VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS) ACCREDITED BY NAAC WITH 'A++' GRADE IBRAHIMBAGH, HYDERABAD – 500 031

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Introduction to Signals and Systems

(Communication Engineering Stream: Open Elective - I)

SYLLABUS FOR B.E. III – SEMESTER (CSE, AI&ML & IT branches)

L:T:P (Hrs./week): 2:0:0	SEE Marks: 60	Course Code: U240E340EC				
Credits: 2	CIE Marks: 40	Duration of SEE: 3 Hours				

COURSE OBJECTIVES	COURSE OUTCOMES						
1. To define and classify continuous time signals and systems.	On completion of the course, students will be able to						
To determine frequency domain characteristics of a signal with Fourier series and Fourier transform.	 Analyze basic signals and systems in continuous time domain. Apply the Fourier analysis to analyze 						
Understand Laplace transform and their properties for analysis of signals and systems.	continuous time domain signals and systems in frequency domain. 3. Apply Laplace Transform, analyze						
To characterize discrete time signals and systems	the LTI systems. 4. Analyze basic signals and systems in discrete time domain						

CO-PO-PSO Mapping															
	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		0.0	3								1		2
CO2	3	3			ω										2
CO3	3	3			3										2
COA	2	2			2								1		2

UNIT - I

Continuous time signals: types of signals, representation of signals, basic elementary signals, operations on signals.

Continuous time systems: classification of systems - static and dynamic, linear and non linear, time invariant and time variant.

Lab Activity: Generation of elementary signals in MATLAB.

UNIT-II

Continuous time Fourier Series: Introduction, existence, properties, magnitude and phase spectrums

Continuous time Fourier transforms: Introduction, existence, properties, magnitude and phase spectrums.

Lab Activity: Verification of properties of Fourier Transform in MATLAB.

UNIT - III

Laplace transforms: Introduction, existence, Laplace transform of basic elementary signals, properties, inverse Laplace transforms, Analysis of LTI systems using Laplace Transform.

Lab activity: Obtaining system response using Laplace transforms in MATLAB

UNIT-IV

Discrete time signals: types of signals, representation of signals, basic elementary signals, operations on signals.

Discrete time systems: classification of systems - static and dynamic, linear and non linear, time invariant and time variant.

Lab activity: Generation of elementary signals in MATLAB.

Learning Resources:

- 1. P. Ramakrishna Rao, Signals and Systems, Mc Graw Hill, 2008.
- Alan V. Oppenheim, Alan S. Wilsky and S. Hamid Nawab, Signals and Systems, 2nd ed., PHI, 2009.
- 3. Nagoor kani , Signals and Systems McGraw Hill, 2013
- 4. https://onlinecourses.nptel.ac.in/noc19_ee07/preview (Principle of Signals and Systems by Prof. Aditya K Jagannatham
- 5. https://www.edx.org/course/signals-and-systems-part-1-1
- 6. https://www.edx.org/course/signals-systems-part-2-iitbombayx-ee210-2x-3

The break-up of CIE: Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2. No. of Assignments : 2 Max. Marks for each Assignment : 5

3. No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

Duration of Internal Tests: 90 Minutes

982

e, 80,0 vez