VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

DEPARTMENT OF MECHANICAL ENGINEERING

DRIVES AND CONTROL SYSTEMS FOR ROBOTICS (Stream: Robotics)

(Open Elective-III)

SYLLABUS FOR B.E. V-SEMESTER

Instruction: 3Hours	SEE Marks : 60	Course Code : U23OE510ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

Course objectives	Course Outcomes										
The objectives of this	On completion of the course, the student will be able to:										
course are to:	1. Understand basic control system types and analyze block diagrams using transfer										
To provide students	functions.										
with a fundamental	Interpret transient and steady-state responses and understand system stability concepts.										
understanding of	3. Represent control systems using state-space models and convert between state-space and										
control systems and	transfer functions.										
their applications in	4. Understand control techniques to achieve precise and stable joint control in robotic										
robotics.	systems.										
	5. Implement advanced control strategies to enhance the performance and interaction of										
	robotic systems.										

CO-PO and CO-PSO mapping															
CO	PO mapping									PSO mapping					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2		2					2		2	2	2	
CO2	3	3	2		2							2	2	2	
CO3	3	3	2		2					2		2	2	2	
CO4	3	3	3	2	3					2		2	2	2	2
CO5	3	3	3	2	3					2		2	2	2	2

UNIT-I

Introduction to Control Systems: Examples of control systems, Transfer function of spring-mass-damper system, Transfer function of simple RLC circuit. Block diagrams, Block diagram reduction.

UNIT-II

Steady-State and Transient Response: Transient Response of first order and second order system to step input. Concept of steady-state error. Stability: Introduction to the concept of stability using Routh-Hurwicz criterion.

UNIT-III

State—space representation of linear control systems: Basic concepts. State—space representation of spring-mass-damper system, State—space representation of simple RLC circuit. Conversion of Transfer function into State Space, Conversion of State-Space in to Transfer Function.

UNIT-IV

Independent Joint Control: Transfer function of Armature Controlled DC Motor, Proportional (P) Control, Proportional-Integral (PI) Control, Proportional-Derivative (PD) Control, Proportional-Integral-Derivative (PID) Control.

UNIT-V

Computed Torque Feed-forward Control, Force Control: Compliance Control, Impedance Control, Hybrid Force/Motion Control.

Learning Resources:

- 1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons, Inc., 2001.
- 2. Ogata, K. "Modern Control Engineering", Prentice Hall, 2004
- Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, Robotics: Modelling, Planning and Control, Springer Science & Business Media, 2008
- 4. Spong, Mark W., and M. Vidyasagar, Robot dynamics and control. John Wiley & Sons, 2008.

The break-up of CIE: Internal Tests+Assignments + Quizzes

1 No. of Internal Tests: 02 Max.Marks for each Internal Test: 30
2 No. of Assignments: 03 Max. Marks for each Assignment: 05
3 No. of Quizzes: 03 Max. Marks for each Quiz Test: 05

Duration of Internal Test: 90 Minutes