

With effect from :2025-26 (R-24)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade

9-5-81, Ibrahimbagh, Hyderabad-500031

DEPARTMENT OF MATHEMATICS

ALGEBRAIC STRUCTURES

(OPEN ELECTIVE)

For B.E., IV- Sem.,

(Common to CSE, AIML & IT Branches)

Instruction : 3 Hours per week	Sem. End Exam Marks : 60	Subject Reference Code : U24OE420MA
Credits : 3	Sessional Marks : 40	Duration of Semester End Exam : 3 Hrs

COURSE OBJECTIVES	COURSE OUTCOMES
<i>The course will enable the students to :</i> <ol style="list-style-type: none">1. Study the concept of Groups, Finite Groups, Subgroups, Cyclic Groups and their properties.2. Understand Isomorphism – Automorphism of groups and their Properties.3. Learn group Homomorphism and related concepts.4. Acquire knowledge of Rings, Integral domains and Fields, External and Internal direct products.5. Identify Ring Homomorphism, properties and polynomial rings	<i>At the end of the course students should be able to:</i> <ol style="list-style-type: none">1. Solve the problems on Groups and will be equipped to apply them in applications like robotics, computer vision, computer graphics and medical image analysis2. Implement the concepts of automorphism in developing encoding and decoding tools of Cryptography3. Apply homomorphism in the study of formal languages, automata theory, and compiler design.4. Use the knowledge of Ring, Integral domain and Field in coding theory.5. Compute the programming of modern computer algebra algorithms using ring homomorphism.

UNIT – I: (8 Hours)

GROUPS

Binary operations - Groups – Definition, Elementary properties of Groups, Finite Groups, Subgroups, Cyclic Groups – Properties of Cyclic Groups, Fundamental theorem of Cyclic Groups-Classification of Subgroups of Cyclic Group.

UNIT – II: (8 Hours)

GROUP ISOMORPHISM

Isomorphism – Definition, Properties (without proof)- Automorphism - Cosets -Properties of Cosets (without proof), Lagrange's theorem.

15
12/01/26

UNIT – III: (8 Hours)

GROUP HOMOMORPHISM

External Direct Product - Definition, Properties (without proof). Normal Subgroups and Factor Groups.
Internal Direct Product, Group Homomorphism - Definition, Properties (without proof).

UNIT – IV: (8 Hours)

RINGS

Rings, Properties of Rings (without proof) – Subrings - Integral Domains and Fields - Ideals- Prime and Maximal Ideals.

UNIT – V: (8 Hours)

RING HOMOMORPHISM

Ring Homomorphism - Properties of Ring Homomorphism (without proof) - Polynomial Rings - The Division Algorithm.

Text Books:

Contemporary Abstract Algebra, Joseph A. Gallian, CRC Press

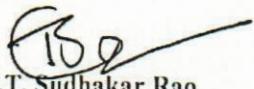
Reference Books:

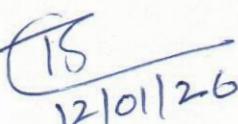
1. Topics in Algebra, I. N. Herstein, John Wiley & Sons
2. Basic Abstract Algebra, P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul, Cambridge University Press
3. Abstract Algebra, D. S. Dummit, R. M. Foote, John Wiley & Sons, Inc.
4. A First Course in Abstract Algebra, John B. Fraleigh, Pearson Education Limited

Online Resources :

1. <https://ocw.mit.edu/courses/18-703-modern-algebra-spring-2013/>
2. https://onlinecourses.nptel.ac.in/noc19_cs78/preview

The break-up of CIE: Internal Tests + Assignments + Quizzes


1	No. of Internal Tests	:	2	Max. Marks for each Internal Tests	:	30
2	No. of Assignments	:	3	Max. Marks for each Assignment	:	5
3	No. of Quizzes	:	3	Max. Marks for each Quiz Test	:	5
4	Duration of Internal Tests	:	90 Minutes			



Prof. N. Kishan
(OU Nominee)

Prof. M.A. Srinivas
(Subject Expert-JNTUH)

Dr. Jagan Mohan
(Subject Expert-BITS, Hyd)

Dr. B. Srivaths
(Industry Expert)

Dr. T. Sudhakar Rao
(Chairman, BOS)

12/01/26