

L:T:P (Hrs./week) : 3:0:0	SEE Marks : 60	Course Code: U24OE410ME
Credits : 3	CIE Marks : 40	Duration of SEE : 3 Hours

COURSE OBJECTIVE		COURSE OUTCOMES
The objective of the course is to		On completion of the course, students will be able to
To develop the fundamental knowledge and skills required to analyze, design and control robotic systems		<ol style="list-style-type: none"> Analyze the kinematics of robotic systems and apply them to solve real world problems Apply differential kinematics and statics concepts to design and control robotic systems Analyze the dynamics of serial manipulators using lagrangian method. Analyze the dynamics of serial manipulators using lagrangian and Newton-Euler mechanics Generate and analyze robot trajectories for various applications

CO-PO and CO-PSO mapping															
CO	PO mapping												PSO mapping		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2			2			2	2		2	3	2	1
CO2	2	2	2			2			2	2		2	3	2	1
CO3	3	3	3			3			3	3		2	3	2	1
CO4	3	2	2		3	3		3	2	2	3	3	3	2	1
CO5	2	2	2		2	2		2	2	2	2	2	3	2	1

UNIT-I**Robot Kinematics**

Forward Kinematics: Forward/direct kinematic analysis of serial manipulators.

Inverse Kinematics: General properties of inverse kinematic solution. Inverse kinematics of serial manipulators.

UNIT-II**Differential Kinematics**

Linear and angular velocity of links, Manipulator Jacobian for serial manipulators, Jacobian Singularities.

UNIT-III**Static Analysis:** Force and moment balance.**Dynamics of serial manipulators**

Lagrangian formulation for equations of motion for RP, RR serial manipulators,

Unit-IV**Dynamics of serial manipulators**

Recursive dynamics using Newton-Euler formulation of RP and RR serial manipulator.

UNIT-V**Trajectory Generation****Joint-Space Techniques:** Cubic Polynomial Trajectories, Linear Segments with Parabolic Blends-without and with via points**Cartesian-Space Techniques:** Straight line path, Circular Path, Position Planning, Orientation Planning.**Learning Resources:**

1. Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, "Robotics: Modelling, Planning and Control", Springer Science & Business Media, 2010.
2. M.W.Spong and M.Vidyasagar, "Robot Dynamics and Control", 1st Edition, John Wiley and sons, 1990.
3. R.K.Mittal and I.J.Nagrath, "Robotics and Control", Tata McGraw-Hill, 2003.
4. Subir Kumar Saha, "Introduction to Robotics", Tata McGraw-Hill Education, 2014.
5. Howie M. Choset, Seth Hutchinson, Kevin M. Lynch, "Principles of Robot Motion: Theory, Algorithms, and Implementation", MIT Press, 2005.

The break-up of CIE: Internal Tests+ Assignments + Quizzes

1	No. of Internal Tests:	02	Max. Marks for each Internal Test:	30
2	No. of Assignments:	03	Max. Marks for each Assignment:	05
3	No. of Quizzes:	03	Max. Marks for each Quiz Test:	05
Duration of Internal Test: 90 Minutes				