

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Sensors for Engineering Applications

(General Pool: Open Elective - II)

SYLLABUS FOR B.E. IV - SEMESTER (Civil, CSE, CSE (AI&ML) EEE, IT & Mech.)

L:T:P (Hrs./week) : 3:0:0	SEE Marks : 60	Course Code: U24OE410EC
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

COURSE OBJECTIVES		COURSE OUTCOMES											
1. Understand Sensor Principles and Classification		Upon completion of the course, students will be able to											
2. Analyzing Sensor Characteristics and Response		1. Understand the fundamental principles of sensors and transducers and their importance in various engineering applications.											
3. Exploring Different Types of Sensors		2. Demonstrate various mechanical sensors used for measuring displacement, acceleration, force, fluid flow, level, pressure, and stress.											
4. Understanding Environmental Factors and Sensor Reliability		3. Explain the working principles and applications of thermal and optical sensors.											
5. Explore the applications of sensors in various engineering fields		4. Comprehend the principles and applications of magnetic sensors and acoustic sensors.											
		5. Explore electrical sensors, and high-frequency sensors and their use in various engineering applications.											

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1		1								1	1	
CO2	3	2	1		2								2	2	
CO3	2	2	2		2								2	2	
CO4	2	2	2		2								2	2	
CO5	2	2	2		2								2	2	

UNIT - I

Introduction to sensors and transducers. Need for sensors in the modern world. Different fields of sensors based on the stimuli - various schematics for active and passive sensors. Static and dynamic characteristics of sensors - zero, I, and II order sensors – Response to impulse, step, ramp, and sinusoidal inputs. Environmental factors and reliability of sensors.

UNIT - II

Mechanical Sensors Displacement - acceleration and force – the flow of fluids - level indicators - pressure in fluids - stress in solids. Typical sensors - wire and film strain gauge, anemometers, piezoelectric and magnetostrictive accelerometers, potential metric sensors, LVDT.

UNIT - III

Thermal and Optical Sensors temperature – temperature difference – heat quantity. Thermometers for different situations – thermocouples thermistors –

color pyrometry. light intensity - wavelength and color - light dependent resistors, photodiode, phototransistor, CCD, CMOS sensors. Radiation intensity, particle counter – Geiger Muller counter (gas based), Hallide radiation detectors.

UNIT - IV

Magnetic and Acoustic Sensors magnetic field, magnetic flux density – magneto resistors, Hall sensors, superconducting squids. Intensity of sound, frequency of sound in various media, various forms of microphones, piezoelectric sensors.

UNIT - V

Electrical and High-Frequency Sensors conventional volt and ammeters, high current sensors, (current transformers), high voltage sensors, High power sensors. High frequency sensors like microwave frequency sensors, wavelength measuring sensors. MEMS and MEM based sensors.

Lab Experiments:

1. Measurement of displacement, and velocity with Pmod ACL with 3-axis Digital Accelerometer.
2. Sense the temperature with Pmod TMP3 with Ambient Temperature sensor.
3. Sense the ambient light with Pmod ALS with an Ambient light sensor.
4. Characteristics of photocell using myRIO with Photocell, API PDV-P9203.
5. Study of IR range sensor to measure the distance between the sensor and reflective target using IR range finder GP2Y0A21YK0F
6. Working principle of Hall effect using US1881 Hall-effect latch.
7. Study of acoustic sensor, to record audio signals and to monitor acoustic level using Chennyum CY-502 computer microphone.
8. Estimate the range for a given IR and ultrasonic sensor using QRB1134 IR sensors and MAXSONAR ultrasonic sensor.

Learning Resources :

1. Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd.
2. Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", New York: Wiley, 2001.
3. Henry Bolte, "Sensors – A Comprehensive Sensors", John Wiley.
4. Jacob Fraden, "Handbook of Modern Sensors, Physics, Designs, and Applications", Springer.
5. Manabendra Bhuyan, "Intelligent Instrumentation Principles and Applications", CRC Press.
6. Randy Frank, "Understanding Smart Sensors", Second edition, Artech House.

The break-up of CIE : Internal Tests + Assignments + Quizzes

1. No. of Internal Tests : Max. Marks for each Internal Tests :
2. No. of Assignments : Max. Marks for each Assignment :
3. No. of Quizzes : Max. Marks for each Quiz Test :

Duration of Internal Tests: 90 Minutes

