- 10. Study of resonance in LCR parallel circuits
- 11. Determination of wavelength of a light source by Michelson interferometer
- 12. Determination of Seebeck coefficient
- 13. Helmholtz coil -calculation of magnetic field along the axis of a solenoid
- 14. B-H curve-estimation of Hysteresis loss of a ferromagnetic sample

*Each student should perform at least 10 (Ten) experiments.

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work			18
Duration of Internal Test: 3 Hours			

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

OBJECT ORIENTED PROGRAMMING USING C++ LAB

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23ES211EE
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES On completion of the course, students will be able to
 Write, compile and debug programs in C++. Formulate problems and implement in C++. Acquire skills to solve computing problems. 	language

LIST OF EXPERIEMNTS

- 1. Programs on matrix and complex numbers using classes.
- 2. Programs using constructors, destructors and copy constructors.
- 3. Programs on dynamic memory allocation for arrays.
- 4. Programs on static data members.
- 5. Programs on string manipulations.
- 6. Programs to demonstrate friend class.
- 7. Programs to demonstrate function overloading.
- 8. Programs to demonstrate operator overloading.
- 9. Programs to demonstrate inheritance.
- 10. Programs on virtual functions, dynamic polymorphism.

- 11. Programs on function templates, class templates.
- 12. Programs on exception handling.

SUGESTED BOOKS:

- 1. Walter Savitch, "Problem solving with C++ ", 6th Edition, Pearson Education Publishing, 2009.
- 2. Behrouz A. Forouzan, Richard F. Gilberg, "Computer Science, A Structured Approach using C++", 2nd Edition, Cengage Learning, 2010.
- 3. Balaguruswamy, "Object-Oriented Programming with C++", 6th Edition, Tata McGrawHill, 2013.

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Day-to-day laboratory class work which will be awarded based on the average of assessment for each experiment considering at the end of the course		18	
Duration of Internal Test: 3	Ηοι	ırs	

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES English Language and Communication Skills Laboratory

SYLLABUS FOR B.E. II SEMESTER

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23HS011EH
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The course will enable the students to:	On completion of the course, students will be able to
1. Learn the speech sounds, parts of speech	1. Speak well using 'generally acceptable
and distinguish between vowel and	English' in terms of pronunciation and
consonant sounds in the English language	diction.
to reduce mother tongue influence when	Participate effectively in group
speaking English.	discussions, public speaking, debates
2. Understand and follow the rules in	(formal and informal).
debates, group discussions, interviews.	3. Read, analyse, evaluate and infer
3. Develop reading skills and analyse	meaning from different types of texts and
various text types.	paraphrase them.

1.0 PHONETICS LAB- TOPICS

1.1 Introduction to English Phonetics:

Classification of consonants and vowel sounds and related symbols. Pronunciation of commonly mispronounced words & words with missing letters.

1.2 **Aspects of language learning and ear training activities-** Word stress and intonation, Pronunciation of silent letters, mispronounced words, and Foreign words used in English

2.0 INTERACTIVE COMMUNICATION SKILLS LAB-TOPICS

- 2.1 **Formal and informal conversations**—From initiating to terminating stage.
- 2.2 **Group discussion:** Objectives of GD, Types of GDs; Initiating, Sustaining, and

concluding a GD—Using discourse markers.

2.3 **Public speaking:**

Dos and don'ts of public speaking. Listening and analysing speeches of great personalities in history, Josh talks, Movies.

2.4 Debate:

Understanding the difference between a debate and a group discussion, essentials of debates.

3.0 READING SKILLS LAB

- 3.1 Strategies of reading using SQ3R, applying it to various text types.
- 3.2 Teaching different types of texts for comprehension—Fromshort stories to technical articles.
- 2.3.1 Newspaper reading. Summarizing, paraphrasing, and presenting news articles.

Prescribed textbook for laboratory:

- 1. Speak Well: JayshreeMohanraj, KandulaNirupa Rani and Indira Babbellapati Orient Black Swan
- 2. Longman Dictionary of Contemporary English–Latest Edition.

Learning Resources:

- 1. Balasubramanian: A textbook of English phonetics for Indian students, Macmillan, 2008.
- 2. PriyadarshiniPatnaik : Group discussion and interviews, Cambridge University Press India private limited 2011.
- 3. Daniel Jones: Cambridge English Pronouncing Dictionary A Definitive guide to contemporary English Pronunciation.
- 4. Reading Cards (Eng400): Orient Black Swan. Reading Squabble Hadfield.

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for assessment of each experiment			18
Duration of Internal Test: 3 Hours			

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

Department of Mechanical Engineering

ENGINEERING WORKSHOP - II

SYLLABUS FOR B.E. II SEMESTER (Common to Mechanical, Civil & EEE Branches)

L:T: P (Hrs/Week):0:0:2	SEE Marks: 50	Course Code: U23ES211ME
Credits: 1	CIE Marks: 30	Duration of SEE: 3 Hours

COURSE OBJECTIVES The course will enable the students to		COURSE OUTCOMES On completion of the course, students will be able to
1	know basic workshop processes, adopt safety practices while working with various tools	1 create models in Smithy, Welding, fitting and Machining trades by using the relevant tools.
2	identify, select and use various marking, measuring, holding, striking and cutting tools &equipments.	2 measure and inspect the finished components using suitable measuring instruments.

List of the Experiments: BLACK SMITHY

- 1. Flattening (round to square cross section)
- 2. Bending operation (U-shape)
- 3. S-shape hook

WELDING

- 1. Bead formation using arc welding
- 2. Butt joint & T joint using arc welding
- 3. Lap joint using gas welding`

FITTING

1.Template fitting (square fit)

- 2.V-groove fit
- 3. Drilling and Tapping

MACHINING

- 1. Plain turning and step turning
- 2. Taper turning
- 3. Thread cutting

ADDITIONAL EXPERIMENTS

- 1. Black Smithy: Fullering operation (demo)
- 2. Welding: Spot welding (demo)
- 3. Fitting: Assembly of pulley on a shaft with key (demo)
- 4. Machining: Additive manufacturing (demo)

Learning Resources:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of Workshop Technology" Vol-I 2008 & Vol-II 2010 Media Promoters & Publishers Pvt. Limited, Mumbai.
- 2. Kalpakjian S. and Steven R. Schmid, "Manufacturing Engineering and Technology" 4th Edition, Pearson Education India, 2002.
- 3. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education 2008.
- 4. P. Kannaiah& K. L. Narayana "Workshop manual" 2nd Ed., Scitech publications (I) Pvt. Ltd., Hyderabad.
- 5. B.L. Juneja, "Workshop Practice", Cengage Learning India Pvt. Limited, 2014.
- 6. www.technologystudent.com
- 7. www.mewelding.com

No. of Internal Tests:	01	Max. Marks for Internal Test:	12
Marks for day-to-day laboratory class work			18
Duration of Internal Test: 2 Hours			