With effect from: 2025-26 (R-23)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade 9-5-81, Ibrahimbagh, Hyderbad-500031

DEPARTMENT OF MATHEMATICS

ALI ARTIFICITION MATTEMATIC

TRANSFORM TECHNIQUES (OPEN ELECTIVE)

For B.E., V - Semester - CBCS (Common to CSE, AIML & IT Branches)

Instruction: 3 Hours per week Semester End Credits:3 Sessional Mar		Semester End Exam Marks: 60		rks: 60	Subject Reference Code: U230E510MA			
		ks: 40		Duration of Semester End Exam: 3 Hours				
COURSE OBJECTIVES			COURSE OUTCOMES					
The course will enable the students to:			At the end of the course students will be able to:					
1.	<i>Understand</i> the Definition of Laplace and its Properties.			1. Evaluate Laplace transforms of functions.				
2.	Understand the Definition Laplace Transforms- Prope	2. Evaluate Inverse Laplace transforms of functions.						
3	Understand the applications of Laplace Transforms.		3. Apply Laplace transforms to evaluate integrals and to solve ordinary differential equations arising in engineering problems.					
4	Study the Definition of Z- Transforms and its properties		4.	Evaluat	aluate Z- transforms of Sequences			
5	Understand the applicat Transforms	ions of Z-	5.		Z-transforms to solve ordinary ce equations arising in engineering s.			

<u>UNIT – I: (8 Hours)</u> LAPLACE TRANSFORMS

Introduction to Laplace transforms - Existence of Laplace Transform —Properties of Laplace Transform-First shifting theorem - Second shifting theorem - Change of scale property — Differentiation of Laplace transform —Integration of Laplace Transform — Laplace Transform of Derivatives - Laplace Transform of Integrals

<u>UNIT – II: (8 Hours)</u> INVERSE LAPLACE TRANSFORMS

Introduction to Inverse Laplace transforms -Properties of Inverse Laplace Transform-First shifting theorem - Second shifting theorem -Change of scale property- Multiplication with s - Division by s - Convolution Theorem (without proof).

UNIT - III: (8 Hours)

APPLICATIONS OF LAPLACE TRANSFORMS

Applications of Laplace transforms to Initial and Boundary Value Problems upto second order -Laplace transform of periodic functions – Triangular wave – Square wave – Saw tooth wave.

UNIT - IV: (8 Hours) **7-TRANSFORMS**

Introduction - Z-transforms of Standard sequences - Linearity Property - Scaling Property -Shifting Properties- Initial value theorem - Final value theorem - Differentiation of Z-transform.

UNIT - V: (8 Hours) **INVERSE Z-TRANSFORMS**

Introduction -Inverse Z-transforms of Standard functions - Convolution Theorem - Application of Z-Transforms to solve Difference Equations.

Text Books:

- 1. Advanced Engineering Mathematics, Third Edition, R. K. Jain and S. R. K. Iyengar, Narosa Publishing House.
- 2. Higher Engineering Mathematics, Dr.B.S Grewal 40th Edition, Khanna Publishers.

Reference Books:

- 1. Advanced Engineering Mathematics, Kreyszig E, 8 th Edition, John Wiley & Sons Ltd, 2006.
- 2. A text book of Engineering Mathematics by N.P.Bali & Manish Goyal, Laxmi Publication.

Online Resources:

https://onlinecourses.nptel.ac.in/noc24_ma17/preview

The	break-up of CIE: Internal Tests	5	+ Assignments + Quizzes		30		
			2 Max. Marks for each Internal Tests				
1	NO. Of Title Hai 16363				c		
			3 Max. Marks for each Assignment		5		
2	NO. OF ASSIGNMENTS			,	5		
3	No. of Quizzes :		3 Max. Marks for each Quiz Test	•			
	mor or quizzon		90 Minutes				
4	Duration of Internal Tests						

Duration of Internal Tests

Prof.N.Kishan (OU Nominee)

(Subject Expert-JNTUH)

n Mohan (Subject Expert-BITS, Hyd) (Industry Expert)

(Chairman, BOS)