VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

Department of Mechanical Engineering

FUNDAMENTALS OF UNMANNED AERIAL VEHICLES (General Pool)

(Open Elective-I)
SYLLABUS FOR B.E.III-SEMESTER

L:T:P(Hrs/week):2:0:0	SEE Marks:60	Course Code: U24OE320ME
Credits :02	CIE Marks:40	Duration of SEE:03Hours

COURSE OBJECTIVE	COURSE OUTCOMES						
COURSE OBJECTIVE	On completion of the course, students will be able to						
The objective of this Course is to understand the features, basics of flight, manufacturing and analysis of UAV and Artificial Intelligence in	applications.						
UAV systems.	 fabricate, and analyse UAV components using appropriate tools and techniques. identify, explain, and evaluate the role of Artificial Intelligence in UAV systems for autonomous operations. 						

CO-PO and CO-PSO mapping															
CO	PO mapping									PSO mapping					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2				3	3	3				3	3	2	3
CO2	3	3				3	3	2				3	3	2	3
CO3	3	2				3	3	2				3	3	2	3
CO4	3	2				3	3	2				3	3	2	3

Unit-I:

Introduction to UAV

UAV: Definition, History; Difference between aircraft and UAV; DGCA Classification of UAVs; Types and Characteristics of Drones: Fixed, Multi-rotor, and Flapping Wing; Applications: Defense, Civil, Environmental monitoring.

Unit-II:

Basics of Flight

Different types of flight vehicles; Components and functions of an airplane; Forces acting on Airplane; Physical properties and structure of the atmosphere; Aerodynamics – aerofoil nomenclature, aerofoil characteristics, Angle of attack, Mach number, Lift and Drag, Propulsion and airplane structures.

Unit-III:

Manufacturing and Analysis of UAV

Drone Manufacturing, Additive Manufacturing, Health Evaluation and Failsafe, Introduction to CAD; Design of UAV components; Structural Analysis using CAE; Aerodynamic Analysis using CFD; Manufacturing of the components of UAVs: 3D printing; Case studies;

Unit-IV:

Artificial Intelligence in UAV Systems

Components: Arms, motors, propellers, electronic speed controller (ESC), flight controller; Propulsion; Data Link; Sensors and Payloads: GPS, IMU, Light Detection and Ranging (LiDAR), Imaging cameras, Classification of payload based on applications; Hyper-spectral sensors; Laser Detection and Range (LADAR); Synthetic Aperture Radar (SAR); Thermal cameras; ultra-sonic detectors; Case study on payloads. Introduction to navigation systems and types of guidance; Mission Planning and Control.

Learning Resources:

- 1. Andey Lennon, "Basics of R/C Model Aircraft Design" Model Airplane News Publication
- 2. John Baichtal, Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs.
- 3. K Valavanis, George J Vachtsevanos, Handbook of Unmanned Aerial Vehicles, New York, Springer, Boston, Massachusetts: Credo Reference, 2014. 2016.
- 4. DGCA RPAS Guidance Manual, Revision 3 2020

The break-up of CIE: Internal Tests+ Assignments + Quizzes

- No. of Internal Tests:
 No. of Assignments:
 Max.Marks for each Internal Test:
 Max. Marks for each Assignment:
 Max. Marks for each Assignment:
- 3 No. of Quizzes: 02 Max. Marks for each Quiz Test: 05

Duration of Internal Test: 90 Minutes