VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Mechanical Engineering INTRODUCTION TO INDUSTRIAL ROBOTICS (Stream: Robotics)

(Open Elective-I)
SYLLABUS FOR B.E.III-SEMESTER

L:T:P(Hrs/week): 2:0:0	SEE Marks: 60	Course Code: U24OE310ME
Credits: 02	CIE Marks: 40	Duration of SEE: 03Hours

COURSE OBJECTIVE	COURSE OUTCOMES						
The objective of the course is to	On completion of the course, students will be able to						
study industrial robot components,	1 explain configuration of industrial robots and summarize various						
configuration, sensors, drives, applications	applications.						
and programming through experiential	2 interpret various elements of the industrial robots						
learning.	3 Develop methodology to represent position and orientation of industrial						
	robot links in spatial coordinate system.						
	4 classify various sensors used in industrial robots and interface between						
	the human user and an industrial robot using various programming						
	languages.						

CO-PO and CO-PSO mapping															
CO	PO mapping									PSO mapping					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			1	2	2					2	3	1	2
CO2	3	2			1	2	2					2	3	1	2
CO3	3	2			1	2	2					2	3	1	2
CO4	3	2			1	2	2					2	3	1	2

UNIT-I

ROBOT BASICS

Robot-Basic concepts, Need, Law, History, Anatomy, specifications.

Robot configurations-cartesian, cylindrical, polar, articulated and SCARA. Parallel robots

ROBOT APPLICATIONS

Application in industry - material handling, loading & unloading, processing, welding & painting, assembly and inspection

UNIT-II

ROBOT ELEMENTS

End effectors-Classification, Types of Mechanical actuation, Gripper design, Robot joints types, Robot drive system types: Electrical, pneumatic and hydraulic.

UNIT-III

ROBOT COORDINATE SYSTEMS

Coordinate frames, Rotation matrix, Euler angles, Roll pitch and yaw angle representation, Composite rotations, Homogeneous Transformation matrix.

UNIT-IV

ROBOT SENSORS

Sensors in robots – Touch sensors-Tactile sensors – Proximity and range sensors. Force sensors

Robot programming

On line programming, teach pendant control, Lead through, Walk through, off line programming, Task programming.

Learning Resources:

- 1. Mikell P. Groover, Mitchell Weiss, Roger N Nagel and Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata Mc Graw-Hill Publishing Company Limited , 2008.
- 2. Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata Mc Graw Hill Publishing Company Limited, 2010.
- Klafter R.D, Chmielewski T.A, and Negin. M, "Robotic Engineering: An Integrated Approach", Prentice Hall of India Pvt. Ltd.,1994.
- 4. K.S. Fu, R.C. Gonzalez and C.S.G. Lee , "Robotics control, sensing, vision and intelligence", Tata Mc Graw-Hill Publishing Company Limited, 2008
- 5. R.K. Mittal and I. J. Nagrath Robotics and Control", Tata Mc Graw-Hill Publishing Company Limited, 2003.

The break-up of CIE: Internal Tests+Assignments + Ouizzes

1	No. of Internal Tests:	02	Max.Marks for each Internal Test:	30
2	No. of Assignments:	02	Max. Marks for each Assignment:	05
3	No. of Quizzes:	02	Max. Marks for each Quiz Test:	05
	Duration of Internal Test:	90 Mir	nutes	