SCHEME OF INSTRUCTION & EXAMINATION B.E. III-YEAR under AUTONOMOUS SCHEME (MECHANICAL ENGINEERING) AY 2017-18

	SEMESTER – I									
				Scheme of Instruction			Scheme of Examination			
SI No.	Syllabus Ref .No.	SUBJECT	Н	ours Wee	•		Duration	Maximum Marks		Credits
			L	Т	D	P	in Hours	Sem. End Exam	Sessi- onals	
	THEORY									
1	ME3010	Dynamics of Machines	4	1	0	0	3	70	30	4
2	ME3020	Design of Machine Elements	4	1	0	0	3	70	30	4
3	ME3030	Manufacturing Processes	3	-	0	0	3	70	30	3
4	ME3050	Hydraulic Machinery & Systems	3	1	0	0	3	70	30	3
5	ME3110	Refrigeration & Air Conditioning	3	1	0	0	3	70	30	3
6	CE2090	Environmental Studies	2	-	0	0	3	70	30	2
7	HS3110	Finishing School-III (Soft Skills)	1	1	0	0	11/2	35	15	1
8	ME3120	Finishing School-III (Technical Skills)	1	1	0	0	11/2	35	15	1
		PRACTIC	ALS							
1	ME3011	Manufacturing Processes Lab	-	-	-	2	3	50	25	1
2	ME3021	Fluids & Hydraulic Machinery Lab	-	-	-	2	3	50	25	1
	TOTAL 21 6 - 4 - 590 260 23									
	GRAND TOTAL 32 850									
	SEMESTER – II									
	THEORY									
1	ME3060	Machine Design	4	1	-	-	3	70	30	4
2	ME3070	Mechanical Vibrations	4	1	-	-	3	70	30	4
3	ME3080	CAD/CAM	3	0	-	-	3	70	30	3
4	ME3090	Machine Tools & Metal Cutting	3	0	-	-	3	70	30	3
5	ME3100	Heat Transfer	4	1	-	-	3	70	30	4
6	HS3140	Human Values and Professional Ethics-II	1	0	-	-	3	70	30	1
7	HS3210	Finishing School-IV (Soft Skills)	1	1	-	1	11/2	35	15	1
8	IT2180	Finishing School-IV (Technical Skills)	1	1	-	-	11/2	35	15	1
		PRACTIC	ALS		_					
1	ME3031	Dynamics of Machines Lab	-	-	-	2	3	50	25	2
2	ME3041	CAD/CAM Lab	-	-	-	2	3	50	25	2
3	ME3051	Machine Tools & Metal Cutting Lab	-	-	-	2	3	50	25	2
		TOTAL	21	5	-	6	-	640	285	24
		GRAND TOTAL		32				92	-	

SYLLABUS FOR B.E. 3/4 I-SEMESTER

DYNAMICS OF MACHINES

Instruction: 4+1 Hours /week	Semester End Exam Marks: 70	Subject Reference Code : ME 3010
Credits : 4	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to:	On completion of the course, the student will be able
1. identify the forces involved in mechanisms and	to:
gyroscopic effects in vehicles.	1. calculate the gyroscopic couple and interpret its
2. formulate equations for rigid body dynamics.	effect in designing engineering systems.
3. interpret the cause and effects of unbalancing in	2. solve the rigid body dynamic equations.
machines. 4. relate forces and torque required to overcome	3. calculate balancing masses required for rotating
friction in mechanical systems.	and reciprocating components.
5. show the working principle of governors and	4. calculate the forces and torque including friction
flywheels in controlling speed of engines.	in mechanical systems.
	5. calculate the operational characteristics in
	Governor and design of flywheels.

UNIT-I

Static and Dynamic: Force analysis of 4-bar and slider crank mechanisms. Study of dynamically equivalent system, Inertia forces on connecting rod.

Gyroscope: Gyroscopic couple, gyroscopic effects in vehicles.

UNIT-II

Introduction to Rigid body dynamics: Basic concepts in 3-D rigid-body mechanics, Newton-Euler Equations, Formulation of equations of motion for inter-connected bodies

UNIT-III

Balancing

Forces due to rotating shaft carrying several masses in several planes. Rotary balancing on single plane and multiple planes, Shaking forces in single cylinder engine, Partial balancing of reciprocating masses. Balancing of multi cylinder in-line engines, V type engines and Radial engines.

UNIT-IV

Friction: Screw threads, pivots, collars, clutches

Brakes and Dynamometers: Block, band, block and band, internally expanding shoe brakes. Prony brake, rope brake, belt transmission, epicyclic gear transmission, torsion dynamometers.

UNIT-V

Governors: Classification of governors, Watt, Porter, Hartnell and Hartung governors, Controlling Force, Stability, Isochronism, Sensitivity, Power and Effort of governors.

Flywheels: Functions, Differences between flywheel and governor. Turning moment diagrams, flywheel analysis for I.C. Engines and Presses.

Learning Resources:

- 1. S.S. Rattan, "Theory of Machines", Tata McGraw Education Pvt. Ltd., New Delhi 2010.
- 2. Thomas Bevan, "The Theory of Machines", CBS Publishers & Distributors, 2004.
- 3. John J. Uicker, Jr., Gordon R. Pennock, Joseph E. Shigley, "Theory of Machines and Mechanisms", Oxford University Press, 2003.
- 4. R.L. Norton, "Kinematics and Dynamics of Machinery" Tata McGraw Education Pvt. Ltd., New Delhi 2009.
- 5. Ahmed A Shabana "Dynamics of Multibody Systems", 4th ed, Cambridge University Press, 2013

SYLLABUS FOR B.E. 3/4 I-SEMESTER

DESIGN OF MACHINE ELEMENTS

Instruction: 4+1 Hours /week	Semester End Exam Marks: 70	Subject Reference Code : ME 3020
Credits : 4	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to :	On completion of the course the student will be able
1. understand the stresses in machine members due	to:
to various types of loads and failure of components	1. select the proper material for the machine
according to theories of failures.	component based on theories of failure and
2. analyze the components under variable loading	estimate the factor of safety.
for infinite and finite life.	2. determine the sizes under different types of
3. design of machine elements under torsion,	fatique loads and estimate the life of the
bending, axial loads and a combination of these.	components.
4. design of various joints and fasteners for a given	3. calculate the size of machine elements for
load to be transmitted.	transmitting torque, bending moment and axial
5. design of various screws, rivited and welded	loads.
joints.	4. identify the type of joints and fasteners required
	for a given application.
	5. predict the type of failure and estimate the
	efficiency.

IINTT-T

Design considerations of Machine Elements. Materials used in machine design and their specifications according to Indian Standards. Codes and standards used in design. Important mechanical properties of materials used in design. Preferred numbers. Manufacturing considerations in design. Review of types of loads and simple stresses. Stresses due to Bi-axial and Tri-axial loads. Factor of safety. Theories of failures. Design of components subjected to impact loading.

UNIT-II

Design for Fatigue: Fluctuating stresses, fatigue strength and endurance limit Stress concentration factor and Notch sensitivity. Factors affecting fatigue strength. S-N diagram, Soderberg and Modified Goodman's diagrams for fatigue design. Cumulative fatigue - Miner's rule.

UNIT-III

Design of shafts: solid, hollow and splined shafts under torsion and bending loads. ASME code for design of shafts. Design of keys. Design of couplings - Muff, Split muff, Flange, Flexible, Marine type couplings. Design of pulleys and chain drives.

UNIT-IV

Design of Bolts, nuts & Joints: Design of Bolts and nuts, locking devices for nuts, bolts of uniform strength, bolted joints under eccentric loads. Design of Cotter and Knuckle joints.

UNIT-V

Design of Screws: Design of power Screws and screw jack. Differential and Compound Screws. Design of rivetted and welded joints under direct and eccentric loads.

Learning Resources:

- 1. M.F. Spotts, "Design of Machine Elements", 7th edn., Pearson Edu, 2003.
- 2. V. B. Bhandari, "Design of Machine Elements", 3rd Edn., Tata McGraw- Hill Pub., 2010.
- 3. P.C. Sharma & D.K. Aggarwal, "Machine Design", 10th edn., S.K. Kataria & Sons, , 2003.
- 4. J.E. Shigley & Charles R. Mischke "*Mechanical Engineering Design"*, 6th ed., Tata McGraw-Hill., 2010.
- 5. NC Pandya and CS Shah, "Machine Design", Charotar publishing House, 2006.

Web Resources: http://nptel.ac.in/courses/112105124

SYLLABUS FOR B.E. 3/4 I-SEMESTER

MANUFACTURING PROCESSES

Instruction: 3 Hours /week	Semester End Exam Marks: 70	Subject Reference Code : ME 3030
Credits : 3	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to:	On completion of the course the student will be able
1. understand casting process, materials and	to:
ingredients used for casting and its design.	1. select materials, types and allowances of patterns
2. learn the types of furnaces used for casting,	used in casting and molding.
different types of casting processes.	2. analyze special casting processes and the
3. explain principles of Welding processes, Types of	equipment
welding processes.	3. understand the techniques of solid state and arc
4. Become familarized with special welding	welding processes
processes and welding defects	4. select welding processes for special applications
5. list the types of forming processes,	5. develop process maps for metal forming
unconventional forming processes	processes using plasticity principles.

UNIT-I

Casting Process: Casting terms, pattern materials, types of patterns, pattern allowances, colour code for patterns, Moulding sands, core sands, properties of moulding sand and its ingredients, different types of moulding machines, Directional solidification, use of chaplets, chills, riser and gating design.

UNIT-II

Special Casting Processes: Shell moulding, Co2 moulding, die casting, centrifugal casting, investment or lost wax process; Casting defects, causes and remedies, Inspection and testing of casting. Furnaces used in foundry-Cupola, Induction and Arc furnace.

Processing of plastics - Extrusion, Injection moulding, Blow moulding and Thermoforming.

UNIT-III

Welding Processes: Solid state welding processes - Friction welding, Forge welding, Explosive welding and ultrasonic welding, Gas welding, Arc welding- SMAW, SAW, GMAW, GTAW, PAW, Atomic hydrogen welding, Welding defects, principle of Soldering and Brazing.

UNIT-IV

Special Welding Processes: Laser beam welding, Electron beam welding, Thermit welding, and Electro slag welding. Resistance welding processes - Spot welding, Projection welding, Seam welding, Butt welding, weldability.

UNIT-V

Forming Processes: Cold & Hot working, Yield criteria, Process description of Forging, Rolling, Extrusion, Wire drawing, Blanking, Piercing, Bending, Deep drawing, Stretch forming, Spinning. Introduction to unconventional forming processes-Explosive forming, Electro-magnetic forming, Electro-hydraulic and rubber pad forming.

Learning Resources:

- 1. P.N.Rao, "Manufacturing Technology," Vol. 1, 3rd Ed., Tata McGraw Hill Publ., , 2011.
- 2. Amitabh Ghosh & Mallick, "Manufacturing Science", 4th Ed., Assoc. East west Press Pvt. Ltd., 2011.
- 3. Roy A. Lindberg, "Materials & Process of Manufacturing", 5th Ed., Prentice Hall of India, 1992.
- 4. Serope Kalpakjian, "*Manufacturing Engineering and Technology"*, Addison, Wesley Publishing Company, 2006
- 5. George.E. Dieter, "Mechanical Metallurgy", McGraw-Hill Book Company, 1988

SYLLABUS FOR B.E. 3/4 I-SEMESTER

HYDRAULIC MACHINERY & SYSTEMS

Instruction :3+1 Hours /week	Semester End Exam Marks :70	Subject Reference Code : ME3050
Credits : 3	Sessional Marks: :30	Duration of Semester End Exam :3 Hours

Course Objectives	Course Outcomes
The objectives of this course are to:	On completion of the course the student will be able
 list the effect of hydrodynamic forces on various types of vanes. describe the working of reciprocating pumps and their performance. analyze centrifugal pumps and their performance. compare hydroturbines and evaluate their performance. understand basic concepts of hydraulic circuits 	 apply fundamental knowledge to understand effect of hydrodynamic forces on various types of vanes. estimate the performance and draw performance characteristics curves for reciprocating pumps. calculate the performance of the centrifugal
and symbolic representation of various components.	 pump and draw characteristic curves. design and estimate the efficiency of turbines with study of characteristic curves. use the knowledge of different types of fluid control valves and apply to draw hydraulic circuits.

UNIT-I

Hydraulic Machines: Classification— Impulse momentum equation— Layout of hydraulic power plant — Working principle — Impact of jet on vanes — Force exerted by a jet striking and work done (i) a fixed flat vertical vane held normal to the jet flow (ii) At the centre of a fixed symmetrical curved vane (iii) At one end of fixed symmetrical and unsymmetrical curved vanes (iv) Flat vertical vane moving in the direction of jet (v) A series of flat vertical moving vanes (vi) At the centre of a symmetrical moving curved vane (vii) A symmetrical curved vane moving in the same direction as that of jet at inlet (viii) At one end of an un-symmetrical moving curved vane (ix) Hinged plate

UNIT-II

Reciprocating Pumps: Classification, working principle-single and double acting pumps-discharge, work done and power required to drive the pumps-slip, % slip and negative slip- variation of pressure head in the Suction and delivery pipes due to acceleration of piston- variation of pressure head due to friction in the suction and delivery pipes.

Indicator diagrams- Ideal and actual diagrams –Effect of piston acceleration and pipe friction on indicator diagram- Maximum speed at which the pump must run to avoid separation during suction and delivery strokes-Air vessels- Function of air vessels- Work saved by fitting air vessels to single and double acting pumps – Discharge of liquid into and out of air vessels- Performance characteristic curves.

UNIT-III

Centrifugal pumps: Classification – Working principle – Comparison over reciprocating pumps – Velocity triangles – Manometric head – Work done per second – Head equivalent of work done – Manometric, mechanical and overall efficiencies – Pressure rise in the impeller – Minimum starting speed – Specific speed – Physical significance of specific speed – Model testing – Conditions of similarity of CF pumps – Priming – Performance characteristic curves – Troubles (operational difficulties), reasons and remedies in CF pumps – Cavitation – Effects of Cavitation – Precautions against Cavitation.

UNIT-IV

Hydraulic Turbines: Classification of impulse and reaction turbines – Construction and working of Pelton wheels, Francis turbine and Kaplan turbine – Velocity triangles – Work done (power developed) – Hydraulic, Mechanical and Overall efficiencies – Maximum efficiency – Comparison between Impulse and reaction turbines – Comparison between Francis and Kaplan turbines – Specific speed – Physical significance of specific speed – Unit quantities – Model testing of turbines – Conditions for similarity of turbines – Draft tubes – functions and types of

draft tubes - Surge tanks - Functions and types of surge tanks - Performance characteristic curves.

UNIT-V

Industrial Hydraulics: Basic components of hydraulic circuits. Hydraulic oils: Properties and types of hydraulic oils; External Pumps: Working principles of external Pumps - gear, lobe, vane, radial piston and axial piston; Valves: Construction details and actuating methods of sliding spool directional control valves. Specification of D.C. valve; working of - flow control, pressure relief, pressure reducing and sequencing valves; Actuator and hydraulic motor: Working and construction details of single acting and double acting actuator and hydraulic motor; Symbolic representation of various components; Circuit for control of single & double acting actuators; Regenerative circuit; Speed control methods of actuators: meter-in, meter-out, and bleed off; selection criteria for pumps and actuators.

Learning Resources:

- Bansal, R.K., "A text book of Fluid Mechanics and Hydraulic Machines", Laxmi Publication (P) Ltd., New Delhi, 2010
- 2. Modi, P.N., and Seth, S.M., "Hydraulic and Fluid Machines", Standard Book House, New Delhi, 2004
- Ramamrutham, S.R Narayan, "Hydraulics, Fluid Mechanics and Fluid Machines", Dhanpat Rai & Sons, New Delhi, 2006
- 4. Kumar, K.L., "Engineering Fluid Mechanics", S. Chand Limited, New Delhi, 2008
- 5. Majumdar, S.R., "Oil Hydraulic Systems Principles and Maintenance", Tata McGraw-Hill, 2004

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS FOR B.E. 3/4 I-SEMESTER

REFRIGERATION & AIR CONDITIONING

Instruction: 3+1 Hours /week	Semester End Exam Marks: 70	Subject Reference Code : ME 3110
Credits : 3	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to :	On completion of the course the student will be able
1. discuss basics of refrigeration and air conditioning,	to:
compare the properties of refrigerants and analyze	1. classify refrigerants and analyze the performance
the air refrigeration& air craft refrigeration systems	of air refrigeration and air craft refrigeration
2. explain the working of single stage and multistage	systems.
vapour compression refrigeration systems.	2. solve problems in vapour compression
3. describe the working of vapour absorption	refrigeration systems and evaluate their
refrigeration system, steam jet refrigeration	performance.
system, pulse tube refrigeration system,	3. compare VAR and VCR systems and express
thermoelectric refrigeration system and solar	working principles various refrigeration systems.
refrigeration systems.	4. define different properties of psychrometry and
4. describe various principles of psychrometry	list different air conditioning systems.
5. estimate the cooling loads of an air conditioned	5. compute cooling loads of an a/c building, identify
building, list different equipment used in air	different equipment used and explain different
conditioning plant and learn different applications	applications of Refrigeration and Air conditioning
of R&A/C.	systems.

UNIT - I

Introduction to Refrigeration: Definition of Refrigeration and Air— conditioning—Necessity of Refrigeration and its applications— Methods of Refrigeration, unit of Refrigeration and COP. Reversed Carnot cycle— limitations, effect of operating temperatures

Properties of Refrigerants: Classification of Refrigerants Refrigerant nomenclature Desirable properties of Refrigerants – Thermodynamic, Chemical and Physical properties. Alternative Refrigerants to HCFC refrigerants and Future refrigerants.

Aircraft refrigeration System: Analysis of Bell Colemen cycle / reversed Brayton cycle, open and dense air system. Application to aircraft refrigeration, simple cooling system, bootstrap simple evaporative system, regenerative cooling system and reduced ambient cooling system

UNIT - II

Vapor Compression Refrigeration System: Working principle and essential component of a simple vapour compression refrigerator cycle, compressor, condenser, evaporator and expansion devices. Analysis of the cycle, COP, Representation of the cycle on T –S, P– H Charts.

Dry and wet compression, effect of operating conditions like evaporating pressure, condenser pressure, liquid sub cooling and vapour super heating performance of the system.

Applications of VCR system: Domestic Refrigerator and water cooler.

Low temperature refrigeration system (with single load system) – compound compression with water inter cooler and flash inter cooler with single expansion valve. Cascade refrigeration system – analysis, advantages and applications.

UNIT - III

Vapour absorption Refrigeration system: Simple absorption system, COP, practical Ammonia refrigeration absorption system, Lithium Bromide absorption system, Electrolux Refrigerator, common refrigerant and absorbents properties. Comparison with vapour compression refrigeration system. Working principle, advantages and applications of Steam Jet Refrigeration System, Thermoelectric refrigeration system, pulse tube refrigeration system and solar refrigeration system

Introduction to Cryogenics: Linde system and Claude system, applications of cryogenics.

UNIT-IV

Psychrometry: Psychrometric properties, Psychrometric chart and its construction and representation of Psychrometric processes on the chart – heating & cooling with humidification and dehumidification and adiabatic dehumidification, adiabatic chemical dehumidification and mixing processes, types and working of psychrometers.

Introduction to Air conditioning: Requirement of comfort air conditioning, Thermodynamics of human body, body temperature, metabolism, body defense, effect of heat on performance, ASHRE comfort chart, effective temperature.

UNIT - V

Cooling load calculations for building air conditioning:

Different sources of heat:Heat flow due to conduction, sun load due to direct solar radiation, load from occupants, equipment load, infiltration air load and miscellaneous heat sources, fresh air load, Energy conservation for building air conditioning.

Design of Air conditioning system: All fresh air load, Re circulated air, Re circulated air with Reheat coil and Re circulated air used for heating the air coming out of conditioner.

Concept of by-pass factor, sensible heat factor, Apparatus Dew Point, Room Sensible Heat Factor (RSHF), Gross Sensible Heat Factor (GSHF).

Air conditioning systems and Equipments: Window/Split air conditioner, packaged air conditioner and central air conditioning system. Humidifiers, Dehumidifiers, filters, grills fans and blowers.

Note: Use of R&AC tables and charts permitted.

Learning Resources:

- 1. Stocker W.S., "Refrigeration & Air Conditioning", McGraw-Hill, New Delhi, 2004.
- 2. Roy J.Dossat, "Principles of Refrigeration-SI Version", Wiley Eastern Limited, New Delhi, 1981.
- 3. Arora C.P. "Refrigeration and Air Conditioning", Tata McGraw-Hill, New Delhi, 2004
- 4. Arora S.C. and Domkundwar S., "A course in refrigeration and air conditioning", Dhanpat Rai and sons, 2004.
- 5. Manohar Prasad., "Refrigeration and Air conditioning", New Age International publishers, New Delhi, 2014

Data Book:

Dr.S.S.Banwait &Dr.S.C.Laroiya., Birla's Properties of Refrigerant &Psychrometric Tables &charts in S.I. Units.

Web resource:

Prof Ramgopal, IIT Kharagpur ., Web and Video material of NPTEL

DEPARTMENT OF CIVIL ENGINEERING SYLLABUS FOR BE 3/4 - I SEMESTER ENVIRONMENTAL STUDIES

Instruction :3 Hours /week	Semester End Exam Marks :70	Subject Reference Code : CE 2090
Credits : 3	Sessional Marks: :30	Duration of Semester End Exam :3 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The objectives of this course are	Upon the completion of this course, students will be able to
 Describe various types of natural resources available on the earth surface. Explain the concepts, energy flow in ecosystem along with the biotic and abiotic components of various aquatic ecosystems. Identify the values, threats of biodiversity, endangered and endemic species of India along with the conservation of biodiversity. Explain the causes, effects and control measures of various types of pollutions and environmental protection acts. Describe the methods for water conservation, the causes, effects of global warming, climate change, acid rain, ozone layer depletion, various types of disasters and their mitigation measures. 	 Describe the various types of natural resources. Differentiate between various biotic and abiotic components of ecosystem. Examine the values, threats of biodiversity, the methods of conservation, endangered and endemic species of India. Illustrate causes, effects, control measures of various types of environmental pollutions and environmental protection acts. Explain the causes, effects of climate change, global warming, acid rain and ozone layer depletion, various types of disasters and their mitigation measures and list the methods of water conservation and watershed management.

UNIT-I:

Environmental Studies: Definition, scope and importance, need for public awareness. Natural resources: Water resources; floods, drought, conflicts over water, dams-benefits and problems. Effects of modern agriculture, fertilizer-pesticide problems, water logging salinity. Energy resources, growing energy needs, renewable and non-renewable energy sources. Land Resources, land as a resource, land degradation, soil erosion and desertification.

UNIT-II :

Ecosystems: Concepts of an ecosystem, structure and functions of an ecosystem, producers, consumers and decomposers, energy flow in ecosystem, food chains, ecological pyramids, aquatic ecosystem (ponds, oceans, estuaries).

UNIT-III:

Biodiversity: Genetic species and ecosystem diversity. Value of biodiversity, threats to biodiversity, endangered and endemic species of India, conservation of biodiversity.

UNIT-IV:

Environmental Pollution: Causes, effects and control measures of air pollution, water pollution, soil pollutions, noise pollution, thermal pollution and solid waste & e-waste management.

Environment Protection Act: Air, water, forest and wild life acts.

UNIT-V:

Social Aspects and the Environment: Water conservation, watershed management, and environmental ethics. Climate change, global warming, acid, rain, ozone layer depletion. EIA, population explosion.

Disaster Management: Types of disasters, impact of disasters on environment, infrastructure, and development. Basic principles of disaster mitigation, disaster management, and methodology, disaster management cycle, and disaster management in India.

Learning Resources:

Text book:

- 1. Deswal S. and Deswal A., A Basic Course on Environmental studies, Dhanpat Rai & Co Pvt. Ltd. 2004.
- 2. Benny Joseph, *Environmental Studies*, Tata McGraw-Hill, 2005.

Suggested Reading

- 1. Suresh K. Dhameja, Environmental Studies, S.K. Kataria & Sons, 2010.
- 2. De A.K., Environmental Chemistry, New Age International, 2003.
- 3. Odum E.P., Fundamentals of Ecology, W.B. Sunders Co., USA, 2004.
- 4. Sharma V.K., Disaster Management, National Centre for Disaster Management, IIPE, Delhi, 1999.
- 5. Rajagopalan R., Environmental Studies, Second Edition, Oxford University Press, 2013.

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS FOR BE 3/4 - I SEMESTER FINISHING SCHOOL-III (TECHNICAL SKILLS)

Instruction :1+1 Hours /week	Semester End Exam Marks :35	Subject Reference Code : ME 3120
Credits : 1	Sessional Marks: :15	Duration of Semester End Exam :11/2 Hours

COURSE OBJECTIVES	COURSE OUTCOMES
The objectives of this course are to: 1. identify MATLAB as a calculator 2. apply MATLAB for solving matrices 3. formulate script files and plots using MATLAB 4. develop logical statements and 3D plots using MATLAB 5. examine solution of differential equations using MATLAB	On completion of this course, students will be able to: 1. use MATLAB as a calculator 2. perform matrix operations using MATLAB 3. generate 2D plots using MATLAB 4. apply syntax for logical operations using MATLAB 5. solve differential equations using MATLAB

UNIT -I

Starting MATLAB, MATLAB Windows., Working in Command Windows, Working with Arthematic operations with scalars, order of preference, using MATLAB as a calculator, Display of formats, Elementary Math-building functions, Assignment operators, rules about variables, Examples of MATLAB applications, Problems.

UNIT-II

Creating Arrays and matrices, matrix operations, Examples of Applications.

Unit III

Script files, Creating, saving and running a script file, Global variables, input and output commands. 2D plots, Plots with special graphics, Multiple plots, examples. Creating a function file., running function file., feval command.., examples and mathematical applications.

Unit IV

Progamming in Mat lab, conditional statements, loops, nested loops, Examples, Polynomials, curve fitting and interpolation, Examples and Applications, 3D plots, line plots, mesh and surface plots, plots with special graphics., view command, Examples.

Unit V

Differentiation and integration, Solving ordinary Equations with one variable, Finding minimum and maximum of a function, Numerical integrtion, solving Ordinary differential equations, Non-linear equations.

Learning Resources:

- 1. Agam Kumar TyagI, "MATLAB and Simulink for Engineers", Oxford Higher Education, 2010
- 2. Rudra Pratap, "Getting started with MATLAB", Oxford University Press, 2010

- 3. Amos Gilat, "Matlab An introduction with applications", Wiley India, 2012
- 4. Stevan C Chapra, "Applied Numerical Methods with Matlab for Scientists and Engineers". Tata McGraw-

Hill, 2010

SYLLABUS FOR B.E. 3/4 I-SEMESTER

MANUFACTURING PROCESSES LAB

Instruction: 2 Hours /week	Semester End Exam Marks: 50	Subject Reference Code : ME 3011
Credits : 1	Sessional Marks: : 25	Duration of Semester End Exam: 3 Hours

Course Objectives	Course Outcomes
The objectives of this course are to:	On completion of the course the student will be able
1. design and manufacturing of sand castings and to	to:
study defects of casting.	1. test sand properties, make gating system and
2. understand welding principles, types of weling	prepare mould for sand casting.
methods and welding defects.	2. join materials using different welding techniques,
study different forming processes	study of welding properties and defects.
	3. manufacture components using drawing, blanking,
	piercing and injection moulding operations.

Foundry

- 1. Single piece pattern making with wood as material considering allowances (Draft, Shrinkage and Machining)
- 2. Green sand mould making processes with complete sprues, gates, riser with design.
- 3. Testing of green sand properties
- 4. Melting and casting of aluminum metal and Study of defects in castings by DP test

Welding

- 1. Identification of different types of flames and making a butt joint with gas welding.
- 2. Making a lap joint by resistance welding process and strength evaluation.
- 3. Analysis of bead geometry using AC and DC welding processes.
- 4. Demo of TIG and MIG welding processes.
- 5. Exercise on submerged arc welding.

Forming

- 1. Evaluation of formability using Erichsen cupping test.
- 2. Design study of simple dies and performing blanking and piercing operations using mechanical/ fly presses and measurement of forces in the operation and comparing with the theoretical loads.
- 3. Study of simple, compound and progressive dies and making simple components.
- 4. Evaluation of process variables in injection moulding.

Note: Minimum twelve experiments to be completed.

SYLLABUS FOR B.E. 3/4 I-SEMESTER

FLUIDS & HYDRAULIC MACHINERY LAB

Instruction: 2 Hours/week	Semester End Exam Marks: 50	Subject Reference Code : ME 3021
Credits : 1	Sessional Marks: : 25	Duration of Semester End Exam: 3 Hours

Course Objectives	Course Outcomes	
The objectives of this course are to:	On completion of the course the student will be able	
1. provide practical knowledge in verification of	to:	
principles of fluid flow .	 identify the regims of flow. 	
2. impart knowledge in measuring pressure,	2. utilize basic measurement techniques of fluid	
discharge and velocity of fluid flow .	mechanics.	
understand frictional losses in pipes .	estimate the frictional losses in pipe flow.	
4. gain knowledge in performance testing of	4. analyse performance of turbines and pumps at	
Hydraulic Turbines and Hydraulic Pumps .	different speeds and heads.	

- 1. Determination of type of flow by Reynolds apparatus.
- 2. Verification of Bernoulli's Equation for an incompressible flow.
- 3. Determination of discharge coefficient of venturimeter
- 4. Determination of discharge coefficient of orificemeter.
- 5. To study the head loss due to friction in pipe flow and determination of friction factor in pipe flow-Major losses.
- 6. Performance and characteristics curves of centrifugal pump at different speeds.
- 7. Performance and characteristics curves of self priming pump.
- 8. Performance and characteristics curves of reciprocating pump.
- 9. Performance and characteristics curves of gear pump.
- 10. Determination of impact coefficient of jet on given vane.
- 11. Performance and characteristic curves of pelton wheel.
- 12. Performance and characteristic curves of Francis Turbine.
- 13. Performance and characteristic curves of Kaplan turbine.
- 14. Study of Pneumatic circuits.

Note: Minimum twelve experiments to be completed.

SYLLABUS FOR B.E. 3/4 II-SEMESTER

MACHINE DESIGN

Instruction: 4+1 Hours /week	Semester End Exam Marks: 70	Subject Reference Code : ME 3060
Credits : 4	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to:	On completion of the course the student will be able to:
1. understand the concepts of springs and	 design helical and leaf springs.
their design.	2. analyse spur, helical, bevel and worm gears under
2. design of gears under static and dynamic	strength and wear considerations.
loads.	3. select sliding and rolling contact bearings using Data
3. design of sliding and rolling contact	books.
bearings.	4. estimate the failure of IC engine parts under tortion
4. design the main components of IC- Engine.	and bending.
5. understand the concepts of curved	5. design of machine frames, crane hook, C-frames and
beams.	channels.

UNIT - I

Mechanical Springs: Types of springs and Materials used. Design of Helical Springs based on stress, deflection and energy considerations. Concentric springs. Leaf springs: Stresses and deflection. Nipping of leaf springs.

UNIT - II

Gears: Types of gears and materials used. Standards for gear specifications. Design of spur, helical, bevel and worm gears – strength and wear considerations. Types of failure of gear tooth and preventive measures.

UNIT - III

Bearings: Materials used for Bearings, Classification of bearings. Viscosity of Lubricants. Theory of Hydrostatic and Hydrodynamic lubrication. Design of sliding contact bearings – for axial and thrust loads.

Rolling Contact Bearings: Different types of rolling element bearings and their constructional details. Static dynamic load carrying capacity, Load— life relationship, Design for cyclic loads, Selection of bearings using data book.

UNIT-IV

I.C. Engine Parts: Design of piston, connecting rod and crank shafts (single throw and overhang).

UNIT - V

Bending of members with initial curvature – rectangular, circular and trapezoidal sections. Design of crane Hooks, machine frames and C- clamps.

Note: Use of design data book is permitted.

Learning Resources:

- 1. M.F. Spotts, "Design of Machine Elements", 7th ed., Pearson Edu, 2003
- 2. V.B. Bhandari, "Machine Design", Tata McGraw–Hill Publications, 2010
- 3. P.C. Sharma & D.K. Aggarwal, "Machine Design", 10th ed., S.K. Kataria & sons, , 2003
- 4. J.E. Shigley, C.R. Mischke, "Mechanical Engineering Design", 6th ed., Tata McGraw Hill Publications, 2003.
- 5. NC Pandya and CS Shah, "Machine Design" Charotar publishing House, 2006

Design Data Book:

S.Md.Jalaludeen, "Design Data Hand book", Anuradha Publications.

SYLLABUS FOR B.E. 3/4 II-SEMESTER

MECHANICAL VIBRATIONS

Instruction: 4+1 Hours /week	Semester End Exam Marks: 70	Subject Reference Code : ME 3070
Credits : 4	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to:	On completion of the course, the student will be able
1) formulate mathematical models of problems in	to:
vibrations using Newton's second law and energy	1) construct the equations of motion and solve for
principles.	the motion and natural frequency.
2) determine a complete solution to mechanical	2) construct the governing differential equation and
vibration problems using mathematical or	its solution for a vibrating mass in a 2D system.
numerical techniques for 2 D problems.	3) solve for the motion and the natural frequency for
3) determine physical and vibration charecteristics	vibration of a multi degree of freedom damped or
of multi DOF systems.	undamped system.
4) analyse the continuous system vibration.	4) solve vibration problems that contain continuous
5) understand the importance of Vibration testing	systems.
and testing devices.	5) appreciate the vibration measurement devices
	and their applications and procedures.

Unit-I

Introduction

Relevance of and need for vibrational analysis – Basics of SHM - Mathematical modelling of vibrating systems - Discrete and continuous systems - single-degree freedom systems - free and forced vibrations, damped and undamped systems.

Unit-II

Two Degree freedom Systems

General solution to free vibration problem - damped free vibration - Forced vibration of undamped system - dynamic vibration absorbers.

Unit-III

Multi Degree freedom Systems

Free and forced vibrations of multi-degree freedom systems in longitudinal, torsional and lateral modes - Matrix methods of solution-normal modes - Orthogonality principle-Energy methods, Eigen values and Eigen vectors

Unit-IV

Continuous Systems

Torsional vibrations - Longitudinal vibration of rods - transverse vibrations of beams - Governing equations of motion - Natural frequencies and normal modes - Energy methods, Introduction to non linear and random vibrations.

Unit-V

Vibration Measurement

Vibration monitoring - data acquistion - Vibration Parameter Selection-Vibration sensors-Accelerometers - Performance characteristics — Sensor mounting - Signal pre-amplification -Types of preamplifiers - Instrumentation - Real time analysis - Digital Fourier transforms - FFT Analysis.

Learning Resources:

- 1. J.S.Rao and K.Gupta, "Introductory Course on Theory and practice of Mechanical Vibrations", Wiley Eastern Ltd., 1991.
- 2. SS Rao, "Mechanical Vibrations ", 5th Ed., Prentice Hall, 2011
- 3. J.P.Den Hartog, "Mechanical Vibrations", 4th Edition, McGraw-Hill, New York, 1985.
- L.Meirovitch, "Elements of vibration Analysis", 2nd Ed., McGraw-Hill, New York, 1985.
 W.T. Thomson, M.D..Dahleh, C Padmanabhan, "Theory of Vibration with Applications", 5th Ed., Pearson

Education, 2008

Web Resources:

http://www.nptel.ac.in/courses/112103111 http://www.nptel.ac.in/courses/112103112

SYLLABUS FOR B.E. 3/4 II-SEMESTER CAD / CAM

Instruction: 3 Hours/week	Semester End Exam Marks: 70	Subject Reference Code : ME 3080
Credits : 3	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to :	On completion of the course the student will be able
1. analyze different types of modelling techniques	to:
2. learn different types 2D transformations	1. compare the different types of modeling
3. understand different types of Numerical Control machines	techniques and explain the central role solid models play in the successful completion of
4. learn parts classification and coding system,	CAD/CAM-based product development.
process planning and flexible manufacturing system	develop transformations for 2D geometric modeling.
5. discuss GT, CAPP, FMS and CIM	 explain the basic concepts of CNC machines and their programming.
	 explain the importance of group technology, computer aided process planning, flexible manufacturing system.
	5. understand the latest technologies in computer aided manufacturing.

UNIT - I

Introduction to computer aided design and manufacturing.

Geometric modeling: Wire frame modeling: wire frame entities and their definitions. Interpolation and approximation of curves. Concept of parametric and non–parametric representation of circle and helix curves,

Synthetic Curves: Parametric representation of cubic spline, Bezier and B– spline curves, continuity, properties and characteristics of splines. Concepts of NURBS.

UNIT - II

Surface modeling: Analytical surfaces: Definitions of planar, surface of revolution, Tabulated cylinder. Synthetic surfaces: Cubic and Bezier surfaces.

Solid modeling: C– rep and B– rep and feature instancing approaches.

2D Transformation and their mathematics: Translation, scaling, rotation, shearing and reflection about arbitrary points. Concatenated transformations.

CAD Database and Data exchange: CAD Database and structure, IGES and PDES format.

UNIT - III

Numerical Control of Machine Tools: Features and elements of NC. Positional, paraxial and contouring types. Definitions of axes, Definitions of interpolation, post—processor, preparatory and miscellaneous functions, canned cycles, tool length and cutter radius compensation. CNC programming using G and M codes for simple turning and milling operations.

UNIT-IV

Computer Numerical Control: CNC, DNC and adaptive control systems. Typical configurations and relative features. Machining centers, Introduction to FANUC, SINUMERIC controllers.

Industrial Robots: Robot Anatomy, Configurations, Controls, Drivers, Programming methods and applications.

UNIT - V

Group Technology: Part families, layout, part classification and coding system. Opitz, MICLASSCODE system

Computer Aided Process Planning: Variant and Generative process planning.

Flexible Manufacturing System & Computer Integrated Manufacturing System: Building blocks of Flexible Manufacturing systems and their control, Elements of CIMS. CAD/CAM Integration, Introduction to 3D printing and Reverse Engineering.

Learning Resources:

- Arvid R. Eide, Roland D. Jenison, Lane H. Mashaw, Larry L. Northup, "Introduction to Engineering Design" McGraw

 – Hill, 1998.
- 2. Ibrahim Zeid, "CAD/CAM- Theory and Practice", McGraw-Hill Inc. New York, 2011.
- 3. Grover, M.P and Zimmers E.W., "CAD/CAM", Prentice Hall of India, 1989.
- 4. Rao P.N., "CAD/CAM: Principles and Applications", 2nd Edition, Tata McGraw Hill, New Delhi, 2004.
- 5. Yoram Koren, "Computer Control of Manufacturing Systems", McGraw Hill Inc. New York, 1994

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS FOR B.E. 3/4 II-SEMESTER

MACHINE TOOLS & METAL CUTTING

Instruction: 3 Hours/week	Semester End Exam Marks: 70	Subject Reference Code : ME 3090
Credits : 3	Sessional Marks: : 30	Duration of Semester End Exam: 3 Hours

Course objectives	Course Out comes
The objectives of this course are to:	On completion of the course the student will be able to:
discuss construction of various machine tools and their variants.	understand working of lathe, shaper, milling, grinding, planer, drilling and boring machines.
explain the working of milling machines and their application to gears and screws.	understand various screw and gear manufacturing methods and surface finishing operations.
3. describe and understand various non-conventional machining methods and various work holding methods.	design jigs and fixtures following the principles of location and clamping.
4. understand the fundamentals of metal cutting with emphasis on tool materials and forces.	select non traditional machining processes for machining a given material.
analyze the wear of the tool and its effect on machining, influence of temperature in metal cutting and economics machining.	 5. develop relations for chip reduction coefficient, shear angle, shear strain forces, power, specific energy and temperature in orthogonal cutting 6. select cutting fluids, tool materials and coatings to control tool wear and life 7. custuate cutting speed to minimise production cost and
	evaluate cutting speed to minimise production cost and maximise production rate

UNIT-I

MACHINE TOOLS: Constructional features and specifications of machine tools, Kinematic structure of lathe, types of lathes, capstan and turret lathes, Drilling and Boring machines and various operations with applications, tool and work holding devices. Differences between shaper, planer and slotter, Quick return mechanisms.

UNIT-II

MILLING: Fundamentals of Milling operation and types of milling, dividing head and Indexing methods.

SCREWS AND GEAR MANUFACTURING: Tapping, Chasers, Thread rolling, Thread milling, thread grinding, Gear shaping, Gear hobbing, Gear shaving and Grinding.

SURFACE FINISHING: Units of surface finish, types of grinding, Abrasives and bonds used for grinding wheels, specifications and selection of grinding wheels. Broaching, Lapping, Honing, Polishing, Buffing Super finishing and Burnishing.

UNIT-III

JIGS AND FIXTURES: Design principles for location and clamping. Quick clamping devices, Types of Jigs and Fixtures.

NON-TRADITIONAL MACHINING: Principles of working and applications of USM, AJM, EDM, ECM, LBM, and EBM (Mechanism, MRR and process parameters in each case).

UNIT-IV

CUTTING TOOL MATERIALS: High carbon steel, HSS, Stellites, Carbides, Coated carbides, Diamonds. Tools material properties.

TOOL GEOMETRY: Nomenclature of single point cutting tool by ASA and ORS systems. Geometry of drills, milling cutters.

CHIP FORMATION: Types of chips, BUE, chip breakers.

MACHINING: Orthogonal and Oblique cutting, Mechanics of metal cutting, Merchant analysis, Shear angle, Solutions of Merchant and Lee & Shafer.

UNIT-V

THERMAL ASPECTS OF METAL CUTTING: Sources of heat generation and heat distribution, various methods of temperature measurement, Cutting fluids and applications.

TOOL WEAR, TOOL LIFE AND MACHINABILITY: Types of wear, mechanism of tool wear, Tool life and Machinability, Machinability index, Taylor's tool life equation.

ECONOMICS OF MACHINING: Tool life for maximum production, minimum cost.

Learning Resources:

- B.L. Juneja and Shekon, "Fundamentals of Metal Cutting & Machines Tools", Wiley Eastern Ltd., 1987. 1.
- P.N. Rao, "Manufacturing Technology Metal Cutting & Machine Tools", Vol. 2, Tata McGraw Hill 2. Education Pvt. Ltd, 2010.
- Amitab Ghosh and Mallick, "Manufacturing Science", Affiliated East West Press, 1985.
- H.S. Shan and P.C. Pandey, "Modern Machining Process", Tata McGraw-Hill Education, 1980.
- A. Bhattacharya, "Metal Cutting Theory and Practice", New Central Book Agency (P) Ltd., Calcutta, 1996

DEPARTMENT OF MECHANICAL ENGINEERING

SYLLABUS FOR B.E. 3/4 II-SEMESTER

HEAT TRANSFER

Instruction: 4+1 Hours /week	Semester End Exam Marks: 70		Subject Reference Code	: ME 3100
Credits : 4	Sessional Marks:	: 30	Duration of Semester End	Exam: 3 Hours
Course Objective	es:		Course Outcomes:	

- 1. **make** the students familiar with basic principles of heat transmission by conduction, convection, and radiation.
- 2. teach students how to identify, formulate, and solve engineering problems involving conduction, convection, and radiation.
- 3. teach students how to **apply** energy balances and rate equations to model and analyze thermal systems.
- 4. teach students basic heat exchanger design and evaluation techniques and principles of boiling and condensation
- On completion of the course the student will be able to:

- 1. **formulate** heat conduction problems in rectangular, cylindrical and spherical coordinate system, by transforming the physical system into a mathematical model.
- familiarize with time dependent heat transfer.
- **compute** convective heat transfer coefficients in forced convection, natural convection for internal flows & external flows.
- **understand** radiation heat transfer and can compute radiation heat transfer between black and non-black bodies.
- **know** the design fundamentals for heat exchangers, which include the LMTD and ϵ -NTU approaches and to distinguish the mechanisms involved in boiling and condensation.

UNIT - I

INTRODUCTION: Heat Transfer – Different Modes, governing laws and application to heat transfer: Fourier, Newton, Stefan- Boltzmann. General heat conduction equation: derivation in Cartesian, cylindrical and spherical coordinate systems. Steady state one dimensional heat conduction problems (i) with and without heat generation and (ii) with and without varying thermal conductivity - through slabs, hollow cylinders and spheres. Steady state one dimensional heat transfer through composite slabs, cylinders and spheres, overall heat transfer coefficient. Concept of thermal resistance in series and parallel. Numerical problems concerned to the above. Critical thickness of insulation: concept, derivation and numerical problems. Thermal contact resistance.

UNIT - II

Extended surfaces or Fins: classification and applications, Heat transfer analysis of fin tips with heat dissipation environment - straight rectangular and circular fins, temperature distribution and heat transfer calculations, fin efficiency and effectiveness. Numerical problems covering all topics. Application of fintheory in temperature measurement.

Transient (Unsteady state) heat conduction: definition, negligible internal thermal resistance, negligible surface resistance, comparable internal thermal and surface resistance – lumped body, infinite body and semi-infinite body. Numerical problems.

Use of Grober and Heislercharts: solutions to various one dimensional problems using charts (Infinite slabs, cylinders and spheres).

UNIT - III

Convection: Dimensional analysis-Buckingham theorem: application of dimensional analysis to forced and free convection problems, Physical significance of different dimensionless numbers.

Boundary layer theory concept - velocity and thermal boundary layers, Application of Von— Karman integral equation for the analysis of thermal boundary layer in forced convection of flat plate. Reynold's analogy for flow over plane surfaces. Free and forced convection - Calculation of heat transfer for laminar flows and turbulent flows over plates, cylinders and spheres. Internal flows through tubes using empirical correlations.

UNIT-IV

Thermal Radiation (Non participating media): fundamental principles – Gray, White, Opaque, Transparent and Black bodies, Spectral emissive power, Wien's and Plank's laws, Hemispherical emissive power, Stefan-Boltzmann law for total emissive power of a black body, emissivity and Kirchhoff's laws. Radiation shape factor, shape factor algebra. Total emissive power radiant heat exchange between two gray surfaces. Thermal circuit for radiant heat exchange between infinite parallel plates and between concentric cylinders, enclosures with black and gray surfaces. Numerical problems Radiation shields and re-radiation surfaces. Numerical problems

UNIT - V

Heat Exchangers: Definition, Classification and applications of heat exchangers in industry. Overall heat transfer coefficient. Fouling factors.

Analysis and design of heat exchanger: LMTD method, effectiveness-NTU method. Analytical methods, numerical problems.

Chart solution procedures for solving heat exchanger problems – correction factor charts and effectiveness-NTU charts.

Boiling—pool boiling regimes, nucleate pool boiling, effect of surface wettability on bubble contact angle, Critical heat flux, boiling in forced convection.

Condensation: Film condensation, Drop wise condensation, condensation film thickness, heat transfer coefficient in film condensation.

Note: Use of Data book permitted.

Learning Resources:

- 1. J.P. Holman, "Heat transfer", Tata McGraw Hill Publication, New Delhi, 2010.
- 2. Sachadeva R.C., "Fundamentals of Engineering Heat and Mass Transfer", New Age International (P) Ltd Publishers, New Delhi, 2010.
- 3. Rajput R.K., "Heat and Mass Transfer", S. Chand & Company Ltd., New Delhi, 2004.
- 4. M.Necati Ozisik, "Heat transfer A basic approach", McGraw-Hill, New York, 2005.
- 5. Incropera, F.P. and De Witt D.P.- "Fundamentals of Heat and Mass Transfer", John Wiley and sons, New York, 2008.

Data Book:

1. C. P. Kothandaraman, S. Subramanyan "Heat and Mass Transfer Data Book" New Academic Science, 2012, ISBN: 1781830045, 9781781830048

Web Resources:

- 1. http://nptel.ac.in/courses/112101097/
- 2. http://freevideolectures.com/Course/2366/Heat-and-Mass-Transfer
- 3. http://textofvideo.nptel.iitm.ac.in/112101097/

- 4. http://www.nptelvideos.in/2012/11/heat-transfer.html5. http://web.mit.edu/lienhard/www/ahtt.html

DEPARTMENT OF HUMANITIES & SOCIAL SCIENCES

SYLLABUS FOR B.E. 3/4 II-SEMESTER

HUMAN VALUES AND PROFESSIONAL ETHICS-II

Instruction :1 Hour /week	Semester End Exam Marks :70	Subject Reference Code : HS 3140
Credits : 1	Sessional Marks: :30	Duration of Semester End Exam :3 Hours

Course objectives	Course Out comes
 The course will enable the students to: Get a holistic perspective of value- based education. Grasp the meaning of basic human aspirations visar-vis the professional aspirations. Understand professionalism in harmony with self and society. Develop ethical human conduct and professional competence. Enrich their interactions with the world around, both professional and personal. 	 At the end of this course the student will be able to: Gain a world view of the self, the society and the profession. Make informed decisions. Start exploring themselves in relation to others and their work –constantly evolving into better human beings and professionals Inculcate Human values into their profession. Validate their aspirations through right understanding of human relationship and see the co-relation between the human values and prevailing problems. Strike a balance between physical, mental, emotional and spiritual parts their being. Obtain a holistic vision about value-based education and professional ethics.

- 1. **Distinction between need and greed**-Exercising the wisdom to distinguish need from greed.
- 2. **Rights and Responsibilities**-Educating an individual about rights and responsibilities Safeguards-Stimulants-Social Justice-The three catalysts for deciding rights and responsibilities.
- 3. Imbibing and inculcating Civic Sense and Civic-Virtues, The true meaning of Integrity Honesty, Humility, Openness, Transparency, Dedication, Reliability, Confidentiality, accountability, Collegiality, Sympathy, Trustworthiness, Co-operation, Courage.
 The moral dilemma of the Modern world, Respect for Self, Others and Work.
 Respect for women at the workplace.
- 4. **Ideal self-Real self** How to define the ideal-idealism at various levels- is it possible to reach idealism –Man as a pilgrim on a journey to idealism.
- 5. **Managing Failure**-Identifying causes for failure and learning lessons-Using failure to score success-Role of self-confidence and personal ethics in coping with failure.

Anger/ Depression

Fear

Agitation

Failure

Lethargy

Dishonesty

Cruelty

Jealousy

Desire

Cheating

Pride

Greed

Lying

- 6. **Stress Management** Identifying sources and levels of stress –Tackling stress and its associated negativity-Positive aspect of coping with stress- Some techniques to manage stress.
- 7. **Developing Emotional Intelligence**

Self-Awareness Handling Emotions Motivation Empathy Social skills

DEPARTMENT OF HUMANITIES AND SOCIAL SCIENCES SYLLABUS FOR B.E. 3/4 II-SEMESTER Finishing School-IV (Soft Skills)

Instruction: 1 +1 Hours / week	Semester End Exam Marks: 35		Subject Reference Code: HS3210
Credits: 1	Sessional Marks : 15		Duration of Semester End Exam: 11/2 Hours
Course Object	tives		Course Outcomes
The objectives of this course are to	learn:	At the end	d of the course student will be able to:
This course aims at enhancing Students will be trained in high including analytical skills, problem and logical reasoning skills. Student systematically and develop logical at Students will be trained in the f 1. Critic reas 2. Pure mathematics 3. Verbal ability 4. Logical reasoning 5. Data interpretation and an	ner order thinking skills solving skills and critical the solving skills and critical the swill be trained to work and analytical thinking. Sollowing areas: cal and non verbal oning	verbal Solve Perfor	stand the fundamentals, concept of aptitude and skills questions using short cuts and smart methods m calculations with speed and accuracy op analytical thinking and problem solving skills

Unit – I Verbal Ability:

- Finding errors
- Vocabulary
- Synonyms
- Antonyms
- Idioms and phrases
- Fill in the blanks and sentence jumbles
- Reading comprehension

Unit - II Logical Reasoning:

- Logical reasoning
- Assignments
- Puzzles
- Blood relations
- Syllogisms

Unit III Critical and non verbal reasoning

- Critical reasoning
- Non verbal reasoning
- Figure series and completions

Unit -IV Quantitative and aptitude - Pure maths

- Pure maths
- Algebra
- Probability
- Permutations and combinations

Unit – V Data interpretation and analysis

- Data interpretation
- Line graph
- Pie chart
- Bar graph
- Tabulation

DEPARTMENT OF INFORMATION TECHNOLOGY SYLLABUS FOR B.E. 3/4 II-SEMESTER Finishing School-IV (Technical Skills)

Instruction: 1+1 Hours / week	Semester End Exam Marks: 35		Subject Reference Code: IT2180
Credits: 1	Sessional Marks : 15		Duration of Semester End Exam: 1½ Hours
Course Objectives			Course Outcomes
The objectives of this course are to	learn:	At the end of the cou	urse student will be able to:
The course will enable the sacquire necessary skills solution for a given problem	to design	expressions. 2. Acquire knowle repetition syntations. 3. learn how to use 4. Understand com 5. Acquire Knowled	concepts of basic tokens and evaluation of dge on different operators, selection and exes with examples and implementation of elists, dictionaries and string manipulation. In mand line arguments, file handling concepts. It dge of object oriented concepts like classes, ince and composition.

Unit - I

Introduction to python, comments, variables, operators, mathematical operations, strings and text, format specifiers, printing information.

Unit - II

Command line arguments, prompting users, parameters, packing and unpacking of variables, reading and writing files.

Unit - III

Functions: passing arguments to functions, returning values from functions, functions and files.

Unit - IV

Decision making: if and else if, repetition: while loops, for loops. Lists, iterating a list, operations on list. Dictionaries, operations on dictionaries.

Unit - V

Modules, Classes and Objects, is-a relationship :inheritance , has-a relationship : composition. Exceptions, Creating a project skeleton, automated testing.

Learning Resources:

- 1. https://docs.python.org/2/tutorial
- 2. https://pytho.org

SYLLABUS FOR B.E. 3/4 II-SEMESTER DYNAMICS OF MACHINES LAB

Sessional Marks:

Instruction: 2 Hours /week Semester End Exam Marks: 50 Subject Reference Code : ME 3031

: 25 Duration of Semester End Exam : 3 Hours

Course Objectives	Course Outcomes
The objectives of this course are to:	On completion of the course the student will be able
1. understand motion characteristics in	to::
CAM and followers.	1. analyze the profile of CAM suitable for required
2. illustrate static and dynamic balancing.	motion characteristics.
3. apply gyroscopic effect on vehicles.	2. evaluate the static and dynamic balancing of
4. understand vibration response	masses.
characteristics and stability of dynamic	3. analyze the gyroscopic effect to stabilize the
systems.	vehicles.
	4. analyze the response of dynamic systems under
	dynamic loading.

- 1. To study the motion characteristics of the follower with the given profile of the cam.
- 2. To study the effect of sleeve mass of dead weight type Porter Governor and controlling force curves.
- 3. To study the effect of varying the spring initial compression acting on sleeve of spring controlled type Hartnell governor and controlling force curves.
- 4. To study the gyroscopic effect on a disc subjected to precisional motion.
- 5. To find the static balancing masses in a rotating mass system.
- 6. To find the dynamic balancing masses in a rotating mass system.
- 7. To study the un damped forced vibration system
- 8. To study the damped forced vibration system

Credits

- 9. To study the torsional vibration response characteristics using single rotor system
- 10. To study the torsional vibration response characteristics using two rotor system.
- 11. Determination of critical speed of the given shaft with the given end conditions. (Whirling of Shafts)
- 12. To study frequency response of spring mass system with and without damping.
- 13. To study frequency response with random excitations (Seismic response).

Note: Minimum twelve experiments to be completed.

SYLLABUS FOR B.E. 3/4 II-SEMESTER CAD / CAM LAB

Instruction: 2 Hours/week	Semester End Exam Marks: 50	Subject Reference Code : ME 3041
Credits : 1	Sessional Marks: : 25	Duration of Semester End Exam: 3 Hours

Course Objectives	Course Outcomes
The objectives of this course are to: 1. practice 2D and 3D modeling.	On completion of the course the student will be able to:
2. practice assembly of various components.	 develop 3D part models.
3. understand to write CNC programs.	 develop assembly of given components. develop CNC programming for the given simple
	turning and milling operations.

I. CAD:

- 1. Practice in the use of some of the packages like: NX (SIEMENS) / CATIA etc., for geometric modelling of simple parts (sketching).
- 2. Part modelling simple parts using any of the above packages.
- 3. Developing Assemblies e.g.,
 - i. Flange coupling
 - ii. Plummer block
 - iii. Universal coupling
 - iv. Connecting rod

II. CAM:

- 1. Simulation and development of NC code using any CAM software for Facing and turning, step turning, taper turning, contouring on CNC lathe.
- 2. Simulation and development of NC code using any CAM software for Pocketing and contouring on CNC milling machine.

SYLLABUS FOR B.E. 3/4 II-SEMESTER

MACHINE TOOLS & METAL CUTTING LAB

Instruction: 2 Hours/week	Semester End Exam Marks: 50	Subject Reference Code : ME 3051
Credits : 1	Sessional Marks: : 25	Duration of Semester End Exam: 3 Hours

Course Objectives	Course Outcomes
The objectives of this course are to:	On completion of the course the student will be able
 perform different jobs on machine tools. 	to:
2. conduct experiments for evaluation of shear angle.	1. operate various machine tools and plan sequence of operations.
3. Measurement of cutting forces using dynamometers.	2. choose proper machine to get required dimensions with tolerance.
4. indexing of components and grind angles on single point cutting tool.	3. design the power requirement for a given machine tool.
5. understand the working of EDM.	4. make spur gears using milling machine.
	5. analyse the influence of current on MRR in EDM process.

List of Experiments

- 1. Exercise with operation of eccentric turning
- 2. Exercise with operation of thread cutting and boring.
- 3. Exercise on shaper to make rectangular and 'V' grooves.
- 4. Cutting spur gear having 20 teeth using simple indexing.
- 5. Finding shear angle by measuring thickness and length of chips.
- 6. Measuring the forces by dynamometers and finding friction angle and stress on shear plane and rake plane.
- 7. Conducting tool life tests and finding the constant and index equation for HSS and carbide tools.
- 8. Effect of chip-tool by thermocouple method, effect of temprature on cutting speed in turning operation.
- 9. Grinding of HSS tool using tool and cutter grinder to a given geometry.
- 10. PCD drilling on radial drilling machine and tapping.
- 11. Grinding of flat surfaces and measurement of surface finish.
- 12. Exposure to operations like trepanning, lapping, honing and broaching.
- 13. Electric Discharge Machining (EDM), experiment to determine MRR Vs Current

Note: Minimum twelve experiments to be completed.