VASAVI COLLEGE OF ENGINEERING (Autonomous)

IBRAHIMBAGH, HYDERABAD - 500 031

DEPARTMENT OF MECHANICAL ENGINEERING

INTRODUCTION TO ROBOTICS (General Pool)

(Open Elective-III)

SYLLABUS FOR B.E. V-SEMESTER

L:T:P(Hrs./week):3	SEE Marks : 60	Course Code: U23OE520ME
Credits : 3	CIE Marks: : 40	Duration of SEE: 3 Hours

Course objectives	Course Outcomes						
The objectives of this	On completion of the course, the student will be able to						
course are to:	1. understand the anatomy of the robot and various robot configurations for it's						
Identify robots and its	selection depending on the task.						
peripherals for	2. classify the end effectors , understand different types of joints, various types of robot						
satisfactory operation	drive systems for carrying out the assigned job effectively.						
and control of robots	3. analyze a planar manipulator through forward kinematics and understand the control						
for industrial and non-	of robot manipulator for better reliability and efficiency using python programming.						
industrial applications.	4. Classify the various sensors used in robots for proper selection to an application.						
	5. summarize various industrial and non-industrial applications of robots for their						
	selection to a particular task.						

CO-PO and CO-PSO mapping															
CO	PO mapping										PSO mapping				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2			1	2	2					2	3	1	2
CO2	3	2			1	2	2					2	3	1	2
CO3	3	2			1	2	2					2	3	1	2
CO4	3	2			1	2	2					2	3	1	2
CO5	3	2			1	2	2					2	3	1	2

UNIT-I ROBOT BASICS

Robot-Basic concepts, Definition, Need, Law, History, Anatomy, specifications.

Robot configurations-cartesian, cylindrical, polar, articulated and SCARA,

Robot wrist mechanism, Precision and accuracy of robot.

UNIT-II ROBOT ELEMENTS

End effectors-Classification, Robot drive system types: Electrical, pneumatic and hydraulic. Robot joints and links-Types, Robot trajectories2D and 3D Transformation- Scaling, Rotation and Translation, Homogeneous transformation

UNIT-III ROBOT KINEMATICS AND CONTROL

Robot kinematics – Basics of direct and inverse kinematics. D-H matrix. Forward kinematics for a 2-link RR planar manipulator.

Control of robot manipulators – Point to point and Continuous Path Control. Robot programming methods.

UNIT-IV ROBOT SENSORS

Sensors in robots – Touch sensors-Tactile sensors – Proximity and range sensors. Force sensors, Light Introduction to Machine Vision and Artificial Intelligence.

UNIT-V

ROBOT APPLICATIONS

Applications of robots in Industries, Medical, Household, Entertainment, Space, Underwater, Defense, and Disaster management.

Applications of Micro and Nanorobots, Future Applications of robots.

Learning Resources:

- Mikell P. Groover, Mitchell Weiss, Roger N Nagel and Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", TataMcGraw-Hill Publishing Company Limited, 2008.
- Deb.S.R and Sankha Deb, "Robotics Technology and Flexible Automation", Tata McGraw HillPublishing Company Limited, 2010.
- 3. KlafterR.D, Chmielewski T.A, and Negin. M, "Robotic Engineering: An Integrated Approach", Prentice Hall of India Pvt. Ltd.,1994.
- K.S. Fu,R.C. Gonzalez and C.S.G.Lee , "Robotics control, sensing, vision and intelligence", TataMcGraw-Hill Publishing Company Limited, 2008
- 5. R.K. Mittal and I.J.Nagrath"Robotics and Control", Tata McGraw-Hill Publishing Company Limited, 2003.

The break-up of CIE: Internal Tests+Assignments + Quizzes

1	No. of Internal Tests:	02	Max.Marks for each Internal Test:	30
2	No. of Assignments:	03	Max. Marks for each Assignment:	05
2	N C O !	0.2	Maria Marila Carranala Orda Tarak	0.5

No. of Quizzes: 03 Max. Marks for each Quiz Test: 05

Duration of Internal Test: 90 Minutes