

DEPARTMENT OF PHYSICS

B.E Syllabus for CSE, CSE (AI & ML) and IT Branches w.e.f 2023-2024 PHYSICS OF SEMICONDUCTORS AND OPTOELECTRONIC DEVICES (PSOD)

L:T:P	Credits		CIE		SEE	T
3:0:0	03	Marks 40	Exam Duration	Marks	Exam Duration	Course Code
	Assignmen		90 min Quizzes (03)	60	03 hours	U23BS110PH
Ave. Marks		12 6	05	Inter	nal Exams (02)	Total CIE Marks
-			1 03	ļ.,,,,,,	30	40

CO code	course objectives	Course Outcomes	Highest
BS110PH.1	Demonstrate the significance of crystal structure in device applications.	Classify crystals based on their structure and apply effects of defects	BTL 3
BS110PH.2	Appreciate the merits of quantum mechanics over classical mechanics.	to manipulate properties of solids. Apply Schrodinger wave equation to quantum mechanical systems and	4
BS110PH.3	Arrive at the expressions for carrier concentration in semiconductors	obtain Eigen values. Apply semiconductor physics to	2
3S110PH.4	Describe working of optoelectronic devices	fabricate various devices. Categorize optoelectronic devices and	2
3S110PH.5	Comprehend lasing action and relate the use of lasers in optical fiber communication	use them for appropriate applications Compare different types of lasers. Summarize merits and demerits of optical fibers.	3

	PO1	PO2	PO3	DO4	DOF	DOC						
CO1	3	2	. 03	104	PU3	P06	P07	P08	P09	PO10	P011	P012
CO2			-	-	-	-	-	-	-	_		1
		2	-	-	_	-	_	100				
CO3	3	2	-	-					-	-	•	1
CO4	2	1	-	_			-	-	-	-	-	1
CO5	3	1	_		-	-	-	-	-	-	-	1
	1 -			-	-	-	-	-	-			-

UNIT-I: FUNDAMENTALS OF CRYSTALLOGRAPHY (12 hours)

Introduction to crystallography-Miller Indices, inter planar spacing (d_{hkl}), Bragg's law, x- ray diffraction, Debye-Scherrer (Powder) method, distinction between crystalline, polycrystalline, and amorphous materials, Point Defects and their effects, expression for concentration of Schottky and Frankel defects and applications relevant to computer science and engineering.

UNIT-II: INTRODUCTION TO QUANTUM MECHANICS (10 hours)

De Broglie Hypothesis, wave packet, wave function and its significance, Schrodinger time dependent and independent wave equations, Eigen values and Eigen functions of infinite square-well potential (particle in a box). Potential barrier-quantum tunneling problem. Introduction to bra and ket vector notation, representation of Qubit, applications of quantum computing.

Maral	128000NJ	(Act 16/2)	H anna	- CO P -
O.U Nominee & Chairman, BoS (Physics)	Head A D Dept. of Physics, OU hys	Subject Expert,	Dr. S.V. Manorama Principle scientist, IICT, Hyderabad	

M.Sc., Ph.Dersity College of Science Ssor Osmania University, Senior Professor Hyderal ad-500 007. T.S. Department of Physics, University College of Science Osmania University,

UNIT-III: SEMICONDUCTOR PHYSICS (10 hours)

Kronig-Penny model, E-k diagram, effective mass of an electron, energy bands in solids, Fermi energy level, density of states, expression for intrinsic and extrinsic equilibrium carrier concentration, conductivity of intrinsic and extrinsic semiconductors, variation of Fermi level with doping and temperature, Hall effect and its applications, formation of a PN junction, Expression for diode current equation. Applications of semiconductor devices to computer architecture.

UNIT-IV: OPTOELECTRONIC DEVICES (10 hours)

Light Emitting Diode (LED): Direct and indirect band gap semiconductors, electron-hole pair generation and recombination, non-radiative and radiative recombination in semiconductors, construction and working of homo junction LED, quantum efficiency of LED, advantages and applications of LED.

Photo detectors: Principle of a photo detector, construction and working of photodiode and PIN diode, applications of photo detectors.

Solar Cell: Photovoltaic effect, construction and working of solar cell, V-I characteristics of solar cell, conversion efficiency, fill factor, applications of solar cells.

UNIT-V: LASERS AND OPTICAL FIBERS (10 hours)

Lasers: Induced absorption, spontaneous and stimulated emissions, characteristics of lasers, population inversion, meta-stable states, pumping mechanisms, components of laser, types of lasers, construction and working of He-Ne laser and semiconductor laser, advantages of lasers, applications of lasers including computer devices such as memory, printers.

Optical Fibers: principle of optical fiber, propagation of light in optical fiber, numerical aperture, acceptance angle, types of optical fibers, V- number, signal losses in optical fibers: Attenuation-absorption, scattering, bending and alignment losses, Signal distortion: intermodal and intra model dispersions, block diagram of optical communication system, advantages and application of optical fibers.

Learning Resources:

- Charles Kittel, Introduction to Solid State Physics, 8th edition, John Wiley & Sons, 2012.
- 2. Donald A Neamen, Semiconductor Physics and Devices, 3rd edition, Tata McGraw 2008.
- 3. S.O. Kasap, Optoelectronic and Photonics: Principles and Practices, Pearson, 2001
- 4. M.N. Avadhanulu and P.G. Kshirsagar and TVS Arun, Murthy A Textbook Engineering Physics, 11th edition, S. Chand, 2019.
- 5. M.R Shenoy, NPTEL MOOCS course, Semiconductor opto-electronics. 2020.
- 6. Prof.Digbijoy N Nath, NPTEL MOOCS, Fundamentals of Semiconductor Devices

	Maral	128000Ve	L Physpoly	anacon	Concinc
1	Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
Ì	O.U Nominee &	Head A D	Subject Expert,	Principle scientist,	Head & BOS chairman, Dept of Physics, VCE
	Chairman, BoS (Physics)	Dept. of Physics, OUhy	icUniv. of Hyderabad	IICT, Hyderabad	Dept of Filysics, VCL

N.Sc., Ph.D Smania University, Senior Professor Hyderabad-500 007, T.S.

Department of Physics, University College of Science

Osmania University, lyderabad - 500 007, Telangana State 1

DEPARTMENT OF PHYSICS

B.E Syllabus for ECE and EEE Branches w.e.f 2023-24

QUANTUM MECHANICS AND MATERIALS SCIENCE (QMMS)

L:T:P	Credits	and the second s	CIE		SEE	Course Code	
		Marks	Exam Duration	Marks	Exam Duration		
3:0:0	03	40	90 min	60	03 hours	U23BS210PH	
CIE	Assignme	nts (03)	Quizzes (03)		Internal Exams (02)	Total CIE Marks	
Ave. Marks	0	5	05		30	40	

CO code	Course Objectives	Course Outcomes	Highest BTL
BS210PH.1	Demonstrate the significance of crystal structure in device applications.	Classify crystals based on their structure and list appropriate uses	3
BS210PH.2	Appreciate the advantages of quantum mechanics over classical mechanics.	Apply Schrodinger wave equations to quantum mechanical systems.	4
BS210PH.3	Arrive at the expressions for carrier concentration in semiconductors	Apply semiconductor physics to fabricate various devices	3
BS210PH.4	Comprehend lasing action and relate the use of lasers in optical fiber communication	Compare different types of lasers. Summarize merits and demerits of optical fibers.	2
BS210PH.5	Choose appropriate dielectric, magnetic and superconducting materials for required applications	Select various dielectric, magnetic and superconducting materials for specific applications in engineering.	3

CO-PO Mapping

5	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	1
CO2	2	2	-	-	-	==:	-	-	-	-	-	1
CO3	3	2	-	-	-		-	-	-	-	-	1
CO4	3	1	-	-	-	-	-	-	-	-	-	1
CO5	2	1	-	-	-	-	-	-	-	-	-	2

UNIT-I: FUNDAMENTALS OF CRYSTAL STRUCTURE (12 hours)

Introduction to crystallography-Miller Indices, inter planar spacing (d_{hkl}), Bragg's law, x- ray diffraction, Debye-Scherer (powder) method, distinction between crystalline, polycrystalline, and amorphous materials, Point Defects and their effects, expression for concentration of Schottky and Frankel defects and applications relevant to electronics and communication engineering.

UNIT-II: QUANTUM MECHANICS (10hours)

De Broglie Hypothesis, wave packet, Davisson and Germer's experiment, wave function and its significance, Schrodinger time dependent and independent wave equations, Eigen values and Eigen functions of infinite square-well potential (particle in a box). Potential barrier-quantum tunneling problem. Introduction to bra and ket vector notation, representation of Qubit, applications of quantum computing.

Mal	12800MJ	· Quelelis	Manerano	- carefue
Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
O.U Nominee &	Head D	Subject Expert,	Principle scientist,	Head & BOS chairman,
Chairman, BoS (Physics)	Dept. of Physics, OU S	SUniv. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE

Dr. D. KARUNA SAGAR ity College of Science
M.Sc., Ph.Damania University,
Senior Professor
Department of Physics,
University College of Science

UNIT-III: SEMICONDUCTOR PHYSICS (10 hours)

Classical free electron Drude theory and its limitations, Fermi-Dirac Statistical distribution, Density of states, Kronig-Penney model, formation of energy bands, E-k diagram, types of semiconductors, fermi energy level, variation of Fermi energy level with temperature and doping concentration, expression for equilibrium carrier concentration in intrinsic and extrinsic semiconductors, conductivity of intrinsic and extrinsic semiconductors, formation of P-N Junction, Hall effect and its applications. Applications of semiconductor devices in electronic engineering.

UNIT-IV: LASERS AND OPTICAL FIBRES (10 hours)

Lasers: Induced absorption, spontaneous and stimulated emissions, characteristics of lasers, population inversion, meta-stable states, pumping mechanisms, components of laser, Properties of laser beam, types of lasers, construction and working of He-Ne laser and semiconductor laser, advantages and applications of lasers.

Optical Fibers: principle of optical fiber, propagation of light in optical fiber, numerical aperture, acceptance angle, types of optical fibers, V- number, signal losses in optical fibers: Attenuation-absorption, scattering, bending, alignment losses, Signal distortion: intermodal and intra model dispersions, block diagram of optical communication system, advantages and application of optical fibers.

UNIT-V: MATERIALS SCIENCE (10 hours)

Dielectric Materials: Polar and non-polar dielectrics, types of dielectric polarizations, Expressions for electronic polarizability and ionic polarizability, Frequency and temperature dependence of dielectric polarizations, applications of dielectric materials.

Magnetic Materials: Origin of magnetism, Ferromagnetic materials, antiferromagnetic materials and ferri-magnetic (ferrites) materials, Weiss molecular field theory of ferromagnetism, magnetic domains, hysteresis curve, soft and hard magnetic materials and their applications.

Superconductivity: Introduction to superconductivity, General properties of superconductors, Meissner effect, Type I and Type II superconductors-fundamentals of BCS Theory - Josephson's Junctions-Josephson's effects–SQUIDS- Applications of superconductors.

Learning Resources:

- 1. Charles Kittel, Introduction to Solid State Physics, 8th edition, John Wiley & Sons, 2012
- 2. S O Pillai, Solid State Physics, 8th edition, New Age International Publishers, 2018
- M.N. Avadhanulu and P.G. Kshirsagar and TVS Arun Murthy, A Textbook Engineering Physics, 11th edition, S. Chand, 2019.
- 4. NPTEL MOOCS, Introduction to Solid State Physics, Satyajit Banerjee
- 5. NPTEL MOOCS, Concepts in Magnetism and Superconductivity, Prof Arghya Taraphder.
- 5. NPTEL MOOCS, Solid State Physics, Prof. Amal Kumar Das.

	Maral	12 Sorery	Och 46/6/23	y averand	. Asch
	Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
	O.U Nominee &	Head A D	Subject Expert,	Principle scientist,	Head & BOS chairman,
Or.	Chairman Bos (Physics)	Dept. of Physics, OU	Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE

M.Sc., Ph.D. Osmania University,
Department of Physics,
University College of Science

DEPARTMENT OF PHYSICS

B.E Syllabus for Civil Engineering Branch w.e.f 2023-24

OPTICS, ACOUSTICS & SENSORS

L:T:P	Credits		CIE		SEE	Course Code	
L	Credito	Marks	Exam Duration	Marks	Exam Duration		
3:0:0	03	40	90 min	60	03 hours	U23BS220PH	
CIE	Assignme	nts (03)	Quizzes (03)	Internal Exams (02)	Total CIE Marks	
Ave. Marks	()5	05	,	30	40	

'CO code	Course Objectives	Course Outcomes	Highest BTL
BS220PH.1	Explain mathematical formulations of waves and oscillations.	Interpret behavior of mechanical oscillators with and without damping effects	2
BS220PH.2	State principles of interference, diffraction and polarization of light.	Outline the principles of wave optics and their applications	1
BS220PH.3	Comprehend lasing action and state application of lasers	Compare different types of lasers. Summarize merits and demerits of optical fibers.	3
BS220PH.4	Describe characteristics of acoustics quieting effects required for a hall.	Sulfilliarize good ballaring decastles.	2
BS220PH.5	Interpret the advantages of using sensors in civil engineering.	List various sensors for monitoring health of structures.	3

CO-PO Manning

O Ma	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	PO11	PO12
CO1	3	3	-	-	-	-	-	-	-	-	-	1
CO2	3	2	-		-	-	-	-	-	-	-	11
CO3	2	2	-	-	-	-	-	-	-	-	-	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1
CO5	2	1	-	-	-	-	-	-	-	-	-	2

UNIT-I: OSCILLATIONS (12 hours)

Definition of SHM, equation of motion and solution to simple harmonic oscillator, energy of simple harmonic oscillator, equation of motion and solution to damped harmonic oscillator, logarithmic decrement, relaxation time, equation of motion and solution to forced harmonic oscillator, Resonance, Q-factor, electromechanical analogy. Real life applications of mass-spring systems.

UNIT-II: WAVE OPTICS (10 hours)

Interference: conditions for sustained interference, interference due to thin parallel film,

Newton's rings, applications of interference.

Diffraction: Phenomenon of diffraction of light, classes of diffractions, Fraunhofer diffraction due to a single slit, diffraction due to N- slits (plane transmission grating), application of diffraction.

Polarization: Polarization of light, types of polarized light, double refraction, construction and working of Nicol's Prism, Polarizer and analyzer, Quarter wave and Half wave plates.

Relevant applications of wave optics in the field of engineering.

	Maral	928000 ml	(Acrulo12)	H angaris	- Asch
	Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai/Prasad
*	O.U Nominee &	Head	Subject Expert,	Principle scientist,	Head & BOS chairman,
F3	Chairman, BoS (Physics)	Dept. of Physics, OUnvs	Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE
Ur.	D. NAKUNA SAGA	Kersity Cullege of S	cience		5

M.Sc., Ph.D. Osmania University, Senior Professor Hyderabad-500 007. T.S. Department of Physics,

University College of Science Osmania University, Hyderabad - 500 007, Telangana State

UNIT-III: LASERS AND OPTICAL FIBRES (10 hours)

Lasers: induced absorption, spontaneous and stimulated emissions, Properties of laser light, population inversion, meta-stable states, pumping mechanisms, components of laser, construction and working of He-Ne laser, advantages and applications of lasers in engineering.

Optical Fibers: introduction to optical fibers, propagation of light in optical fiber, numerical aperture, acceptance angle, types of optical fibers, V- Number, signal losses in optical fibers: Attenuation-absorption, Scattering, bending, alignment losses, Signal distortion: intermodal and intra model losses. Block diagram of optical communication system, advantages and application of optical fibers.

UNIT-IV: ACOUSTICS (10 hours)

Architectural Acoustics: classification of sound: musical sound and noise, Characteristics of musical sound-pitch, loudness, timbre, sound intensity, sound pressure levels, reverberation time, absorption coefficient, Sabine's formula, sound absorbent materials, Building acoustic requirements, conditions for acoustic quieting: effects and remedies. Sound proofing applications in Civil Engineering.

Ultrasonics: properties of ultrasonics, types of ultrasonic waves, production of ultrasonics by piezoelectric and magnetostriction methods, detection of ultrasonics by piezoelectric, thermal detector, applications of Ultrasonics: SONAR, cavitation. Ultrasonic non-destructive testing applications in civil engineering.

UNIT-V: SENSORS FOR STRUCTURAL HEALTH MONITORING (10 hours)

Introduction to Structural Health Monitoring (SHM), Types of Sensors in structural health monitoring: Strain Gauge load cells, Optical Fiber Sensors, Accelerometer, Linear Variable Differential Transformer (LVDT), Tiltmeter, Temperature Sensors: Thermo couple Thermistor..

Learning Resources:

- 1. J Walker, D., Halliday and R Resnick, Principles of Physics, 10th edition, Wiley, 2016.
- 2. Jewett and Serway, Physics for Scientists and Engineering, 7th edition, 2013.
- M.N. Avadhanulu and P.G. Kshirsagar and TVS Arun Murthy A Textbook Engineering Physics, 11th edition, S. Chand, 2019.
- 4. John G. Webster and Halit Eren, Measurement, instrumentation, and Sensors handbook: Spatial, Mechanical, Thermal and Radiation Measurement, CRC press, 2014.
- 5. Patranabis D, Sensors and Transducers, 2nd edition, PHI Learning Pvt Ltd., 2015

Prof. D Karuna Sagar Prof. M. Srinivas Prof. S. Srinath Dr. S.V. Manorama Prof. A.S. Sai Prasad

O.U Nominee & Head D Subject Expert, Principle scientist, Head & BOS chairman, Chairman, BoS (Physics) Dept. of Physics, OU by Siguniv. of Hyderabad IICT, Hyderabad Dept of Physics, VCE

M.Sc., Ph.D. Osmania University,
Senior Professor
Department of Physics,

W.Sc., Ph.D. Osmania University,
Hyderabad-500 007. T.S.

DEPARTMENT OF PHYSICS

B.E Syllabus for **Mechanical Engineering** Branch w.e.f 2023-24

ENGINEERING PHYSICS

L:T:P	Credits		CIE		SEE	Course Code	
		Marks	Exam Duration	Marks	Exam Duration		
3:0:0	03	40	90 min	60	03 hours	U23BS230PH	
CIE	Assignme	ents (03)	Quizzes (03)	Internal Exams (02)	Total CIE Marks	
Ave. Marks	(05	05		30	40	

CO code	Course Objectives	Course Outcomes	Highest BTL	
BS230PH.1	State principles of interference, diffraction and polarization of light	Outline the principles of wave optics and their applications	3	
BS230PH.2	Comprehend lasing action and state various applications of lasers	Compare different types of lasers. Summarize merits and demerits of optical fibers.	2	
BS230PH.3	Describe characteristics of acoustic quieting effects required for a hall	Explain production of ultrasonics and summarize good building acoustics	3	
BS230PH.4	List of various properties of magnetic materials	Select various magnetic and for specific applications in mechanical engineering.	2	
BS230PH.5	Summarize the principles of liquefaction of gasses	Describe liquefaction of gases and their significant applications	2	

CO-PO Mapping

	PO1	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012
CO1	3	3	-	-	-	-	-	-	-	1	-	1
CO2	3	3	-	-	-	-	-	-	-	1	-	1
CO3	2	2	-	-	-	-	-	-	-	1	-	1
CO4	3	2	-	-	-	-	-	-	-	1	-	1
CO5	2	2	-	-	-	-	-	-	-	1	-	2

UNIT-I: WAVE OPTICS (12 hours)

Interference: conditions for sustained interference, interference due to thin parallel film, Newton's rings, applications of interference.

Diffraction: Phenomenon of diffraction of light, classes of diffractions, Fraunhofer diffraction due to a single slit, diffraction due to N- slits (plane transmission grating).

Polarization: Polarization of light, types of polarized light, double refraction, construction and working of Nicol's Prism, Polarizer and analyzer, Quarter wave and Half wave plates. Relevant applications of wave optics in the field of mechanical engineering.

Monal	128000W	Derelow.	Mararam	- Supro
Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sei Prasad
O.U Nominee &	Head	Subject Expert,	Principle scientist,	Head & BOS chairman,
Chairman, BoS (Physics)	Dept. of Physics, OU	Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE

Dr. D. KARUNA SAGAR Versity College of Science
M.Sc., Ph.D. Osmania University,
Department of Physics

Hyderabad-500 007, T.S.

Department of Physics,
University College of Science
Osmania University,
Hyderabad - 500 007, Telangana State

Th

UNIT-II: LASERS AND OPTICAL FIBRES (10 hours)

Lasers: Induced absorption, spontaneous and stimulated emissions, Properties of laser light, population inversion, meta-stable states, pumping mechanisms, components of laser, construction and working of CO_2 laser, advantages and applications of lasers in mechanical engineering.

Optical Fibers: introduction to optical fibers, propagation of light in an optical fiber, numerical aperture, acceptance angle, types of optical fibers, signal losses in optical fibers: Attenuation-absorption, bending and alignment losses, Block diagram of optical communication system, advantages and application of optical fibers. Applications of optical fiber sensors in mechanical engineering.

UNIT-III: ACOUSTICS (10 hours)

Architectural Acoustics: classification of sound: musical sound and noise, Characteristics of musical sound-pitch, loudness, timbre, sound intensity, sound pressure levels, reverberation time, absorption coefficient, Sabine's formula, sound absorbent materials, Building acoustic requirements, conditions for acoustic quieting: effects and remedies.

Ultrasonics: properties of ultrasonics, types of ultrasonic waves, production of ultrasonics by piezoelectric and magnetostriction method, detection of ultrasonics by piezoelectric, thermal detector, applications of ultrasonics: SONAR, cavitation. Ultrasonic non-destructive testing applications in mechanical engineering.

UNIT-III: MAGNETIC MATERIALS (10hours)

Origin of magnetism, Ferromagnetic materials, anti-ferromagnetic materials and ferri-magnetic (ferrites) materials, Weiss molecular field theory of ferromagnetism, magnetic domains, hysteresis curve, soft and hard magnetic materials and their applications.

Introduction to superconductivity, General properties of superconductors, Messiner effect, Type I and Type II superconductors-Josephson's Junctions-SQUIDS-Applications of superconductors

UNIT-V: CRYOGENICS (10 hours)

Introduction to low temperature Physics- Joule Thomson effect, porous plug experiment, J-T effect for a Van der Waal's gas, Inversion temperature, Boyle temperature and critical temperature. Regenerative cooling process, Liquefaction of hydrogen, properties of liquid helium, adiabatic demagnetization, Applications of cryogenic liquids including cryogenic treatment of mechanical machine tools.

Learning Resources:

- 1. J Walker, D., Halliday and R Resnick, Principles of Physics, 10th edition, Wiley, 2016,
- 2. M.N. Avadhanulu and P.G. Kshirsagar and TVS Arun Murthy, A Textbook Engineering Physics, 11th edition, S. Chand, 2019.
- 3. Mamata Mukhopadhyay, Fundamentals of Cryogenics Engineering, 3rd ed PHI, 2016
- 4. S O Pillai, Solid State Physics, 8th edition, New Age International Publishers, 2018

Maral	128000ml	- Dal x6/6/2	1 Mangang	CARON
Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
O.U Nominee &	Head A D	Subject Expert,	Principle scientist,	Head & BOS chairman,
Chairman, BoS (Physics)	Dept. of Physics, OUny	ic Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE

Dr. D. KARUNA SAGAROsmania University,
M.Sc., Ph.D. Senior Professor

8

DEPARTMENT OF PHYSICS

B.E Syllabus for CSE, CSE (AI & ML) and IT Branches w.e.f academic year 2023-2024

SEMICONDUCTOR PHYSICS AND OPTOELECTRONICS LAB

L:T:P	Credits	CIE Marks	SEE Marks	Semester	Course Code	
0:0:2	01	30	50	I	U23BS111PH	

	Course Objectives	Course Outcomes	Highest BTL
•	to study and discuss the characteristics of a given device	Conduct experiment independently and in team to record the measurements	2
•	to identify probable errors and take in the readings and known possible precautions	Outline the precautions required to be taken for each experiment	1
•	to compare the experimental and theoretical values and draw possible conclusions.	Compare the experimental results with standard values and estimate errors	2
•	To interpret the results from the graphs drawn using experimental values.	 Draw graphs and interpret the results with respect to graphical and theoretical values 	2
•	To write the record independently with appropriate results.	Write the summary of the experiment and draw appropriate conclusions	1

CO-PO Mapping

	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO1	2	-	-	-	-	-	-	-	2	-	-	2
CO2	3	-	-	-	-	-	-	-	-	-	-	1
CO3	2	2	-	-	-	-	-	-	-	-	-	1
CO4	3	-	-		-	-	-	-	-	.=	-	1
CO5	2	-	-	-	-	-	-	1	-	-	-	2

- 1. Study of I-V characteristics of P-N Junction diode.
- 2. Study of I-V characteristics of Zener Diode.
- 3. Study of I-V characteristics of LED and Photodiode
- 4. Determination of wavelength of laser light.
- Calculation of numerical aperture, acceptance angle and power loss due to bending of an optical fiber.
- 6. Study of I-V characteristics of solar cell and to calculate fill factor and efficiency
- 7. Determination of Planck's constant using Photocell
- 8. Determination of Hall's coefficient, carrier concentration of given semiconductor- Hall's effect
- 9. Study of resonance in LCR series circuits and estimation of band width & Q- factor
- 10. Study of resonance in LCR parallel circuits.
- 11. Determination of energy gap of a given semiconductor by four probe method
- 12. Determination of Seebeck coefficient.
- 13. Helmholtz coil —calculation of magnetic field along the axis of a solenoid *Each student should perform at least 10 (Ten) experiments.

	Maral	J880004	- Del 21/1	Del 26/27 Marcian				
	Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad			
	O.U Nominee &	Head EAD	Subject Expert,	Principle scientist,	Head & BOS chairman,			
D.	Chairman, BoS (Physics)	Dept. of Physics, OU	Y Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE			
Ur.	D. KARUNA SAGA	Riversity College of	Science		9			

M.Sc., Ph.D. Osmania University,
Senior Professor

Hyderabad-500 007, T.S.

Department of Physics,
University College of Science
Osmania University,

m

Hyderabad - 500 007, Telangana State

DEPARTMENT OF PHYSICS

B.E Syllabus for **ECE and EEE Branches** w.e.f academic year 2023-2024 **ENGINEERING PHYSICS LAB**

I : T : P	Credits	CIE Marks	SEE Marks	Semester	Course Code
0:0:2	01	30	50	II	U23BS211PH

Course Objectives	Course Outcomes	BTL
to study and discuss the characteristics of a given device	Conduct experiment independently and in team to record the measurements	2
to identify probable errors and take in the readings and known possible precautions	Outline the precautions required to be taken for each experiment	1
 to compare the experimental and theoretical values and draw possible conclusions. 	Compare the experimental results with standard values and estimate errors	2
 To interpret the results from the graphs drawn using experimental values. 	Draw graphs and interpret the results with respect to graphical and theoretical values	2
 To write the record independently with appropriate results. 	Write the summary of the experiment and draw appropriate conclusions	1

CO-PO Mapping

Orlup	PO1	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12
CO1	2	-	-	-	-	-	-	-	2	-	-	2
CO2	3	-	-	-	-	-	-	-	-	-	-	1
CO3	2	2	-	-	-	-	-	-	-	-	-	1
C04	3	-	-	-	-	-	-	-	-	-	-	1
CO5	2	-	-	-	-	-	-	1	-	-	_	2

- Determination of wavelength of Laser light.
- 2. Study of I-V characteristics of P-N Junction diode.
- 3. Study of I-V characteristics of Zener Diode.
- Calculation of numerical aperture, acceptance angle and power loss due to bending of an optical fibre.
- 5. Determination of energy gap of a given semiconductor by four probe method
- 6. Study of I-V characteristics of solar cell and to calculate fill factor and efficiency
- Determination of Hall's coefficient using Hall's effect
- 8. Determination of e/m of an electron by Thomson's method
- 9. Study of resonance in LCR series circuits and estimation of band width & Q- factor
- 10. Study of resonance in LCR parallel circuits
- 11. Determination of wavelength of a light source by Michelson interferometer
- 12. Determination of Seebeck coefficient
- 13. Helmholtz coil –calculation of magnetic field along the axis of a solenoid
- 14. B-H curve-estimation of Hysteresis loss of a ferromagnetic sample

*Each student should perform at least 10 (Ten) experiments.

Moral	12800014	Duly 10/12	A COM	Sugar
Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
O.U Nominee & Chairman BoS (Physics)	Head A D	Subject Expert, Univ. of Hyderabad	Principle scientist, IICT, Hyderabad	Head & BOS chairman, Dept of Physics, VCE

Dr. D. KARUNA SAGAR M.Sc., Ph.D. Senior Professor

Osmania University, Hyderabad-500 007, T.S.

Senior Professor

Department of Physics,

University College of Science

Osmania University, Hyderabad - 500 007, Telangana State

DEPARTMENT OF PHYSICS

B.E Syllabus for Civil and Mechanical Branches w.e.f academic year 2023-2024 APPLIED PHYSICS LAB

L:T:P	Credits	CIE Marks	SEE Marks	SEE Duration	Course Code
0:0:2	01	30	50	3 hours	U23BS221PH

Course Objectives	Course Outcomes	BTL
 to study and discuss the characteristics of a given device 	Conduct experiment independently and in team to record the measurements	2
 to identify probable errors and take in the readings and known possible precautions 	Outline the precautions required to be taken for each experiment	1
 to compare the experimental and theoretical values and draw possible conclusions. 	Compare the experimental results with standard values and estimate errors	2
 To interpret the results from the graphs drawn using experimental values. 	Draw graphs and interpret the results with respect to graphical and theoretical values	2
 To write the record independently with appropriate results. 	Write the summary of the experiment and draw appropriate conclusions	1

CO-PO Mapping

	PO1	PO2	PO3	P04	PO5	P06	P07	P08	P09	PO10	PO11	P012
CO1	2	-	-	-	-	-	-	-	2	-	-	2
CO2	3	-	-	-	-	-	-	-	-	-	-	1
CO3	2	2	-	-	-	-	-	-	-	-	-1	1
CO4	3	-	-	-	-	-	-	-	-	-	-	11
CO5	2	-	-	-	-	-	-	1	-	-	-	2

- 1. Determination of moment of inertia of a Fly Wheel
- 2. Computation of rigidity modulus of material of a wire using Torsional Pendulum
- 3. Estimation of frequency of electrically maintained Tuning fork- Melde's experiment
- 4. Determination of radius of gyration and acceleration due to gravity using Compound Pendulum.
- 5. Assessment of velocity of ultrasonic waves in liquids
- 6. Calculation of wavelength of laser light & Estimation of distance by laser light source
- 7. Measurement of radius of curvature of a Plano-convex lens by forming Newton's Rings.
- 8. Determination of wavelengths of mercury vapour lamp- diffraction grating
- 9. Calculation of numerical aperture, acceptance angle and power loss due to bending of an optical fibre.
- 10. Study of I-V characteristics of P-N Junction diode.
- 11. Study of I-V characteristics of solar cell and to calculate fill factor and efficiency
- 12. Gyroscope- study of gyroscopic effects.

*Each student should perform at least 10 (Ten) experiments.

Operal	128000NJ	- (Dul 26/23	are 26/6/2	3 pulmo
Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
O.U Nominee &	HeadEA□	Subject Expert,	Principle scientist,	Head & BOS chairman,
Chairman, BoS (Physics)	Dept. of Physics, OU	Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE

Dr. D. KARUNA SAGAR

Cullege of Science Senior Professor

Osmania University,
Hyderabad-500 007. T.S.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) **DEPARTMENT OF PHYSICS**

Open elective Course SMART MATERIALS AND APPLICATIONS

L:T:P	Credits	CIE			SEE	Course Code
Marks		Exam Duration	Marks	Exam Duration		
02:0:0	02	40	90 min	60	3hours	U230E310PH
CIE	Assignment	ts (02)	Quizzes (02)	Intern	al Exams(02)	Total CIE Marks
ve. Marks	C)5	05	*****	30	40

Course Objectives	Course Outcomes	BTL
The student will be able to	the student should at least be able:	
grasp the concepts of peizo and ferro electric materials	summarize various properties and applications of peizo and ferro electric materials	2
Learn fundamentals of pyro and thermo electric materials	apply fundamental principles of pyro and thermo electricity in relevant fields of engineering	3
gain knowledge on shape memory alloys acquire fundamental knowledge on	Explain types of shape memory alloys and their properties and applications	3
chromic materials	 Outline the importance of chromic materials in engineering fields. 	2

UNIT I: PIEZO AND FERRO MATERIALS (8 hours)

Piezo electric effect and inverse piezoelectric effect, Piezo electric materials, Structure of Quartz crystal, Piezoelectric oscillator, Magnetostriction, Magnetostriction oscillator, piezo-electric sensors, applications of Piezo-electric materials.

Characteristics and properties of ferro-electric materials, Curie-Weiss law, applications of Ferro electric materials

UNIT II: PYRO AND THERMO-ELECTRIC MATERIALS (6 hours)

Pyroelectricity: pyro electric effect, pyro electric materials, pyro-electric detector.

Thermoelectricity: thermoelectric effect, Seebeck effect, Peltier effect, thermocouple, Principle and working of thermoelectric generator and Thermoelectric cooler, applications of thermoelectric materials

UNIT III: SHAPE MEMORY MATERIALS (8 hours)

Introduction to shape memory alloys (SMA)- Shape Memory Effect (SME), Austenite, Martensite phases, Properties and characteristics SMAs, one-way and two way shape memory effects, Properties of Ni-Ti shape memory alloy, Cu-based shape memory alloys, and their applications, Applications of SMAs.

UNIT-IV: (6 hours)

Electro-chromaticity, Electro-chromic materials, Electro-chromic sensors and devices. Photo-chromaticity, Photo-chromic materials, Photo-chromic sensors and devices. Thermo-chromaticity, thermo-chromic materials, thermo-chromic sensors and devices. Smart fluids: Magneto-rheological and Electro-rheological fluids.

Learning Resources:

- K. Otsuka and C M Wayman, Shape memory materials, Cambridge university press, 1998.
- 2. T W Duerig, K N Melton, D Stockel, C M Wayman, Engineering aspects of shape memory alloys, Butterworth-Heinemann, 1990
- A.K. Sawhney, A Course in Electronic Measurements and Instrumentation, Dhanpat Rai & Sons, 2015
- 4. D. Patranabis, Sensors and Transducers, PHI Learning Pvt. Ltd., 2013

	Maral	128000VD	Da 16/6/13	26/1/23	CAJOhn
	Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
	O.U Nominee &	Head A D	Subject Expert,	Principle scientist,	Head & BOS chairman,
D D	Chairman, BoS (Physics)	Dept. of Physics, OU	Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE
Dr. D.	KARUNA SAGAR	Iniversity Cullege of	Science		12

M.Sc., Ph.D. Senior Professor Department of Physics, University College of Science Osmania University, Hyderabad - 500 007, Telangana State

Osmania University, Hyderabad-500 007, T.S.

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF PHYSICS

Open elective Course THIN FILM TECHNOLOGY AND APPLICATIONS

L:T:P	Credits	CIE			SEE	Course Code
		Marks	Exam Duration	Marks	Exam Duration	
03:0:0	03	40	90 min	60	3hours	U230E510PH
CIE	Assignme	ents (03)	Quizzes ((03)	Internal Exams(02)	Total CIE Marks
Ave. Marks	0	5	05		30	40

Course Objectives	Course Outcomes	BTL
Students are able to	The students acquire the ability to	
Learn the fundamental atomistic	1. State fundamental definitions of thin film technology	1
mechanisms.	Describe thin film deposition techniques	
2. Narrate thin film deposition techniques	3. Illustrate thin film devices and their use	2
3. Acquire knowledge on thin film devices	4. Apply thin films coatings for a variety industrial	3
4. Appreciate applications of thin films	applications	3

UNIT-I: THIN FILM GROWTH

Classification of films- formation of thin films- Condensation and nucleation, growth and coalescence of islands, -nucleation theories: capillarity and atomistic models, sticking coefficient, adhesion, substrate effect, film thickness effect.

UNIT-II: DEPOSITION TECHNIQUES

Thin film deposition techniques- simple thermal evaporation- Chemical vapor deposition technique-Advantages and disadvantages of Chemical Vapor deposition (CVD), physical vapour deposition electron beam evaporation- RF sputtering, Laser ablation- spin coating- molecular beam epitaxy (MBE), Film thickness measurement-ellipsometry, quartz crystal oscillator techniques.

UNIT-III: THIN FILM MATERIAL CHARACTERIZATION TECHNIQUES

Characterization techniques: X-Ray Diffraction (XRD), working principles of Scanning Electron Microscopy (SEM), working of Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Tunneling Microscope (STM).

UNIT-IV: PROPERTIES OF THIN FILMS

Electrical conduction in continuous and discontinuous metallic thin films. Transport and optical properties of metallic, semiconducting and dielectric films.

UNIT-V: THIN FILM DEVICES AND APPLICATIONS

Anti-reflection coatings, fabrication of thin film gas sensors and temperature sensors. Thin film solar cells, Quantum well and Quantum dot solar cells. Application of thin films in different areas such as electronics, medical, defense, sports, automobiles, applications of thin films in various fields etc.

Learning resources:

- Kasturi Chopra Thin Film Device Applications, Mac Graw Hill, New York, 2012
- 2. A. Goswami, thin film fundamentals, New age international, 2006

Maral	12800NY	Dury 10/12	M 2000 24 6	23 Antio
Prof. D Karuna Sagar	Prof. M. Srinivas	Prof. S. Srinath	Dr. S.V. Manorama	Prof. A.S. Sai Prasad
O.U Nominee &	Head EAD	Subject Expert,	Principle scientist,	Head & BOS chairman,
Chairman, BoS (Physics)	Dept. of Physics, OU	Univ. of Hyderabad	IICT, Hyderabad	Dept of Physics, VCE

Dr. D. KARUNA SAGAR
M.Sc., Ph.D.
Senior Professor

Osmania University, Hyderabad-500 007, T.S.

13