VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

ACCREDITED BY NAAC WITH A++ GRADE

DEPARTMENT OF CHEMISTRY

B E III SEMESTER Open Elective: CORROSION SCIENCE AND TECHNOLOGY

Instruction: 2 H/ Week	Semester End Exam Marks	: 60	Subject Reference Code	: OE310CH
Credits : 2	Continuous Internal Exam Marks	: 40	Duration of semester End Exam	: 3 Hours

OBJECTIVES	OUTCOMES					
The course will enable the students :	At the end of the course students should be able to:					
1. To acquaint with the causes of corrosion and different	1. Explain different types of corrosion with suitable					
types of corrosion.	examples.					
2. To understand the factors influencing corrosion and	2. Discuss different factors that affect corrosion and					
Controlling Corrosion by Inhibitors and Organic Coatings.	protection by organic coatings and inhibitors.					
3. To know different corrosion control coatings like	3. Select a suitable metallic coating for corrosion control					
electroplating and electrolessplating.	4. Discuss the principles and application of cathodic					
4. To familiarize with various preventive methods of	protection and surface conversion coatings for corrosion					
corrosion such as cathodic protection and surface	control.					
conversion.						

co-	CO-PO MAPPING FOR CORROSION SCIENCE AND TECHNOLOGY											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
1	2	1	-	-	-	-	1	-	-	-	-	1
2	2	1	-	-	-	-	1	-	-	-	-	1
3	2	1	-	-	-	-	1	-	-	-	-	1
4	2	1	-	-	-	-	1	-	-	-	-	2

UNIT-I: CHEMICAL AND ELECTROCHEMICAL CORROSION

Introduction - gravity, cause, Chemical and Electrochemical corrosion - Mechanism, Pilling - Bed worth rule, effect of nature of oxide layer on rate of chemical corrosion, electrochemical series and galvanic series. Formation of anodic and cathodic areas, Galvanic corrosion, Differential aeration corrosion -pitting, water line corrosion & crevice corrosion, stress corrosion, corrosion fatigue.

UNIT-II: CORROSION CONTROL METHODS

INHIBITORS AND ORGANIC COATINGS

A. Factors influencing corrosion

Nature of metal: Relative position of metal in galvanic series, over voltage, relative areas of anode & cathode and nature of corrosion product.

Nature of environment: temperature, pH and humidity.

B. Corrosion Control by Inhibitors and Organic Coatings

Corrosion Inhibitors: Anodic, Cathodic and vapor phase inhibitors.

Organic Coatings: Paints – constituents and their functions, vitreous enamel coatings, varnishes and lacquers.

UNIT-III: METALLIC COATINGS

Passivation of metals, polarization curve of passivating metals, effect of pH and potential-pH diagram for iron (Pourbaix Diagram) and polarization curve of iron, application of Pourbaix diagram for corrosion mitigation.

Metallic coatings: Types - anodic & cathodic. Surface pre-treatment of base metal.

Methods of application of metallic coatings: Hot dipping- galvanization - applications of galvanized RCC steel bars. Cladding, electro plating & electroless plating- principle and their differences.

Electroplating of Cu coating on Fe, Electroless plating of Ni coating on Insulators, Preparation of PCB using Electroless plating.

UNIT-IV: CATHODIC PROTECTION AND SURFACE CONVERSION

Cathodic protection: Principle, sacrificial anodic protection (SAP), impressed current cathodic protection (ICCP). Application of cathodic protection for bridges, ship hulls and underground pipelines.

Surface conversion coatings: Carburizing, Nitriding, Cyaniding.

Books:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Pub, Co., New Delhi (2002)
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand&Co.Ltd., New Delhi (2006).
- 3. O.G. PALANNA, Engineering Chemistry, TMH Edition.
- 3. Chemistry of Engineering Meterials by R.P Mani and K.N.Mishra, CENGAGE learning
- 4. Shasi Chawla, "Text Book of Engineering Chemistry", Dhanpat Rai Publishing Company, NewDelhi (2008).

Suggested Reading:

- 1. Principles and prevention of corrosion: Denny A Jones, Prentice Hall, 1996.
- 2. Derek Pletcher and Frank C. Walsh, "Industrial Electrochemistry", Chapman and Hall, New York, 1993
- 3. Fundamentals of Corrosion: Michael Henthorne, Chemical Engineering
- 4. Corrosion Engineering: Mars G Fontana, Mc Graw Hill, 1987