

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) DEPARTMENT OF PHYSICS Open Elective Course

FUNDAMENTALS OF SMART MATERIALS AND APPLICATIONS R F III SEMESTER

-				D.L. III JLI	ILJILK	
	L:T:P	Credits	CIE Marks	SEE Marks	SEE Duration	Course Code
	02: 0: 0	02	40	60	3 hours	U240E310PH

CO-PO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	-	-	-	-	-	1
CO2	3	-	-	-	-	-	-	-	-	-	-	1
CO3	3	3	-	-	-	-	-	-	-	-	7_	1
CO4	3	-	-	-	-	-	-	-	-	-	-	1
CO5	2	-	-	-	-	_	-	-	-		-	1

Course Objectives	Course Outcomes	BTL
The student will be able to	the student should at least be able:	
1. To introduce various types of smart	Identify various smart materials and their	2
materials used in engineering.	significant applications.	
2. Grasp the concepts of piezo and	2. Summarize various properties and applications	3
ferroelectric materials.	of peizo and ferroelectric materials.	
3. Learn fundamentals of pyro and	3. Apply fundamental principles of pyro and	3
thermoelectric materials	thermoelectricity in relevant fields of	3
4. Gain knowledge on shape	engineering.	2
memory alloys	4. Explain types of shape memory alloys and	2
	their properties and applications	

UNIT I: INTRODUCTION TO SMART MATERIALS (6 hours)

Characteristics of metals, polymers and ceramics. Introduction to smart materials, need for smart materials, Classification of smart materials, Components of a smart System, Applications of smart material, role of smart materials in developing intelligent systems and adaptive structures.

UNIT II: PIEZO AND FERRO ELECTRIC MATERIALS (8 hours)

Piezo electric effect and inverse piezoelectric effect, Piezo electric materials, Structure of Quartz crystal, piezoelectric oscillator, Magnetostriction, Magnetostriction oscillator, piezo-electric sensors, applications of Piezo-electric materials. Characteristics and properties of ferroelectric materials, Curie-Weiss law, applications of Ferro electric materials.

UNIT III: PYRO AND THERMO-ELECTRIC MATERIALS (6 hours)

Pyro electricity: pyro electric effect, pyro electric materials, pyro-electric detector.

Thermoelectricity: thermoelectric effect, Seebeck effect, Peltier effect, thermocouple, Principle and working of thermoelectric generator and Thermoelectric cooler, applications of thermoelectric materials

UNIT IV: SHAPE MEMORY MATERIALS (8 hours)

Introduction to shape memory alloys (SMA)- Shape Memory Effect (SME), Austenite, Martensite phases, Properties and characteristics SMAs, one-way and two-way shape memory effects, Properties of Ni-Ti shape memory alloy, Cu-based shape memory alloys, and their applications, Applications of SMAs.

Learning Resources:

- 1. Mukesh V. Gandhi, Brian S Smart Materials and Structures, Thompson, Springer, May- 1992
- 2. D. Patranabis, Sensors and Transducers, PHI Learning Pvt. Ltd., 2022
- 3. Nachiketa Tiwari, Bishakh Bhattacharya, Smart Material, Adaptive Structures & Intelligent Mechanical Systems

Prof. A.S. SaiPrasad

Head and Chairman, Bos in Physics